
CS/ECE 374 A Homework 1 Solutions Fall 2025

1. Consider the set of strings L ⊆ {0,1}∗ defined recursively as follows:

• The empty string ϵ is in L.
• For any two strings x and y in L, the string 0x1y is also in L.
• For any two strings x and y in L, the string 1x0y is also in L.
• These are the only strings in L.

(a) Prove that the string 01000110111001 is in L.

Solution:

• ϵ ∈ L by definition.
• 01= 0 • ϵ • 1 • ϵ ∈ L because ϵ ∈ L and ϵ ∈ L.
• 1001= 1 • ϵ • 0 • 01 because ϵ ∈ L and 01 ∈ L.
• 001101= 0 • 01 • 1 • 01 ∈ L because 01 ∈ L and 01 ∈ L.
• 10001101= 1 • ϵ • 0 • 001101 ∈ L because ϵ ∈ L and 001101 ∈ L.
• 01000110111001 = 0 • 10001101 • 1 • 1001 ∈ L because 1001 ∈ L and

10001101 ∈ L. ■

Solution: The following parse tree illustrates the proof. Every string in a
rectangle is in L, either because that string is empty, or because it can be broken
into four smaller strings (the four children) as described in the definition of L.
Circles represent individual symbols.

01000110111001

000110111001ε 10

001101 100110

10 ε 0101

ε 10 ε

01

ε 10 ε

01

ε 10 ε
■

Solution (clever): By part (c), it suffices to observe that#(0,01000110111001) =
#(1,01000110111001) = 7, as stated in the homework handout. ■

Rubric: 2 points. These are neither the only correct derivations nor the correct proof structures
for these derivations. The first proof is more detailed than necessary for full credit, but any proof
must separately justify each component substring (for example, 10001101, 001101, 1001, and
01 in the first proof). The clever solution is worth full credit even without a solution to part (c).
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(b) Prove that #(0, w) = #(1, w) for every string w ∈ L.

Solution: Let w be an arbitrary string in L.
Assume, for any string x ∈ L where |x |< |w|, that #(0, x) +#(1, x).
There are three cases to consider.
• Suppose w= ϵ. Then #(0, w) = 0= #(1,ϵ) by definition of #.

#(0, w) = #(0,ϵ)

= 0 by definition of #
= #(1,ϵ) by definition of #
= #(1, w)

• Suppose w= 0x1y for some strings x , y ∈ L.

#(0, w) = #(0,0x1y)

= 1+#(0, x1y) by definition of #
= 1+#(0, x) +#(0,1y) #(a, x y) = #(a, x) +#(a, y)

= 1+#(0, x) +#(0, y) by definition of #
= 1+#(1, x) +#(1, y) by the inductive hypothesis
= #(1, x) +#(1,1y) by definition of #
= #(1, x1y) #(a, x y) = #(a, x) +#(a, y)

= #(1,0x1y) by definition of #
= #(1, w)

• Suppose w= 1x0y for some strings x , y ∈ L.

#(0, w) = #(0,1x0y)

= #(0, x0y) by definition of #
= #(0, x) +#(0,0y) #(a, x y) = #(a, x) +#(a, y)

= #(0, x) + 1+#(0, y) by definition of #
= #(1, x) + 1+#(1, y) by the inductive hypothesis
= #(1, x) + 1+#(1,0y) by definition of #
= 1+#(1, x0y) #(a, x y) = #(a, x) +#(a, y)

= #(1,1x0y) by definition of #
= #(1, w)

In all three cases, we conclude that #(0, w) = #(1, w). ■

Rubric: 4 points: standard induction rubric (scaled)
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⋆(c) Prove that L contains every string w ∈ {0,1}∗ such that #(0, w) = #(1, w).

Solution: To simplify notation, let ∆(w) = #(1, w)−#(0, w) for any string w.
Because #(a, x • y) = #(a, x) + #(a, y), we have ∆(x • y) = ∆(x) +∆(y)
for all strings x and y. In particular, we have ∆(x • 0) = ∆(x) − 1 and
∆(x • 1) =∆(x) + 1.

We prove by induction that L contains every string w such that ∆(w) = 0.

Proof: Let w be an arbitrary string such that ∆(w) = 0.
Assume L contains every string x such that |x |< |w| and ∆(x) = 0.
There are three cases to consider.
• If w= ϵ, then w ∈ L by definition.

• Suppose w= 0y for some string y .
Write w= p • z, where p is the shortest non-empty prefix of w such that

∆(p) ≥ 0. We know that such a prefix exists, because w is a non-empty
prefix of w with ∆(w)≥ 0. (The suffix z might be empty.)

