HWII due Tup Dec 2nd.
GPS II due Mon Dec 8th

No HW Party either Sunday of Greak.

Today & Mon 1st still on.

FLEX evaluations Sat Nov 29 to Thur Dec11th TAC ok on Sat Dec 13.

Survey about 374 0,5% EC; f you Sill it.

See website, Discord, etc. over weekend.

Subset Sum: Given a set X of positive integers t one move integer T. Inonneyation Is there a subset at X samming to T? ₹2,5,103 T=15V T= 9X

Subset Sum is NP-hard.
Reduce from Vertex Cover.

Gisen an undirected G= (VE) + an integerk. Is there a vertex cover of size k. Build a Subset Sum instance asing gadgets Number the edge from Ot. 1E1-1 For each vertex v, let $\Delta(v)$ 60 its incident edges.

a := 4 + \leq 4 \rightarrow \times

 $a_u = 100111_4$ $a_v = 101001_4$ $\alpha_w = 110100_{\varphi}$ $\alpha_x = 11010_{\varphi}$ T:=k.4 = 2.4 $\tilde{u}^{z}0$ T= k22222 Vertex Cover Yes Chas a vertex cover of site le iff thore is a subset of X summing to ET Suppose 6 has a vertex cover C of size k. Let X'= fa, lveC}Vf6; ledge i hos one endpoint
in C3. For i=IEI crumb i=2. (no carries from =3 1's in 6ase k vertex gadget add in another k.4

5, E, x = T.

E Suppose some x' = x sams to T, There is V'EU, E'EEsit. $\sum_{\alpha, \in V} \alpha_{\nu} + \sum_{i \in E} 6_{i} = T_{i}$ No carries early, so we had to uso at least one v incident to each edge i.

at least one vincident to each two took le a's to get k.4 lel so V'is a vertex cover.

Subset Sum has an O(nT) time algorithm

exponential

in input stee

(number of 6:+5)

Pseudo-polynomial timp.

Werkly NP-hard: Reductions created

numbers exponential

in input size

Strongly NP-hard: Any numbers can be written in unary during reductions.

More practice transforming problems. know when to give api - is thore another approach - Can you specialize? -approximation algorithms - neuristics that work in practice?

NP-hard problems, 3SATt binary choices Max Ind Sot & large subsets

Max Clique

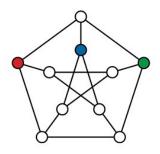
Min Ver tex Cover & small subsets 3Color E Partition objects into Min Color 2 or more groups Directed/Vadirected Hem Godo/Path Konder or subgraphs Subset Sum balanced subsets" Partition-partition a set et integers into two subset with equal sum

3DMatching/Exact3DMatching/X3M Given three subsets A, B, tC at n
items each t a subset of A × B × C.
Pick exactly n triples from the subset
to cover A, B, tC.

3Partion-Partion a sot of integers into subsets of site 3 each summing to same value.

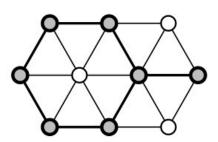
to prove Y is NP-hard reduce arbitrary inputs x of a known NP-hard problem X to some input y of Y.

1) pick the most constrained & you


2) male es specialized an instance of las you can.

(d) Given a graph G with weighted edges and an integer ℓ , compute the minimum-weight spanning tree with at most ℓ leaves.

Here Puth $\ell = 2$


26. Let G = (V, E) be a graph. A *dominating set* in G is a subset S of the vertices such that every vertex in G is either in S or adjacent to a vertex in S. The DominatingSet problem asks, given a graph G and an integer K as input, whether G contains a dominating set of size K. Prove that this problem is NP-hard.

Exercises

Min Vertex Courr

27. A subset S of vertices in an undirected graph G is *triangle-free* if, for every triple of vertices $u, v, w \in S$, at least one of the three edges uv, uw, vw is *absent* from G. Prove that finding the size of the largest triangle-free subset of vertices in a given undirected graph is NP-hard.

Max Ind Set

36. Jeff tries to make his students happy. At the beginning of class, he passes out a questionnaire that lists a number of possible course policies in areas where

ARDNESS

he is flexible. Every student is asked to respond to each possible course policy with one of "strongly favor", "mostly neutral", or "strongly oppose". Each student may respond with "strongly favor" or "strongly oppose" to at most five questions. Because Jeff's students are very understanding, each student is happy if (but only if) he or she prevails in at least one of their strong policy preferences. Either describe a polynomial-time algorithm for setting course policy to maximize the number of happy students, or show that the problem is NP-hard.

33AT

yes or no on many policies