CS/ECE 374 A Homework 2 Solutions Fall 2023

1. For each of the following languages over the alphabet {0,1}*, describe an equivalent
regular expression, and briefly explain why your regular expression is correct. There are
infinitely many correct answers for each language.

Rubric: 2" points for each part = 1%z for correctness + 1 for English explanation (standard regular
expression rubric, scaled and rounded). Every subproblem has infinitely many correct solutions!

(@) All strings that start with 1, that end with 1, and whose length is not a multiple of 3.

Solution: Call this language L,. Except for the length-one string 1, Every string
in L, has the form 1x1 for some string x such that (|x| mod 3) # 1.
=1
+1((e+ 10+ 1)@+ 1)1 |x| mod3=0
+1(0+ 1)@+ 1((@+1)(@+1)(0+ 1)) |x| mod 3 =2

a

More compactly, we have L, = 1+1 (e+(®+1)(0+1))((O+1)(0+1)(0+1))*1. [|

(b) All strings in which each substring 000 is immediately followed by an odd-length run
of 1s.

Solution: A run in a string is a maximal substring in which all symbols are
equal; every binary string can be partitioned into alternating runs of @s and 1s.
Thus, we can represent the set of all binary strings as follows:

(0+1) = ik -(_@0* - 11*). 0*
~~— ~~—— ~—— ~~—
optional run of 1s run of @s run of 1s optional run of 0s

Our target language L, contains a binary string w if and only if w satisfies
the following constraints on its runs of 0s:
e Every run of 0s in w has length at most 3.
e Each run of 0s of length 3 is immediately followed by a run of 1s with odd
length. Thus, if w ends with a run of @s, that run has length at most 2. The
set of all odd-length runs of 1s is described by the regular expression 1(11)*.
* Each run of 0s with length 1 or 2 can either end the string or be followed
by an arbitrary run of 1s.

We conclude:

L,= 1% (011" + 00-11" + 000-1(11)")" - (¢+0+00
b | (i (1)) (%)
optional run of 1s run of 0s followed by run of 1s optional run of 0s

CS/ECE 374 A Homework 2 Solutions Fall 2023

(c) All strings that contain both 210 and 101 as subsequences, but do not contain either
010 or 101 as substrings. [Hint: This is simpler than it looks; think about runs.]

Solution: A binary string w contains both 910 and 101 as subsequences if and
only if w consists of at least four runs. On the other hand, a binary string w
avoids 010 and 101 as substrings if and only if every run in w, except possibly
the first and last run, has length at least 2.

Let’s call this target language L.. To build a regular expression for L., we
consider four cases, depending on whether the first and last runs contain 0s or
1s. If the first and last runs use the same symbol, the string must have an odd
number of runs, and therefore at least five runs.

L. =00%-111%-000* - (111*-000*)* - 111* - 00*
+ 00*-111%- 000" - (111* - 000*)* - 11*
+ 11%-000*- 111* - (000* - 111*)* - 00*
+ 11%-000*- 111*- (000* - 111*)* - 000* - 11*

Or more concisely:

L, =00*-111%- 000" - (111*- 000%)* - 11*(¢ + 100*)
+ 11%-000* - 111*- (000* - 111*)* - 00*(¢ + 011%)

(d) All strings over the alphabet {0, 1, 2} in which every pair of adjacent symbols differs
by exactly 1.

Solution: Every string in this language alternates between 1s and even symbols.

(e+0+2)-(1(0+2))*-(e+1)

CS/ECE 374 A Homework 2 Solutions Fall 2023

*(e) All strings over the alphabet {0, 1, 2, 3} in which every pair of adjacent symbols differs
by exactly 1.

Solution: Let’s call this language L,. Just like in part (d), we’ll use 1s as
signposts; the definition of L, constrains what substrings can appear before, after,
and between 1s. Our regular expression has the following high-level structure:

L,=(no1s) + (beforefirst1)-(1- (between 15))* -1-(afterlast 1)

The substring between two consecutive 1s is either a single @ or a substring of
alternating 2s and 3s that begins and ends with 2.

