- 1. Prove that the following languages over the alphabet $\Sigma = \{0, 1\}$ are *not* regular.
 - (a) $\{0^a 1^b 0^c \mid \text{ if } a \ge 1 \text{ then } b = c\}$

Solution:

Consider the set $F = 011^*$.

Let x and y be arbitrary distinct strings in F.

Then $x = {\color{red}01}^i$ and $y = {\color{red}01}^j$ for some *positive* integers $i \neq j$.

Let $z = 0^i$.

- $xz = 01^{i}0^{i} = 0^{a}1^{b}0^{c}$, where a = 1 and b = c = i. So $xz \in L$.
- $yz = 01^{j}0^{i} = 0^{a}1^{b}0^{c}$, where a = 1 and $j = b \neq c = i$. So $yz \notin L$.

Thus, z is a distinguishing suffix for x and y.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Rubric: 3 points: standard fooling set rubric (scaled). This is not the only correct solution. Watch out for boundary conditions and off-by-one errors!

This is an example of a non-regular language that cannot be proved non-regular using (only) the pumping lemma, but it's close enough to a pumping-lemma language that most LLMs produce incorrect pumping lemma proofs. (You don't need to know what the pumping lemma is for this class, but you can find a description in almost every automata-theory textbook.)

(b) The set of all palindromes in Σ^* whose lengths are divisible by 5

Solution:

Consider the set $F = (10000)^*$.

Let x and y be arbitrary distinct strings in F.

Then $x = (10000)^i$ and $y = (10000)^j$ for some non-negative integers $i \neq j$.

Without loss of generality, assume i < j. (Otherwise swap x and y.)

Let $z = (00001)^i$.

- $xz = (10000)^i (00001)^i$, which is a palindrome of length $5 \cdot 2i$, so $xz \in L$.
- $yz = (10000)^i(00001)^j$. The (5i+1)th bit of yz is 0, but because i < j, the (5i+1)th bit of $(yz)^R = (10000)^j(00001)^i$ is 1. It follows that $yz \neq (yz)^R$, so yz is not a palindrome, so $yz \notin L$.

Thus, z is a distinguishing suffix for x and y.

We conclude that F is a fooling set for L.

Because *F* is infinite, *L* cannot be regular.

Rubric: 3 points: standard fooling set rubric (scaled). This is not the only correct solution. Watch out for boundary conditions and off-by-one errors!

(c) Even-length binary strings whose first half contains an odd number of 1s. More formally:

$$\left\{ w \in \Sigma^* \,\middle|\, w = xy \text{ for some strings } x \text{ and } y \text{ such that} \right\}$$
$$|x| = |y| \text{ and } \#(1, x) \text{ is odd}$$

Solution: Consider the set $F = (11)^*1 = \{1^{2n+1} \mid n \ge 0\}$.

Let x and y be arbitrary distinct strings in F.

Then $x = 1^{2i+1}$ and $y = 1^{2j+1}$ for some non-negative integers i and j.

Without loss of generality, assume i < j. (Otherwise, swap x and y.) Let $z = 10^{2j}$.

- Then $xz = 1^{2i+2}0^{2j}$ has even length 2i+2j+2, but because i < j, the first half of this string has length $i+j+1 \ge 2i+2$, and therefore contains the prefix 1^{2i+2} . So $xz \notin L$.
- Then $yz = 1^{2i+2}0^{2i}$ has even length 4i + 2 and its first half 1^{2i+1} contains an odd number of 1s. So $yz \in L$.

Thus, z is a distinguishing suffix for x and y.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Rubric: 4 points: standard fooling set rubric (scaled). These are not the only correct solutions. Watch out for boundary conditions and off-by-one errors!

2. For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either prove that the language is regular (by constructing an appropriate DFA, NFA, or regular expression) or prove that the language is not regular (using a fooling-set argument).

[Hint: Exactly two of these languages are regular.]

