
CS/ECE 374 A Dynamic Programming Practice Solutions Fall 2025

1. Describe an algorithm to find the largest possible number of good districts in a legal
partition. In a legal partition, every district has between k and 2k residents; a district is
good if a strict majority of its residents previously voted for Oceania. Your input consists of
the integer k and a boolean array GoodVote[1 .. n] indicating which residents previously
voted for Oceania (True) or Eurasia (False). You can assume that a legal partition exists.
Analyze the running time of your algorithm in terms of the parameters n and k.

Solution: Let MaxGood(i) denote the maximum number of good districts in a legal
partition of voters i through n. We need to compute MaxGood(1). This function
satisfies the following recurrence:

MaxGood(i) =



















0 if i > n

−∞ if n− i + 1< k

max

¨

GoodDistrict(i, j)

+MaxGood(j + 1)

�

�

�

�

�

k ≤ j − i + 1≤ 2k

j ≤ n

«

otherwise

Here GoodDistrict(i, j) = 1 if a majority of voters i through j voted for Oceania, and 0
otherwise. We can compute this value in O(j − i + 1) = O(k) time by brute force.

We can memoize this function into a one-dimensional arrayMaxGood[1 .. n], which
we can fill from right to left (decreasing i). For each index i, we need to compute
GoodDistrict(i, j) for k + 1 different values of j. Each call to GoodDistrict(i, j) takes
O(k) time, so the total time to compute each MaxGood[i] is O(k2). We conclude that
our algorithm runs in O(nk2) time.

We can speed up this algorithm by pre-computing some information. Let
NumGood(i) denote the number of good voters among voters 1 through i. This
function satisfies the following recurrence:

NumGood(i) =

¨

0 if i = 0

GoodVote[i] +NumGood(i − 1) otherwise

We can memoize this function into an arrays NumGood[1 .. n], which we can fill in
reverse index order in O(n) time.

Once this array has been filled, we can compute GoodDistrict(i, j) for any i and j
in O(1) time as follows:

GoodDistrict(i, j) =
�

(NumGood[j]−NumGood[i − 1])> (j − i + 1)/2
�

(Here j − i + 1 is the number of voters, and NumGood[j]− NumGood[i − 1] is the
number of good voters, among voters i through j.) With this optimization, each value
MaxGood[i] can be computed in O(k) time, so the overall algorithm runs in O(nk)
time. ■

Rubric: 10 points: standard dynamic programming rubric. 8 points for an O(nk2)-time algorithm;
scale partial credit. This is not the only correct solution.

1

CS/ECE 374 A Dynamic Programming Practice Solutions Fall 2025

2. Suppose we want to split an array A[1 .. n] of integers into k contiguous intervals that
partition the sum of the values as evenly as possible. Specifically, define the cost of such a
partition as the maximum, over all k intervals, of the sum of the values in that interval; our
goal is to minimize this cost. Describe and analyze an algorithm to compute the minimum
cost of a partition of A into k intervals, given the array A and the integer k as input.

Solution: We define three functions:
• PrefSum(i) is the sum of all elements of the prefix A[1 .. i].
• Sum(i, j) is the sum of all elements of the interval A[i .. j].
• MinCost(i,ℓ) is the minimum cost of a partition of A[i .. n] into ℓ intervals.

We need to compute MinCost(1, k). These functions satisfy the following recurrences:

PrefSum(i) =

¨

0 if i = 0

A[i] + PrefSum(i − 1) otherwise

Sum(i, j) = PrefSum(j)− PrefSum(i − 1)

MinCost(i,ℓ) =











Sum(i, n) if k = 1

min

�

max

�

Sum(i, j),
MinCost(j + 1,ℓ− 1)

� �

�

�

�

i ≤ j ≤ n

�

otherwise

We can memoize PrefSum into an array PrefSum[0 .. n], which we can fill from left to
right in O(n) time. We don’t need to memoize Sum. Finally, we can memoize MinCost
into an array MinCost[1 .. n, 0 .. k], which we can fill in standard column-major order:
increasing ℓ in the outer loop, and considering i in any order in the inner loop.

The overall algorithm runs in O(n2k) time. ■

This solution assumes that partitions are allowed to contain empty intervals; without
loss of generality, all the empty intervals in any partition are at the end of the array. To
forbid empty intervals, modify the base cases as follows:

MinCost(i,ℓ) =























∞ if i > n

Sum(i, n) if i ≤ n and ℓ= 1

min

¨

max

�

Sum(i, j),

MinCost(j + 1,ℓ− 1)

�

�

�

�

�

�

i ≤ j ≤ n

«

otherwise

2

CS/ECE 374 A Dynamic Programming Practice Solutions Fall 2025

Solution: For any integers i and ℓ, let Min$(i,ℓ) denote the minimum cost of a
partition of A[i .. n] into ℓ intervals. We need to compute Min$(1, k). This function
satisfies the following recurrences:

Min$(i,ℓ) =



































−∞ if ℓ= 0

0 if i > n and ℓ > 0

min











max











j
∑

h=i

A[h]

Min$(j + 1,ℓ− 1)











�

�

�

�

�

�

�

�

i ≤ j ≤ n











otherwise

In particular, Min$(i, 0) = −∞ because the maximum of the empty set (in this case,
the set containing zero interval sums) is −∞, and Min$(n+ 1,ℓ) = 0 when ℓ > 0
because the only legal partition of the empty sequence consists of empty intervals,
each of which sums to 0.