(between 1s) = 0+ 2(32)*

The prefix before the first 1 is either empty, a single 0, or a string of alternating?s
and 3s that ends with 2.

(before first 1) = @+ (32)* +(23)*2

The suffix after the last 1 is either empty, a single 0, or a string of alternating 2s
and 3s that begins with 2.

(afterlast 1) = 0+ (23)* + 2(32)*

Finally, a string in L, with no 1s at all is either empty, a single 1, or alternating
2s and 3s.
(no1s) = 0+ (23)* +(32)* + (23)*2 +(32)*3

Putting all the pieces together, we obtain our final regular expression:

L, =0+ (23)* +(32)" + (23)*2 + (32)*3
+ (0+(32)* +(23)"2) - (1- (0 +2(32)))" - 1- (0 + (23)* + 2(32)*)

CS/ECE 374 A

Homework 2 Solutions Fall 2023

2. For each of the following languages over the alphabet {0, 1}, describe a DFA that accepts
the language, and briefly describe the purpose of each state. You can describe your DFA
using a drawing, or using formal mathematical notation, or using a product construction;
see the standard DFA rubric.

Rubric: 10 points =22 points for each part = 1% for correctness + 1 for English explanation of states
(standard DFA rubric, scaled and rounded). Again, every subproblem has infinitely many correct
solutions. These solutions are more detailed than necessary for full credit.

(@) All strings that start with 1, that end with 1, and whose length is not a multiple of 3.

Solution (product): We construct the product of two DFAs:
1 0
L 0,1
O

* The first DFA accepts all strings that start and end with 1. Non-start states
are labeled with the last symbol read. Missing transitions lead to a hidden
dump state.

* The second DFA accepts all strings whose length is not divisible by 3. States
are labeled with the number of symbols read so far, modulo 3.

The accepting states of the product DFA are (1,1) and (1, 2). [|

Solution (explicit drawing):

All missing transitions lead to a hidden dump state. States are labeled as follows:

* s is the start state; no symbols have been read.
* 0 — The first input symbol was 1, and we’ve read 0 mod 3 symbols.

* 1,0 — The first input symbol was 1, we’ve read 1 mod 3 symbols, and the
last symbol read was 0.

e 1,1 — The first input symbol was 1, we’ve read 1 mod 3 symbols, and the
last symbol read was 1.

e 2,0 — The first input symbol was 1, we've read 2 mod 3 symbols, and the
last symbol read was 0.

e 2,1 — The first input symbol was 1, we’ve read 2 mod 3 symbols, and the
last symbol read was 1.]

CS/ECE 374 A Homework 2 Solutions Fall 2023

(b) All strings that contain an odd number of even-length runs.

Solution:

Except for the start state, each state is labeled with three symbols:

* The first symbol indicates whether the number of even-length runs we have
read so far is even (e) or odd (o). The accepting states are precisely the
states whose labels start with o.

* The second symbol indicates whether the length of the last run we have read
so far is even (e) or odd (o).

* The third symbol indicates the last symbol we have read so far.
The transitions from non-start states obey the following rules:
e If we read a symbol that is equal to its predecessor, the first and second
state components each flip from e to o or vice versa.

* If we read a symbol that is different from its predecessor, the first state
component doesn’t change, and the second state component becomes o.

* The last component of the state always matches the last symbol read.

(c) All strings of length at least 8, whose last eight symbols contain an even number of 1s.

Solution: We formally define a DFA (Q,s,A, §) over the alphabet ¥ = {0, 1} as
follows:

Q={wexz| lw <8}
s=¢
A= {WEZS | #(1,w)is even}

wa if [w| <8

xa if w= bx for some b€ X and x € ¥/

o(w,a) = {

Each state stores the last eight symbols read, or all symbols read if that number
is less than 8. There are a total of 20 + 2! + .- + 28 = 511 states. []

CS/ECE 374 A

Homework 2 Solutions Fall 2023

(d) All strings w that satisfy exactly two of the following conditions:

i. w is the binary representation of a multiple of 3, possibly with leading 0s.
ii. w contains the substring 100
iii. #(0,w)+2-#(1,w) is a multiple of 5.