Because p is non-empty, we can write p = qa for some string q and some
symbol a ∈ {0,1}. The definition of p implies that ∆(q)≤ −1.

If a = 0, then∆(p) =∆(q0) =∆(q)−1< 0, which is impossible because
∆(p)≥ 0. So we must have a = 1 and therefore∆(p) =∆(q)+1. It follows
that ∆(p) = 0 and ∆(q) = −1.

Because p starts with 0 and ends with 1, we must have p = 0x1 for some
string x (which might be empty). It follows that ∆(x) = ∆(p) = 0, and
therefore x ∈ L by the inductive hypothesis.

We also have ∆(w) =∆(p) +∆(z) =∆(z), and therefore ∆(z) = 0. So
the inductive hypothesis implies z ∈ L.

We conclude that w= 0x1z, where x ∈ L and z ∈ L, and thus w ∈ L.

• A symmetric argument implies that if w= 1y for some string y , then w ∈ L.

In all three cases, we conclude that w ∈ L. ■

Rubric: 4 points = 1 for induction boilerplate (including strong induction hypothesis and ex-
haustive case analysis) + ½ for base case + 2 for first inductive case + ½ for second inductive
case. Yes, the one-line argument is enough for the last ½ point.
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2. Consider the following pair of mutually recursive functions on strings:

odds(w) :=

(

ϵ if w= ϵ

a · evens(x) if w= ax
evens(w) :=

(

ϵ if w= ϵ

odds(x) if w= ax

(a) Give a self-contained recursive definition for the function evens that does not involve
the function odds.

Solution:

evens(w) =











ϵ if w= ϵ

ϵ if w= a for some symbol a ∈ Σ
b · evens(x) if w= abx for some a, b ∈ Σ and some x ∈ Σ∗

■

Rubric: 2 points = ½ for case breakdown +½ for base cases + 1 for final recursive case.
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(b) Prove the following identity for all strings w and x:

evens(w • x) =

(

evens(w) • evens(x) if |w| is even,
evens(w) • odds(x) if |w| is odd.

Solution: Let w and x be arbitrary strings.
Assume for all strings y shorter than w that

evens(y • x) =

(

evens(y) • evens(x) if |y| is even,
evens(y) • odds(x) if |y| is odd.

There are three cases to consider, mirroring our recursive definition in part (a).
• Suppose w= ϵ. Then |w|= 0 is even, by definition of length.

evens(w • x) = evens(ϵ • x) because w= ϵ

= evens(x) by definition of •
= ϵ • evens(x) by definition of •
= evens(ϵ) • evens(x) by definition of evens
= evens(w) • evens(x) because w= ϵ

• Suppose w = a for some symbol a. Then |w| = 1 is odd, by definition of
length.

evens(w • x) = evens(a • x) because w= a

= odds(x) by definition of evens
= ϵ • odds(x) by definition of •
= evens(a) • odds(x) by definition of evens
= evens(w) • odds(x) because w= ϵ

• Finally suppose w = ab y for some symbols a and b and some string y.a
The definition of length implies |w|= |ab y|= |y|+2. We immediately have

evens(w • x) = evens(ab y • x) because w= ab y

= evens(ab • (y • x)) because • is associative
= odds(b • (y • x)) by definition of evens
= b · evens(y • x) by definition of evens or odds

To complete this case of the proof, we consider two subcases, mirroring the
cases in the statement we are proving.
– Suppose |y| is even. Then |w|= |y|+ 2 is also even.

evens(w • x) = b · evens(y • x) proved above
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= b · (evens(y) • evens(x)) by the induction hypothesis
= (b · evens(y)) • evens(x)) because • is associative
= odds(b y) • evens(x) by definition of evens
= evens(ab y) • evens(x) by definition of evens or odds
= evens(w) • evens(x) because w= ab y

– Suppose |y| is odd. Then |w|= |y|+ 2 is also odd.

evens(w • x) = b · evens(y · x) proved above
= b · (evens(y) • odds(x)) by the induction hypothesis
= (b · evens(y)) • odds(x)) because • is associative
= odds(b y) • odds(x) by definition of evens
= evens(ab y) • odds(x) by definition of evens or odds
= evens(w) • odds(x) because w= ab y

In all cases, we conclude that

evens(w • x) =

(

evens(w) • evens(x) if |w| is even,
evens(w) • odds(x) if |w| is odd.

■
aWe can’t use the variable x here because it’s already in use.

