CS/ECE 374 A

Homework 3 Solutions Fall 2025

1. Prove that the following languages over the alphabet > = {0, 1} are not regular.

@) {0‘11”@"‘ | ifa>1thenb zc}

Solution:
Consider the set F =011*.
Let x and y be arbitrary distinct strings in F.
Then x = 01/ and y = 01/ for some positive integers i # j.
Let z = o',
e xz2 =010 =0%1%0°, wherea=1and b=c=1i. So xz € L.
e yz=01/0' =0%1%0°, wherea=1and j=b#c=i. Soyz & L.
Thus, z is a distinguishing suffix for x and y.
We conclude that F is a fooling set for L.
Because F is infinite, L cannot be regular.]

Rubric: 3 points: standard fooling set rubric (scaled). This is not the only correct solution.
Watch out for boundary conditions and off-by-one errors!

This is an example of a non-regular language that cannot be proved non-regular using (only)
the pumping lemma, but it’s close enough to a pumping-lemma language that most LLMs
produce incorrect pumping lemma proofs. (You don’t need to know what the pumping lemma is
for this class, but you can find a description in almost every automata-theory textbook.)

(b) The set of all palindromes in >* whose lengths are divisible by 5

Solution:
Consider the set F = (10000)*.
Let x and y be arbitrary distinct strings in F.
Then x = (10000)" and y = (10000)’ for some non-negative integers i # j.
Without loss of generality, assume i < j. (Otherwise swap x and y.)
Let z = (00001).
» xz = (10000)'(00001)!, which is a palindrome of length 5 - 2i, so xz € L.
e yz=(10000)!(00001)/. The (5i + 1)th bit of yz is 0, but because i < j, the
(5i + 1)th bit of (yz)R = (10000)(00001)" is 1. It follows that yz # (yz)&,
SO yz is not a palindrome, so yz & L.
Thus, z is a distinguishing suffix for x and y.
We conclude that F is a fooling set for L.
Because F is infinite, L cannot be regular. [|

Rubric: 3 points: standard fooling set rubric (scaled). This is not the only correct solution.
Watch out for boundary conditions and off-by-one errors!

CS/ECE 374 A Homework 3 Solutions Fall 2025

() Even-length binary strings whose first half contains an odd number of 1s. More
formally:
{ w = xy for some strings x and y such that}
wex*

|x| = |y| and #(1,x) is odd

Solution: Consider the set F = (11)*1 = {12""! | n > 0}.

Let x and y be arbitrary distinct strings in F.

Then x = 12! and y = 1%*! for some non-negative integers i and j.
Without loss of generality, assume i < j. (Otherwise, swap x and y.)
Let z = 10%.

* Then xz = 12720% has even length 2i + 2j + 2, but because i < j, the first
half of this string has length i + j + 1 > 2i + 2, and therefore contains the
prefix 122, So xz ¢ L.

 Then yz = 1%72¢% has even length 4i + 2 and its first half 12" contains
an odd number of 1s. So yz € L.

Thus, z is a distinguishing suffix for x and y.
We conclude that F is a fooling set for L.
Because F is infinite, L cannot be regular. [|

Rubric: 4 points: standard fooling set rubric (scaled). These are not the only correct solutions.
Watch out for boundary conditions and off-by-one errors!

CS/ECE 374 A Homework 3 Solutions Fall 2025

2. For each of the following languages over the alphabet % = {0, 1}, either prove that the
language is regular (by constructing an appropriate DFA, NFA, or regular expression) or
prove that the language is not regular (using a fooling-set argument).

[Hint: Exactly two of these languages are regular.]

@) {xy | |x| <374 and |y| >374and y is a palindrome}

Solution: Not regular.

Consider the set F = 037410%740*,

Let x and y be arbitrary distinct strings in F.

Then x = 037410374 and y = 037410374 for some non-negative integers i # j.
Let z = 10374+1,

* We have xz = 0374103741 ¢ 1937411 = 9374 ¢ 19374+11 937411 Thus, we can
write xz = uv, where u = 037 and v = 10%74+110%74+11, The prefix u has
length at most (in fact equal to) 374, and the suffix v is a palindrome with
length at least 374. Thus, xz € L.