Solution (product construction): We construct the product M of three DFAs.

NG IO SN SRC B

 The first DFA M, recognizes binary representations of multiples of 3. Each
state other than the start state stores the binary value modulo 3 of the bits
read so far.

e The second DFS M, recognizes all strings that contain the substring 100.
The first three states are labeled with the longest suffix of the bits read so
far that is also a prefix of 100; only strings that do not contain 100 can reach
these states.

* The third DFA M5 recognizes strings w such that #(0,w) + 2 - #(1,w) is
a multiple of 5. Each state is labeled with the value of #(0,w)+ 2 -
#(1,w) mod 5, where w is the prefix of bits read so far.

The accepting states of our particular three-way product DFA are all states
(91,92, q3) such that exactly two of q;, g5, g5 are accepting states in their respec-
tive machines. More formally, we have

The product of any three DFAs M; = (Qq,51,A1,01), My = Q5,55,A5,0,), and
M5 =(Q3,s3,A5,04) is defined as one would expect:

Q=Q; xQ2%xQ3
S = (51,52,53)
5(((11, q2, QS): a) = (51((11: a)> 52(Q1, a): 53(q15 a))
Equivalently, the three-way product is the product of M; with the product of M,

and M;. The accepting states of the three-way product depend on the target
language, just as they do for products of two machines. []

Rubric: No penalty for interpreting ¢ as a valid binary representation of 0. No explanation of
the three-way product construction is required, but the solution must explicitly describe the
accepting states.

CS/ECE 374 A Homework 2 Solutions Fall 2023

3. Practice only. Do not submit solutions.

(@) Describe a DFA that accepts the language L, = {w € X} | hi(w) = lo(w) + 1}.

Solution:
Q] [1 1
Q

e state 0: hi(w) = lo(w)
e state 1: hi(w) =lo(w)+1

Missing transitions lead to a hidden dump state.]

(b) Describe a regular expression for L.

Solution: ([4]+[17)"[}][¢T o

() Describe a DFA that accepts the language L,; = {w € X} | hi(w) = 3 - lo(w)}.

Solution: We start with one state for each possible value of the difference
A(w) = hi(w) — 3 - lo(w), where w is the string we have read so far. It follows

that
2A ifa=0and b=0

2A+1 ifa=1andb=20
2A—3 ifa=0andb=1"
2A—2 ifa=1and b=1

s(A[5)=2A+a—3b=

In particular, 2A —3 < §(A, [‘;]) < 2A+ 1. Thus, if A is ever negative, it will
stay negative forever, and if A is ever greater than 2, then A will stay greater
than 2 forever. So we can collapse all states A < 0 and A > 2 into a single junk
state, leaving us only three interesting states.

(d) Describe a regular expression for L.

solution: ([§]+[3](CITTSD (1) .

CS/ECE 374 A

Homework 2 Solutions Fall 2023

*(e) Describe a DFA that accepts the language L3/, = {w € X] | 2- hi(w) = 3 - lo(w)}.

Solution: We start with one state for each possible value of the difference
A(w) =2-hi(w)—3 - low, where w is the string we have read so far.

2A ifa=0and b=20
2A+2 ifa=1andb=0
2A—3 ifa=0andb=1"
2A—1 ifa=1and b=1

5(A,[5])=2A+2a—3b=

In particular, we have 2A —3 < 6(A,[§) < 2A+2. No state A < —2 of A >3
can ever reach state 0, so we can collapse all such states into a single junk state,
leaving us with only four interesting states.

This DFA implies the following regular expression for L3 /5:

Lep =[]+ DG+ LICINTTEN 1LY

Similar constructions imply that for any integers a, b, c, the language {w € X} |
a-hi(w) = b -lo(w) + c} is regular. [|