Solution (mutual induction): We actually prove two identities for all strings w
and x , by mutual induction on w:

evens(w • x) =

¨

evens(w) • evens(x) if |w| is even,
evens(w) • odds(x) if |w| is odd.

odds(w • x) =

¨

odds(w) • odds(x) if |w| is even,
odds(w) • evens(x) if |w| is odd.

Let w and x be arbitrary strings.
Assume that the following identities hold for all strings y shorter than w:

evens(y • x) =

¨

evens(y) • evens(x) if |y| is even,
evens(y) • odds(x) if |y| is odd.

odds(y • x) =

¨

odds(y) • odds(x) if |y| is even,
odds(y) • evens(x) if |y| is odd.

There are three cases to consider.
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• Suppose w= ϵ. Then |w|= 0 is even, by definition of length.

evens(w • x) = evens(ϵ • x) because w= ϵ

= evens(x) by definition of •
= ϵ • evens(x) by definition of •
= evens(ϵ) • evens(x) by definition of evens
= evens(w) • evens(x) because w= ϵ

odds(w • x) = odds(ϵ • x) because w= ϵ

= odds(x) by definition of •
= ϵ • odds(x) by definition of •
= odds(ϵ) • odds(x) by definition of odds
= odds(w) • odds(x) because w= ϵ

• Suppose |w| is even and w= a y for some symbol a and some string y . Then
|y| is odd, which implies the following:

evens(w • x) = evens(a y • x) because w= a y

= evens(a · (y • x)) because • is associative
= odds(y · x) by definition of evens
= odds(y) • evens(x) by the induction hypothesis
= evens(a y) • evens(x)) by definition of evens
= evens(w) • evens(x) because w= a y

odds(w • x) = odds(a y • x) because w= a y

= odds(a · (y • x)) because • is associative
= a · evens(y • x) by definition of evens
= a · (evens(y) • odds(x)) by the induction hypothesis
= (a · evens(y)) • odds(x) because • is associative
= odds(a y) • odds(x)) by definition of evens
= odds(w) • odds(x) because w= a y

• Suppose |w| is odd. We must have w = a y for some symbol a and some
string y , such that |y| is even.

evens(w • x) = evens(a y • x) because w= a y

= evens(a · (y • x)) because • is associative
= odds(y · x) by definition of evens
= odds(y) • odds(x) by the induction hypothesis
= evens(a y) • odds(x)) by definition of evens
= evens(w) • odds(x) because w= a y
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odds(w • x) = odds(a y • x) because w= a y

= odds(a · (y • x)) because • is associative
= a · evens(y • x) by definition of evens
= a · (evens(y) • evens(x)) by the induction hypothesis
= (a · evens(y)) • evens(x) because • is associative
= odds(a y) • evens(x)) by definition of evens
= odds(w) • evens(x) because w= a y

In all three cases, we have proved both claimed identities. ■

Rubric: 8 points, standard induction rubric (scaled). These are not the only correct proofs.
Every variant of the first proof must consider four distinct cases, to capture the case dis-

tinctions in the recursive definition of strings, in the recursive definition of evens, and in the
statement that we are proving:
• w is empty
• w has length 1
• w has positive even length
• w has odd length greater than 1

These cases can be clustered into coarser cases with subcases (as above), or presented as four flat
cases. The even/odd cases can be based either on the length of w (implying similar conditions
on |y|), or on the length of y (implying similar conditions on |w|.) But no matter how the proof
is organized, its case structure should be clearwithout reading the rest of the proof.

Similarly. any variant of the second mutual-induction proof only requires three cases (empty,
even and nonempty, and odd), but each case requires two separate arguments (for evens and
odds). Again, these various cases and arguments can be correctly organized in several different
ways, but the case structure must be clear without reading the rest of the proof.

No penalty for silently applying associativity without justification.
Finally, it is not necessary to use the standalone definition of evens from part (a). The lines in

gray in the first proof show how to apply the original definitions of evens and odds.
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⋆3. Practice only. Do not submit solutions.

For each non-negative integer n, we recursively define two binary trees Pn and Vn,
called the nth Piṅgala tree and the nth Virahān. ka tree, respectively.

• P0 and V0 are empty trees, with no nodes.
• P1 and V1 each consist of a single node.
• For any integer n≥ 2, the tree Pn consists of a root with two subtrees; the left subtree

is a copy of Pn−1, and the right subtree is a copy of Pn−2.
• For any integer n≥ 2, the tree Vn is obtained from Vn−1 by attaching a new right child

to every leaf and attaching a new left child to every node that has only a right child.

(a) Prove that the tree Pn has exactly Fn leaves.