+ On the other hand, yz = 0%7410%74") « 10374711 If we write yz = uv
where v is a palindrome, then v must both start and end with 1, so there
are only three possibilities:

— If v =1, then |v| < 374.

- If v =10%74"1, then u = 074 . 10%74*! and therefore |u| > 374.

- If v=10%41710%4+1 then v is not a palindrome, because i # j.
We conclude that yz # L.

Thus, z is a distinguishing suffix for x and y.
We conclude that F is a fooling set for L.
Because F is infinite, L cannot be regular. [|

Solution: Not regular.

Consider the set F = 0%74(100)%74(100)*.

Let x and y be arbitrary distinct strings in F.

Then x = 0374(100)%74* and y = 0%74(100)74"/ for some non-negative integers
i#].

Let z = (001)374+L,

* We have xz = 0°74(100)%74*" « (001)%74*. Thus, we can write xz = uv,
where u = 0374 and v = (100)3>’#"1(001)374"'. The prefix u has length at
most (in fact equal to) 374, and the suffix v is a palindrome with length at
least 374. Thus, xz € L.

 On the other hand, yz = 0374(100)%74*/ « (001)%74*'. Suppose we write
yz = uv where |u| < 374 and v is a palindrome. The palindrome suffix
v ends with 1 and therefore starts with 1, so we must have u = 074 and

v =(100)*"4"7(001)37#*, But then v is not a palindrome after all, because
i # j. We conclude that yz # L.

CS/ECE 374 A Homework 3 Solutions Fall 2025

Thus, z is a distinguishing suffix for x and y.
We conclude that F is a fooling set for L.
Because F is infinite, L cannot be regular. |

Rubric: 2 points: standard fooling set rubric (scaled). These are not the only correct solutions.
These solutions are more detailed than necessary for full credit, but a full-credit solution must
justify the claims “xz € L” and “yz & L”.

CS/ECE 374 A Homework 3 Solutions Fall 2025

(b) {xy | |x| <374 and |y| > 374 and x is a palindrome}

Solution: Regular.
Let P be the set of all palindromes of length at most 374, and let S be the set
of all strings with length at least 374. Both of these languages are regular:
* P is finite and therefore regular.
* S matches the regular expression (0 + 1)374(0 + 1)*.

Thus, our target language P ¢ S is the concatenation of two regular languages,
so it must be regular. [|

Solution: Regular.
This is the set of all strings with length at least 374, so it matches the regular
expression (0 + 1)374(0 + 1)*.

* Let w be any string in our target language L. By definition, w = xy for some
strings x and y such that |y| > 374 (and satisfying some other conditions).
Thus, |w| > |y| > 374.

e Let w be any string with length at least 374. Let x = ¢ and y = w. Then
w=xy and |x| <374 and |y| > 374 and x is a palindrome. We conclude
thatwe L.

Rubric: 2% points: 2 for “regular” + 1 for regular expression + 1 for justification (= V2 for “if” +
5 for “only if”). This is more detail than necessary for full credit.

CS/ECE 374 A Homework 3 Solutions Fall 2025

© {wxuR | w,x € %t}

Solution: Regular.

This is the language (@ + 1)t@ + 1(@ + 1)*1 of all strings of length at least 3
that start and end with the same symbol.

* Let 2 be an arbitrary string in our target language L.
By definition, z = wxw® for some non-empty strings w and x.
Because w # ¢, we have w = ay for some symbol a and some string y.
The definition of reversal implies w® = yRa.
Thus, z = ayxyRa starts and ends with the same symbol a.
The remaining substring yx y® is non-empty, because x is nonempty.
We conclude that z € 0(0 +1)*0+ 1(0 +1)*1.

* On the other hand, let z be an arbitrary string in 0(@ + 1)*0 + 1(0 +1)*1.
Then z = axa for some symbol a and some nonempty string x.
Because a = a®, we have z = axa®, which implies z € L.

We conclude that L =0(0+1)*0+1(0+1)"1. [

Rubric: 2' points: V2 for “regular” + 1 for regular expression + 1 for justification (= V2 for “if” +
2 for “only if”). This is more detail than necessary for full credit.