We can memoize Min$ into an array Min$[1 .. n + 1,0 .. k], which we can fill
row-by-row bottom up in the outer loop, filling each row in arbitrary order in the
inner loop. We can compute each entry Min$[i,ℓ] in O(n2) time by looping over j
and h. Thus, the entire algorithm runs in O(n3k) time.

However, we can speed up this algorithm with some precomputation. For any
index j, let PrefSum(j) denote the prefix sum

∑ j
h=1 A[h]. This function satisfies the

recurrence
PrefSum(j) =

¨

0 if j = 0

A[j] + PrefSum(j − 1) otherwise
We can memoize this function into an array PrefSum[0 .. n], which we can fill from
left to right in O(n) time. Then we can evaluate any sum

∑ j
h=i A[h] in O(1) time,

because
j
∑

h=i

A[h] = PrefSum[j]− PrefSum[i − 1].

With this optimization, our algorithm runs in O(n2k) time. ■

Rubric: 10 points =

+ 8 for O(n3k)-time dynamic programming algorithm (standard DP rubric, scaled)

+ 2 for O(n2k)-time algorithm, either by memoizing Sum (either directly in O(n2) time or via prefix
sums in O(n) time as above), or by computing Sum(i, j) on the fly in the inner loop for MinCost.

We don’t care whether you allow or forbid empty intervals, as long as you’re consistent.

3

CS/ECE 374 A Dynamic Programming Practice Solutions Fall 2025

3. A sequence of integers is mostly odd if strictly more than half of its elements are odd.
Describe an algorithm that computes the length of the longest mostly odd increasing
subsequence of a given array A[1 .. n] of integers. (You can assume that A has at least one
mostly-odd increasing subsequence.)

Solution: To simplify case analysis at the end, we add a sentinel value A[0] = −∞.
For any integers i, j, and k, let LISO(i, j, k) denote the length of the longest

increasing subsequence of A[j .. n] containing only numbers greater than A[i] and
containing exactly k odd elements. (Crucially, A[i] is not included in either the
subsequence length or the count of odd elements.) This function satisfies the
following recurrence:

LISO(i, j, k) =



















































0 if j > n and k = 0

−∞ if j > n and k > 0

LISO(i, j + 1, k) if A[i]≥ A[j]

max

�

LISO(i, j + 1, k)

1+ LISO(j, j + 1, k)

�

if A[i]< A[j] and A[k] is even

max

�

LISO(i, j + 1, k)

1+ LISO(j, j + 1, k− 1)

�

if A[i]< A[j] and A[k] is odd

We can memoize this function into a three-dimensional array LISO[0 .. n, 1 .. n, 1 .. n/2],
which we can fill with three nested for-loops, decreasing j in the outermost loop and
considering i and k in any order in the two inner loops.

Finally, we find and return

max
�

LISO[0,1, k]
�

� LISO[0,1, k]≤ 2k− 1
	

.

The entire algorithm runs in O(n3) time. ■

Rubric: 10 points, standard dynamic programming rubric. This is not the only correct solution. I do
not know whether this is the fastest algorithm for this problem.

4

CS/ECE 374 A Dynamic Programming Practice Solutions Fall 2025

4. The StupidScript language includes a binary operator @ that computes the average of its
two arguments. Expressions like 3 @ 7 @ 4 that use the @ operator more than once yield
different results when they are parenthesized in different ways.

Given a sequence of integers separated by @ signs, represented as an array A[1 .. n], we
want to find the largest possible value the expression can take by adding parentheses.

(a) Prove that the following greedy algorithm is incorrect: Merge the adjacent pair of
numbers with the smallest average (breaking ties arbitrarily), replace them with their
average, and recurse.

Solution: Consider the input 7 @ 4 @ 9 @ 3. Tommy’s greedy algorithm out-
puts (7 @ 4) @ (9 @ 3) = 5.75, but 7 @ (4 @ (9 @ 3)) = 6. (In fact, the latter
parenthesization is optimal.) ■

Rubric: 2 points: 1 for bad example + 1 for proof that example is bad

(b) Describe and analyze a correct algorithm for this problem.

Solution: Let A[1 .. n] be the input array. For any indices i ≤ k, let MaxAve(i, k)
denote the largest possible value that can be obtained from the interval A[i .. k]
by adding parentheses. We need to computeMaxAve(1, n). This function satisfies
the following recurrence:

MaxAve(i, k) =

¨

A[i] if i = k

max
�

MaxAve(i, j) @ MaxAve(j + 1, k)
�

� i ≤ j < k
	

otherwise

i

k

Each entry MaxAve[i, k] in our memoization array takes O(n) time to compute,
so the resulting dynamic programming algorithm runs in O(n3) time. ■

Rubric: 8 points: standard dynamic programming rubric (scaled). Yes, the drawing is enough
detail to specify the memoization structure and evaluation order. No, iterative pseudocode is
not required. This is not the only correct evaluation order.

5