(a) $\{xy \mid |x| \le 374 \text{ and } |y| \ge 374 \text{ and } y \text{ is a palindrome}\}$

Solution: Not regular.

Consider the set $F = 0^{374} 10^{374} 0^*$.

Let x and y be arbitrary distinct strings in F.

Then $x = 0^{374} 10^{374+i}$ and $y = 0^{374} 10^{374+j}$ for some non-negative integers $i \neq j$. Let $z = 10^{374+i} 1$.

- We have $xz = 0^{374} \cdot 10^{374+i}$ $10^{374+i} \cdot 10^{374+i} \cdot 10^{374+i} \cdot 10^{374+i} \cdot 10^{374+i}$. Thus, we can write xz = uv, where $u = 0^{374}$ and $v = 10^{374+i} \cdot 10^{374+i} \cdot 1$. The prefix u has length at most (in fact equal to) 374, and the suffix v is a palindrome with length at least 374. Thus, $xz \in L$.
- On the other hand, $yz = 0^{374} 10^{374+j}$ $10^{374+i} 1$. If we write yz = uv where v is a palindrome, then v must both start and end with 1, so there are only three possibilities:
 - If v = 1, then |v| < 374.
 - If $v = 10^{374+i}$ 1, then $u = 0^{374} \cdot 10^{374+i}$, and therefore |u| > 374.
 - If $v = 10^{374+j} 10^{374+i} 1$, then v is not a palindrome, because $i \neq j$.

We conclude that $yz \neq L$.

Thus, z is a distinguishing suffix for x and y.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution: Not regular.

Consider the set $F = 0^{374} (100)^{374} (100)^*$.

Let x and y be arbitrary distinct strings in F.

Then $x = 0^{374} (100)^{374+i}$ and $y = 0^{374} (100)^{374+j}$ for some non-negative integers $i \neq j$.

Let $z = (001)^{374+i}$.

- We have $xz = 0^{374}(100)^{374+i}$ $(001)^{374+i}$. Thus, we can write xz = uv, where $u = 0^{374}$ and $v = (100)^{374+i}(001)^{374+i}$. The prefix u has length at most (in fact equal to) 374, and the suffix v is a palindrome with length at least 374. Thus, $xz \in L$.
- On the other hand, $yz = 0^{374} (100)^{374+j}$ $(001)^{374+i}$. Suppose we write yz = uv where $|u| \le 374$ and v is a palindrome. The palindrome suffix v ends with 1 and therefore starts with 1, so we must have $u = 0^{374}$ and $v = (100)^{374+j} (001)^{374+i}$. But then v is not a palindrome after all, because $i \ne j$. We conclude that $yz \ne L$.

Thus, z is a distinguishing suffix for x and y. We conclude that F is a fooling set for L. Because F is infinite, L cannot be regular.

Rubric: 2½ points: standard fooling set rubric (scaled). These are not the only correct solutions. These solutions are more detailed than necessary for full credit, but a full-credit solution must justify the claims " $xz \in L$ " and " $yz \notin L$ ".

4

(b) $\{xy \mid |x| \le 374 \text{ and } |y| \ge 374 \text{ and } x \text{ is a palindrome}\}$

Solution: Regular.

Let *P* be the set of all palindromes of length at most 374, and let *S* be the set of all strings with length at least 374. Both of these languages are regular:

- *P* is finite and therefore regular.
- S matches the regular expression $(0+1)^{374}(0+1)^*$.

Thus, our target language $P \bullet S$ is the concatenation of two regular languages, so it must be regular.

Solution: Regular.

This is the set of all strings with length at least 374, so it matches the regular expression $(0+1)^{374}(0+1)^*$.

- Let w be any string in our target language L. By definition, w = xy for some strings x and y such that $|y| \ge 374$ (and satisfying some other conditions). Thus, $|w| \ge |y| \ge 374$.
- Let w be any string with length at least 374. Let $x = \varepsilon$ and y = w. Then w = xy and $|x| \le 374$ and $|y| \ge 374$ and x is a palindrome. We conclude that $w \in L$.