CS/ECE 374 A Homework 3 Solutions Fall 2025

@ {xwn? | w,x € %t}

Solution: Not regular.
Consider the set F = “110°941” = 11(00)*01.
Let x and y be arbitrary distinct strings in F.
Then x = 110?11 and y = 110%*11 for some non-negative integers i # j.
Let z = 102111,
e Then xz = 1-10%%11.102*+11 = ywwk, where v =1 and w = 10%*11. It
follows that xz € L.
* For the sake of argument, suppose yz = 110%+1110%*11 e L.
Then yz = vww® for some non-empty strings w and v.
The last two symbols of yz are different, so [w| > 1.
The suffix wR ends with 01 (the last two symbols of yz).
So its reversal w must begin with 10.
The substring 10 appears exactly twice in yz.
So there are only two possibilities for the substring ww~.
- wwR = 10%711 is impossible because |ww®| must be even.
- wwR = 10%71110%+11 is impossible because ww® must be a palindrome,
and i # j.
We have derived a contradiction, which implies that yz & L.
Thus, z is a distinguishing suffix for x and y.
We conclude that F is a fooling set for L.
Because F is infinite, L cannot be regular. |

The main idea here is to impose additional structure that forces the substring w
to be arbitrarily long. We are really reasoning about the language

L N 1-1(e0)@1-1(00)*01 = {1-10"1-10"1 | nisodd}.

If R is a regular language and L NR is not regular, then L cannot be regular.

Solution: Not regular.
Consider the set F = 010(10)*.
Let x and y be arbitrary distinct strings in F.
Then x = 0(10)' and y = 0(10)/ for some positive integers i # j.
Without loss of generality, assume i > j. (Otherwise swap x and y.)
Let z = (01)'.
e Then xz = 1(10){(01)! = vwwR, where v = 1 and w = (10). It follows that
xz € L.

* For the sake of argument, suppose yz = 1(10)/(01)! € L.
Then yz = vww® for some non-empty strings w and v.
The last symbol in w and the first symbol in w® are equal.
There is only one place in yz where the same symbol appears twice in a

CS/ECE 374 A

Homework 3 Solutions Fall 2025

row, so we must have wR = (01) and therefore w = (10)'.
Thus, |yz| = [vwwR| = |v| + [w| + [wR| > 4i + 1.
But this is impossible; i > j implies |yz| = |y|+|2| =2j+ 1+ 2i < 4i + 1.
We have derived a contradiction, which implies that yz & L.
Thus, z is a distinguishing suffix for x and y.
We conclude that F is a fooling set for L.
Because F is infinite, L cannot be regular.

Again, we are imposing additional structure that forces w to be arbitrarily long.
We are really reasoning about the language L N 0(10)*(01)*. [|

Rubric: 2% points: standard fooling set rubric (scaled). These are not the only correct solutions.

CS/ECE 374 A

Homework 3 Solutions Fall 2025

*3. Practice only. Do not submit solutions.

See the homework handout for definitions of Moore machines, L°(M), and L~(M).

(a) Let M be an arbitrary Moore machine. Prove that L°(M) is a regular language.

Solution: Let M = (3, T,Q,s, 8, w) be the given Moore machine. We construct
an NFA M’ = (¥/,Q’,s’,A’, 5") that accepts L°(M) as follows. First we define the
input alphabet and various state sets:

¥ =T, Q' =qQ, s’ =s, A =qQ.
The transition function & is defined as follows, forallg €Q and b € T:
&'(q,b) := {6(q,a) | a € £ and w(5(q,a)) = b}.

Less formally, we build M’ from M by replacing every transition p N g with
p 24 g, and then letting every state accept.

Whenever M’ reads a symbol b € T while in state g, it non-deterministically
guesses a symbol a € ¥ such that w(6(g,a)) = b and transitions to state 6(q, a).
If there is no such symbol, the current execution thread fails.

Each state g in M’ indicates that M’ has just read the output string w*(s, w),
for some input string w € ¥* such that 6*(s,w) =q.

Rubric: This would be enough for full credit.

For example, in the figure below, for each Moore machine M on the left, we
would construct the corresponding NFA M’ on the right. In each Moore machine,
the input symbols are indicated in red on the edges/transitions, and the output
symbols are indicated in blue on the vertices/states.

