GPS10; s due Mon, 17th.

HW 10; s due Tue, 18th,

HW 11; s due Tue, Dec 2nd.

GPS 11 due INon, Dec 8th

HW 12 "due" Mon, the 8th (not graded)

Reduce a problem A to a problem B: call algorithms for B as a 61aclc-60x.

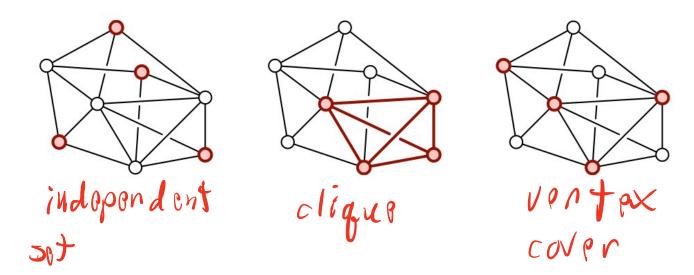
Gison undirected graph G=(V,E) as input. Maximum Independent Set:

-independent set AEV: no fuo members of A sharp an edgo -want 4 vertices in max size independent sot Maximum Clique: ·clique: com plote subgraph Minimum Vertex Cover:

vertex cover:

subset CEV s.t. every edge

incident to at least one member of C - want # vertices in smallest vertex cover



Want to solve Max Ind Set. Given graph G=(V,E): compliment

Build graph G = (V, E)

E= {av | avx E}

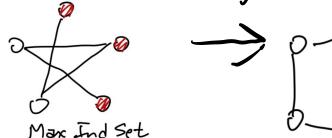
Call an algorithm for max clique

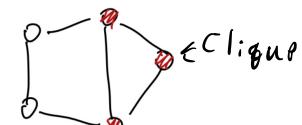
AEV is ind.

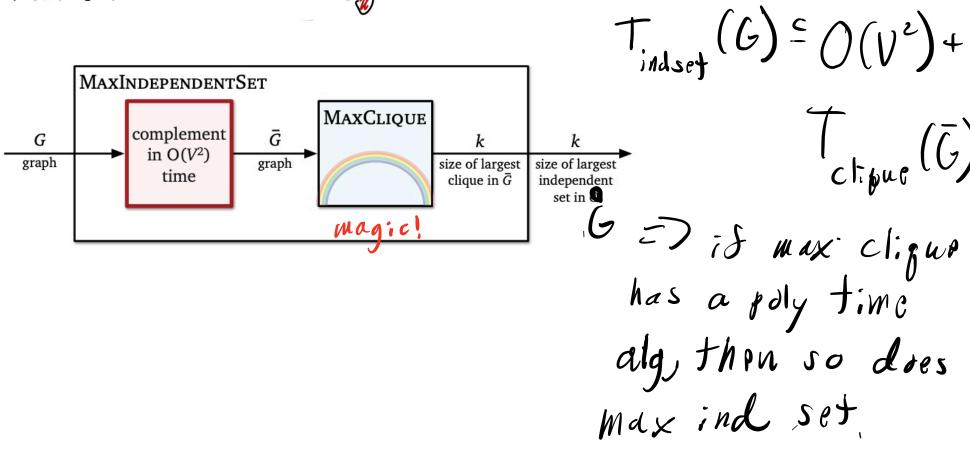
in 6 755

A moles a clique

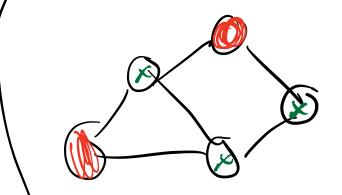
in 6.







Say we want to solve Max Ind Set another way. Given G=(V,E). Went a reduction to min vertex coven.



AEV is an ind. set iff VIA is a vertex cover. =) want to return compliment

of a min vertex cover [wagic algorithm/ retur n - Min Vertex Cover (G) 6lock-60x $t_{\text{maxind set}}(6) \leq$ MAXINDEPENDENTSET MinVertex G COVER O(1) + Timin verta graph size of largest vertex cover in G independent set in *G* number of vertices in G cover These reductions reverse easily so a gody time algo for any of them => the same for all of them.

Given a graph G=(V,E), a Ham: Itonian undirected / Cycle includes every vertex directed exactly once.