Rubric: $2\frac{1}{2}$ points: $\frac{1}{2}$ for "regular" + 1 for regular expression + 1 for justification (= $\frac{1}{2}$ for "if" + $\frac{1}{2}$ for "only if"). This is more detail than necessary for full credit.

(c) $\{wxw^R \mid w, x \in \Sigma^+\}$

Solution: Regular.

This is the language $0(0+1)^+0+1(0+1)^+1$ of all strings of length at least 3 that start and end with the same symbol.

- Let z be an arbitrary string in our target language L. By definition, $z = wxw^R$ for some non-empty strings w and x. Because $w \neq \varepsilon$, we have w = ay for some symbol a and some string y. The definition of reversal implies $w^R = y^R a$. Thus, $z = ayxy^R a$ starts and ends with the same symbol a. The remaining substring yxy^R is non-empty, because x is nonempty. We conclude that $z \in O(O+1)^+O+O(O+1)^+O$.
- On the other hand, let z be an arbitrary string in $0(0+1)^+0+1(0+1)^+1$. Then z = axa for some symbol a and some nonempty string x. Because $a = a^R$, we have $z = axa^R$, which implies $z \in L$.

We conclude that $L = 0(0+1)^{+}0 + 1(0+1)^{+}1$.

Rubric: $2\frac{1}{2}$ points: $\frac{1}{2}$ for "regular" + 1 for regular expression + 1 for justification (= $\frac{1}{2}$ for "if" + $\frac{1}{2}$ for "only if"). This is more detail than necessary for full credit.

(d) $\{xww^R \mid w, x \in \Sigma^+\}$

Solution: Not regular.

Consider the set $F = "110^{\text{odd}}1" = 11(00)^*01$.

Let x and y be arbitrary distinct strings in F.

Then $x = 110^{2i+1}$ 1 and $y = 110^{2j+1}$ 1 for some non-negative integers $i \neq j$. Let $z = 10^{2i+1}1$.

- Then $xz = 1 \cdot 10^{2i+1} \cdot 10^{2i+1} = vww^R$, where v = 1 and $w = 10^{2i+1} \cdot 1$. It follows that $xz \in L$.
- For the sake of argument, suppose $yz = 110^{2j+1}110^{2i+1}1 \in L$.

Then $yz = vww^R$ for some non-empty strings w and v.

The last two symbols of yz are different, so |w| > 1.

The suffix w^R ends with 01 (the last two symbols of yz).

So its reversal *w* must begin with 10.

The substring 10 appears exactly twice in yz.

So there are only two possibilities for the substring ww^R .

- $ww^R = 10^{2j+1}$ 1 is impossible because $|ww^R|$ must be even.
- $ww^R = 10^{2j+1} 110^{2i+1} 1$ is impossible because ww^R must be a palindrome, and $i \neq j$.

We have derived a contradiction, which implies that $yz \notin L$.

Thus, z is a distinguishing suffix for x and y.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

The main idea here is to impose additional structure that forces the substring w to be arbitrarily long. We are really reasoning about the language

$$L \cap 1 \cdot 1(00)^*01 \cdot 1(00)^*01 = \{1 \cdot 10^n 1 \cdot 10^n 1 \mid n \text{ is odd}\}.$$

If R is a regular language and $L \cap R$ is not regular, then L cannot be regular.

Solution: Not regular.

Consider the set $F = 010(10)^*$.

Let x and y be arbitrary distinct strings in F.

Then $x = 0(10)^i$ and $y = 0(10)^j$ for some positive integers $i \neq j$.

Without loss of generality, assume i > j. (Otherwise swap x and y.) Let $z = (01)^i$.