Solution: To make the presentation simpler, let me define some notation. Let ϵ
denote the empty binary tree, and let (L,R) denote the non-empty binary tree
with left subtree L and right subtree R. Let • = (ϵ,ϵ) denote the binary tree
consisting of a single node. Then we can define Piṅgala trees more succinctly as
follows:

Pn =











ϵ if n= 0

• if n= 1

(Pn−2, Pn−1) otherwise
Now we’re ready for the proof:

Proof: Let n be an arbitrary non-negative integer.
Assume #leaves(Pm) = Fm for every non-negative integer m< n.
There are three cases to consider.
• Suppose n= 0. P0 = ϵ has no nodes, so #leaves(P0) = 0= F0.
• Suppose n= 1. The single node in P1 = • is a leaf, so #leaves(P1) = 1= F1.
• Finally, suppose n≥ 2. The root of Pn is not a leaf, so

#leaves(Pn) = #leaves( (Pn−2, Pn−1) ) by definition of Pn

= #leaves(Pn−2) +#leaves(Pn−1) root of Pn is not a leaf
= Fn−2 + Fn−1 by ind. hyp.
= Fn by definition of Fn

In all cases, we conclude that #leaves(Pn) = Fn. ■

Rubric: Standard induction rubric. Weak induction cannot work here.
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(b) Prove that the tree Vn has exactly Fn leaves.
[Hint: You need to prove a stronger result.]

Solution: To simplify the presentation, let #(d, T ) denote the number of nodes
in the tree T with exactly d children. In particular, #(0, T ) is the number of
leaves in T . We need to prove that #(0, Vn) = Fn for all n≥ 0.

This claim is trivial when n= 0. For all n> 0, I’ll actually prove the stronger
claim that #(0, Vn) = Fn and #(1, Vn) = Fn−1.

Let n be an arbitrary positive integer. Assume for all positive integers m< n
that #(0, Vm) = Fm and #(1, Vm) = Fm−1. There are two cases to consider,
mirroring the definition of Vn.
• Suppose n= 1. Then by definition, V1 has a single node, which is a leaf, so

#(0, Vn) = #(0, V1) = 1 = F1 = Fn

#(1, Vn) = #(1, V1) = 0 = F0 = Fn−1

• Suppose n ≥ 2. Then each leaf of Vn is a child of either a leaf of Vn−1 or
a node with one child in Vn−1. Conversely, each node with zero or one
children in Vn−1 is the parent of exactly one leaf in Vn. So the inductive
hypothesis implies

#(0, Vn) = #(0, Vn−1) +#(1, Vn−1) = Fn−1 + Fn−2 = Fn.

Similarly, each node with one child in Vn is a leaf in Vn−1, so the inductive
hypothesis implies #(1, Vn) = #(0, Vn−1) = Fn−1.

In both cases, we conclude that #(0, Vn) = Fn and #(1, Vn) = Fn−1. ■

Rubric: Standard induction rubric. We do need to consider the case n = 0 outside the main
induction argument; our stronger claim is false when n= 0, because F−1 = 1!
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(c) Prove that the trees Pn and Vn are identical, for all n≥ 0.

Solution: Let T.left and T.right denote the left and right subtrees of any non-
empty tree T . For any tree T , we recursively define

sprout(T ) =











• if T = ϵ

(ϵ,•) if T = •
(sprout(T.left), sprout(T.right)) otherwise

Then we can rewrite the definition of Vn as Vn = sprout(Vn−1) for all n≥ 1.
Let n be an arbitrary non-negative integer. Assume for all non-negative

integers m< n that Pn = Vn. There are four cases to consider.
• P0 = ϵ and V0 = ϵ by definition.
• P1 = • and V1 = • by definition.
• P2 = (P0, P1) = (ϵ,•) and V2 = sprout(V1) = sprout(•) = (ϵ,•) by definition.
• Finally, if n≥ 3, we have

Vn = sprout(Vn−1) by definition
= sprout(Pn−1) by the inductive hypothesis
= sprout( (Pn−3, Pn−2) ) by definition of Pn

= sprout( (Vn−3, Vn−2) ) by the inductive hypothesis (twice)
= ( sprout(Vn−3), sprout(Vn−2) ) by definition of sprout, since n≥ 4

= (Vn−2, Vn−1) by definition of Vn

= (Pn−2, Pn−1) by the inductive hypothesis (twice)
= Pn by definition of Pn

In all cases, we conclude that Vn = Pn. ■

Rubric: Standard induction rubric. Weak induction cannot work here. We need to consider the
case n= 2 separately, because the main inductive proof refers to Vn−3 and Pn−3.

Watch for switching between Pm and Vm without explicitly invoking the induction hypothesis.
Yes, we really do have to invoke the induction hypothesis five times!
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