Undir Han (yclo: Given andirected Gis

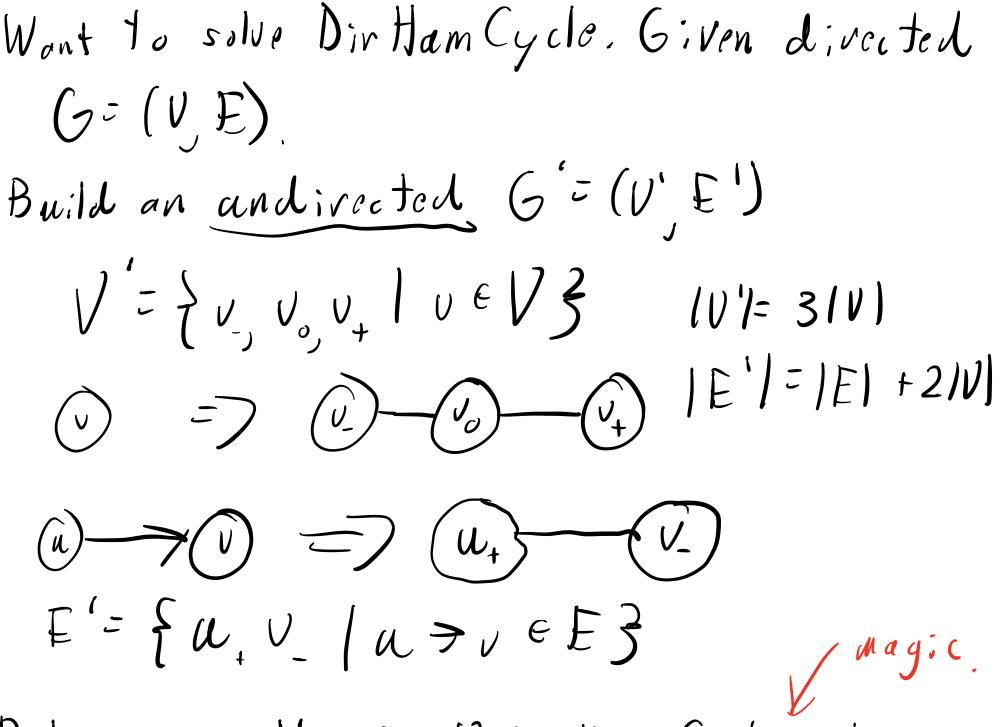
there a Ham. cycle?

Dir Ham (yclo: Given directed G, is there
a Ham. cycle?

Given instance of Undin Ham Cycle (undirected G=(VE), wont to reduce to Dir Ham Cycle.

-Buil a directed graph G=(V', E')

E'= fu >v) au EE3 Return result of Dir Ham Cycle.

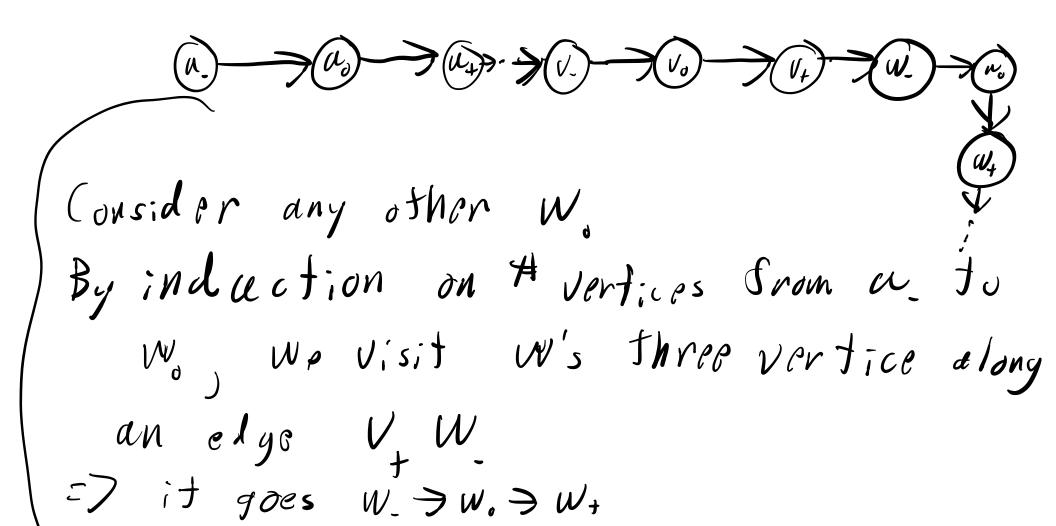


Return result of Vadir Ham Cycle algorthm.

So fast Undir Ham Cycle => Sast Dir Ham Cyclo.

(prly time) Claim 1: If G has a Ham, cycle, then 6' has a Ham, cycle, Proof: Let (= u > v > w > .. > w $(e) \quad C' = u_{-} \Rightarrow u_{o} \Rightarrow u_{+} \Rightarrow v_{-} \Rightarrow v_{o} \Rightarrow v_{+} \Rightarrow \dots \Rightarrow w_{-}$ Claim 2: If 6' has a Ham. cycle, then 6 has a Ham. cycle. Proof: Let C'be a Ham. cycle in 6', Pick any Wo. U. is adjacent to u + W+

G'is undirected, so we may assume c' goes u > u > u by reversing it is necessary.



These to hops work with dirs in G.

Also we use every vertex in G'once,
so take the x vertices in order
to get a Ham, cycle in G.