- Then $xz = 1(10)^{i}(01)^{i} = vww^{R}$, where v = 1 and $w = (10)^{i}$. It follows that
- For the sake of argument, suppose $yz = 1(10)^{j}(01)^{i} \in L$. Then $yz = vww^R$ for some non-empty strings w and v.

The last symbol in w and the first symbol in w^R are equal.

There is only one place in yz where the same symbol appears twice in a

row, so we must have $w^R = (01)^i$ and therefore $w = (10)^i$.

Thus, $|yz| = |vww^R| = |v| + |w| + |w^R| \ge 4i + 1$.

But this is impossible; i > j implies |yz| = |y| + |z| = 2j + 1 + 2i < 4i + 1. We have derived a contradiction, which implies that $yz \notin L$.

Thus, z is a distinguishing suffix for x and y.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Again, we are imposing additional structure that forces w to be arbitrarily long. We are really reasoning about the language $L \cap O(10)^*(O1)^*$.

Rubric: 2½ points: standard fooling set rubric (scaled). These are not the only correct solutions.

*3. Practice only. Do not submit solutions.

See the homework handout for definitions of Moore machines, $L^{\circ}(M)$, and $L^{=}(M)$.

(a) Let M be an arbitrary Moore machine. Prove that $L^{\circ}(M)$ is a regular language.

Solution: Let $M = (\Sigma, \Gamma, Q, s, \delta, \omega)$ be the given Moore machine. We construct an NFA $M' = (\Sigma', Q', s', A', \delta')$ that accepts $L^{\circ}(M)$ as follows. First we define the input alphabet and various state sets:

$$\Sigma' = \Gamma,$$
 $Q' = Q,$ $s' = s,$ $A' = Q.$

The transition function δ' is defined as follows, for all $q \in Q$ and $b \in \Gamma$:

$$\delta'(q, b) := \{ \delta(q, a) \mid a \in \Sigma \text{ and } \omega(\delta(q, a)) = b \}.$$

Less formally, we build M' from M by replacing every transition $p \stackrel{a}{\longrightarrow} q$ with $p \stackrel{\omega(q)}{\longrightarrow} q$, and then letting *every* state accept.

Whenever M' reads a symbol $b \in \Gamma$ while in state q, it non-deterministically guesses a symbol $a \in \Sigma$ such that $\omega(\delta(q,a)) = b$ and transitions to state $\delta(q,a)$. If there is no such symbol, the current execution thread fails.

Each state q in M' indicates that M' has just read the output string $\omega^*(s, w)$, for some input string $w \in \Sigma^*$ such that $\delta^*(s, w) = q$.

Rubric: This would be enough for full credit.

For example, in the figure below, for each Moore machine M on the left, we would construct the corresponding NFA M' on the right. In each Moore machine, the input symbols are indicated in red on the edges/transitions, and the output symbols are indicated in blue on the vertices/states.

We can informally argue the correctness of our construction as follows. A *walk* in an NFA or a Moore machine is a sequence of transitions (that is, either a single state, or a transition followed by a walk).

An *accepting walk* in an NFA is any walk from the start state to any accepting state. The *transition string* of an accepting walk is the concatenation of the symbols labeling each transition. An NFA accepts a string *y* if and only if there is an accepting walk whose transition string is *y*.

Similarly, the *output string* of a walk in a Moore machine is the concatenation of the *output* symbols of the states, ignoring the beginning state. A string *y* is in the output language of a Moore machine *M* if and only if there is a walk in *M* that starts at *s* and whose output string is *y*.

Now consider our NFA M'. Accepting walks in M' starts at s' = s and can end at any state. Every transition in M' is also a transition in M and vice versa, so every walk in M is also a walk in M' and vice versa. The *transition* string of any walk in M is equal to the *output* string of the *same* walk in M'. We conclude that M' accepts a string y if and only if M' can output the string y.