0 1 1 0
OERe :
Q=0

) 1
0,1 1

1 1 Q Q 1 Q
O, —(©) 1
0,1 1 1 1
We can informally argue the correctness of our construction as follows. A

walk in an NFA or a Moore machine is a sequence of transitions (that is, either a
single state, or a transition followed by a walk).

CS/ECE 374 A Homework 3 Solutions Fall 2025

An accepting walk in an NFA is any walk from the start state to any accepting
state. The transition string of an accepting walk is the concatenation of the
symbols labeling each transition. An NFA accepts a string y if and only if there
is an accepting walk whose transition string is y.

Similarly, the output string of a walk in a Moore machine is the concatenation
of the output symbols of the states, ignoring the beginning state. A string y is in
the output language of a Moore machine M if and only if there is a walk in M
that starts at s and whose output string is y.

Now consider our NFA M’. Accepting walks in M’ starts at s’ = s and can
end at any state. Every transition in M’ is also a transition in M and vice versa,
so every walk in M is also a walk in M’ and vice versa. The transition string of
any walk in M is equal to the output string of the same walk in M’. We conclude
that M’ accepts a string y if and only if M’ can output the string y.

If we absolutely have to, we can formally prove correctness by tedious inductive
definition-chasing. Here we go:

Lemma 1. For all statesp,q € Q and every string x € IT'*, we have q € (6')*(p, x)
if and only if there is a string w € * such that 6*(p,w) = q and w*(p,w) = x.

Proof: Let x be an arbitrary string in T'*, and let p and q be arbitrary states in Q.
Assume, for every state r and every string y € I'* that shorter than x, that we
have g € (6’)*(r, x) if and only if there is a string v € ¥* such that 6*(r,v) =q
and w*(r,v) = y. There are two cases to consider:

If x = ¢, then by definition, q € (6")*(p, x) if and only if p = q. Similarly by
definition, 6*(p,w) = q and w*(p,e) =¢.

On the other hand, if x = by for some symbol b € T and string y € I'*, then

q€(8")(p,x)
= qe(8')(y) for some r € 5'(s, b)
< qe(6)(8(p,a),y) for some a € % such that w(6(p,a))=0>b
< 6*(6(p,a),v) =q and w*(6(p,a),v) =y
for some a € ¥ and v € ©* such that w(6(p,a)) =b
< 6*(p,av) =q and w*(p,av) =by for some a € ¥ and v € &*
<~ &*(p,w)=gq and w*(p,w) =x for some w € ©*

Here the first equivalence is by definition of (6’)*, the second equivalence is by
definition of &’; the third equivalence follows from the induction hypothesis;
the fourth equivalence is by definition of 6* and «w*; and the fifth equivalence
follows from setting w = av. m|

The correctness of our construction now follows from Lemma 1 by setting
p=s. |

10

CS/ECE 374 A Homework 3 Solutions Fall 2025

(b) Let M be an arbitrary Moore machine whose input alphabet ¥ and output alphabet T

are identical. Prove that L= (M) is a regular language.

Solution: Let M = (%,%,Q,s, 6, w) be the given Moore machine. We construct
aDFA M’ = (¥/,Q/,s’,A’,5") that accepts L°(M) as follows:

M DT
Q' = QU {fail}
s'=s
A'=Q
ORI
5'(q,a) = (g.0) if (8(g,a)=a forallgeQandaex
fail otherwise
&’ (fail, a) = fail forallaex

Less formally, we build M’ from M by redirecting every transition p N g where
w(q) # a to a new fail state, and then letting every original state accept.

Whenever M’ reads a symbol a € X while in state q € Q, it either transitions
to state 6(q, a) or fails, depending on whether w(6(q, a)) = a.

Each state ¢ in M’ indicates that M’ has just read a string w such that
0*(s,w) =q and w*(s,w) =w.

Rubric: This would be enough for full credit.

For example, in the figure below, for each Moore machine M on the left,
we would construct the corresponding NFA M’ on the right. In each Moore
machine, the input symbols are indicated in red on the edges/transitions, and
the output symbols are indicated in blue on the vertices/states. The first and
third NFAs have no transitions out of their start states, which means they reject
every non-empty input; in those two cases we have L=(M) = {¢}.

[1

(el 0 O

11