If we absolutely have to, we can *formally* prove correctness by tedious inductive definition-chasing. Here we go:

Lemma 1. For all states $p, q \in Q$ and every string $x \in \Gamma^*$, we have $q \in (\delta')^*(p, x)$ if and only if there is a string $w \in \Sigma^*$ such that $\delta^*(p, w) = q$ and $\omega^*(p, w) = x$.

Proof: Let x be an arbitrary string in Γ^* , and let p and q be arbitrary states in Q. Assume, for every state r and every string $y \in \Gamma^*$ that shorter than x, that we have $q \in (\delta')^*(r,x)$ if and only if there is a string $v \in \Sigma^*$ such that $\delta^*(r,v) = q$ and $\omega^*(r,v) = y$. There are two cases to consider:

If $x = \varepsilon$, then by definition, $q \in (\delta')^*(p, x)$ if and only if p = q. Similarly by definition, $\delta^*(p, w) = q$ and $\omega^*(p, \varepsilon) = \varepsilon$.

On the other hand, if x = by for some symbol $b \in \Gamma$ and string $y \in \Gamma^*$, then

```
q \in (\delta')^*(p, x)
\iff q \in (\delta')^*(r, y) \qquad \text{for some } r \in \delta'(s, b)
\iff q \in (\delta')^*(\delta(p, a), y) \qquad \text{for some } a \in \Sigma \text{ such that } \omega(\delta(p, a)) = b
\iff \delta^*(\delta(p, a), v) = q \text{ and } \omega^*(\delta(p, a), v) = y
\text{for some } a \in \Sigma \text{ and } v \in \Sigma^* \text{ such that } \omega(\delta(p, a)) = b
\iff \delta^*(p, av) = q \text{ and } \omega^*(p, av) = by \qquad \text{for some } a \in \Sigma \text{ and } v \in \Sigma^*
\iff \delta^*(p, w) = q \text{ and } \omega^*(p, w) = x \qquad \text{for some } w \in \Sigma^*
```

Here the first equivalence is by definition of $(\delta')^*$, the second equivalence is by definition of δ' ; the third equivalence follows from the induction hypothesis; the fourth equivalence is by definition of δ^* and ω^* ; and the fifth equivalence follows from setting w = av.

The correctness of our construction now follows from Lemma 1 by setting p = s.

(b) Let M be an arbitrary Moore machine whose input alphabet Σ and output alphabet Γ are identical. Prove that $L^{=}(M)$ is a regular language.

Solution: Let $M = (\Sigma, \Sigma, Q, s, \delta, \omega)$ be the given Moore machine. We construct a DFA $M' = (\Sigma', Q', s', A', \delta')$ that accepts $L^{\circ}(M)$ as follows:

$$\Sigma' = \Sigma$$

$$Q' = Q \cup \{fail\}$$

$$s' = s$$

$$A' = Q$$

$$\delta'(q, a) = \begin{cases} \delta(q, a) & \text{if } \omega(\delta(q, a)) = a \\ fail & \text{otherwise} \end{cases}$$
 for all $q \in Q$ and $a \in \Sigma$
$$\delta'(fail, a) = fail$$
 for all $a \in \Sigma$

Less formally, we build M' from M by redirecting every transition $p \xrightarrow{a} q$ where $\omega(q) \neq a$ to a new fail state, and then letting every original state accept.

Whenever M' reads a symbol $a \in \Sigma$ while in state $q \in Q$, it either transitions to state $\delta(q, a)$ or fails, depending on whether $\omega(\delta(q, a)) = a$.

Each state q in M' indicates that M' has just read a string w such that $\delta^*(s,w)=q$ and $\omega^*(s,w)=w$.

Rubric: This would be enough for full credit.

For example, in the figure below, for each Moore machine M on the left, we would construct the corresponding NFA M' on the right. In each Moore machine, the input symbols are indicated in red on the edges/transitions, and the output symbols are indicated in blue on the vertices/states. The first and third NFAs have no transitions out of their start states, which means they reject every non-empty input; in those two cases we have $L^{=}(M) = \{\varepsilon\}$.

11