
Jumbled Floyd-Warshall from a dynamic programming perspective

Emily Fox∗

November 5, 2025

Abstract

Given an n-vertex directed graph with real edge weights and no negative weight cycles,
the algorithm commonly called Floyd-Warshall solves the all-pairs shortest paths problem in
O(n3) time. The algorithm consists of three nested loops over the vertices surrounding a simple
operation that uses the loops’ parameters to update estimates of pairwise distances. The cor-
rectness of the algorithm depends upon on using a particular ordering of the loops relative to
the parameters of the operation updating distance estimates.

In a 2019 preprint, Hide, Kumabe, and Maehara gave the surprising result that incorrect
orderings of the loops still lead to correct results if the entire collection of iterations is repeated
three times. In this note, we give an alternative presentation of their observation. Our presen-
tation resembles the way Floyd-Warshall is often presented in college classes, showing it as a
refinement of a dynamic programming algorithm.

1 Introduction

⟨⟨Write a real introduction.⟩⟩ This note presents the results of Hide, Kumabe, and Maehara [HKM19]�����

as the refinement of two dynamic programming algorithms for all-pairs shortest paths (APSP).

2 Notation and definitions

Let G = (V,E) be a simple directed graph with real edge weights w : E → R. Let n = |V |. We
assume there are no negative weight cycles in G. For simplicity, we extend E to include exactly one
edge u�v per ordered pair (u, v) ∈ V × V by setting w(v�v) = 0 for all v ∈ V and w(u�v) = ∞
for all u ̸= v such that u�v was not originally a member of E. For each pair (u, v) ∈ V × V , let
dist(u, v) denote the length of the shortest path from u to v in G.

We say a path from u to v passes through a third vertex x if the path both enters and leaves
x.

Given any two ordered triples (a, b, c) and (a′, b′, c′) of integers, we say (a′, b′, c′) < (a, b, c) if
and only if the former is lexicographically smaller than the latter, i.e., if and only if a′ < a or a′ = a
and b′ < b or a′ = a, b′ = b, and c′ < c.

3 Subproblems and evaluation orders

Number the vertices arbitrary from 1 to n. From here on, we typically won’t make any distinction
between a vertex v and its number. We define a collection of restricted distance functions

∗Siebel School of Computing and Data Science, University of Illinois Urbana-Champaign; ekfox@illinois.edu.

1

ekfox@illinois.edu

2 Emily Fox

that give the length of a shortest path subject to some restrictions on which vertices it passes
through. Each of the functions takes two vertices u, v ∈ {1, . . . , n}, and an integer x ∈ {0, . . . , n}
as parameters. They each output the length of some path from u to v whose specification depends
on the function in question.

• dist1(u, v, x) denotes the length of the shortest path from u to v that only passes through
vertices numbered at most min {u, v, x}.

• dist2,ℓ(u, v, x) denotes the length of the shortest path from u to v that only passes through
vertices numbered at most min {u, x}.

• dist2,r(u, v, x) denotes the length of the shortest path from u to v that only passes through
vertices numbered at most min {v, x}.

• dist3(u, v, x) denotes the length of the shortest path from u to v that only passes through
vertices numbered at most x.

Note that dist2,ℓ and dist2,r have symmetric definitions, and dist3 is simply the standard re-
stricted distance function used in dynamic programming based presentations of Floyd-Warshall.
Each of these functions can be evaluated using recurrences that are independent of the others’, and
the recursive cases for all of these recurrences are based on the common decision of whether we
should include x in the best relevant path from u to v.

The set of feasible evaluation orders for solving these independent recurrences reduces as one
goes further down the list of functions. We are particularly interested in the following four evalua-
tion orders listed from least generally useful to most:

• A: A triply nested for loop over increasing values of u, v, x ordered from outermost loop to
innermost.

• Bℓ: A triply nested for loop over increasing values of u, x, v ordered from outermost loop to
innermost.

• Br: A triply nested for loop over increasing values of v, x, u ordered from outermost loop to
innermost.

• C: A triply nested for loop over increasing values of x, u, v ordered from outermost loop to
innermost.

Evaluation order C is the only one that leads to a correct implementations of Floyd-Warshall,
because it is the only one that can be used to solve dist3 for all triples of vertices u, v, x. However,
the other ones can be used after all by repeatedly applying them. The reason is that we can state
alternative recurrences for the latter functions that use the results of earlier functions in the list.

3.1 Solving dist1

We can evaluate dist1 using the following recurrence:

dist1(u, v, x) =


w(u�v) if x = 0

dist1(u, v, x− 1) if x ≥ min {u, v}

min

{
dist1(u, v, x− 1),

dist1(u, x, x− 1) + dist1(x, v, x− 1)

}
otherwise

Jumbled Floyd-Warshall as dynamic programming 3

Notice how in every recursive use of dist1, the condition x < min {u, v} implies all of the
parameters are non-increasing during recursive calls. In principle, we can use any nesting of for
loops over u, v, and x to evaluate dist1, as long as the values of the parameters are increasing. In
particular, we can even use evaluation order A.

3.2 Solving dist2,ℓ and dist2,r

We can evaluate dist2,ℓ using a recurrence that is nearly identical to the one we used last time:

dist2,ℓ(u, v, x) =


w(u�v) if x = 0

dist2,ℓ(u, v, x− 1) if x ≥ u

min

{
dist2,ℓ(u, v, x− 1),

dist2,ℓ(u, x, x− 1) + dist2,ℓ(x, v, x− 1)

}
otherwise

However, we’re a bit more restricted this time around on what evaluation orders are feasible. The
restriction stems from the possibility that x > v when we need to access the value dist2,ℓ(u, x, x−1).
We can no longer use evaluation order A. However, the first and third parameters remain non-
increasing during recursive calls, so we can use evaluation order Bℓ.

The above recurrence is not the only way to compute dist2,ℓ, though! We can instead rely on
dist1 as follows:

dist2,ℓ(u, v, x) =


w(u�v) if x = 0

dist2,ℓ(u, v, x− 1) if x ≥ u

min

{
dist2,ℓ(u, v, x− 1),

dist1 (u, x, x− 1) + dist2,ℓ(x, v, x− 1)

}
otherwise

Note how the first function evaluation in the second min case now uses dist1. If we first
precompute all values dist1(u, v, x), we are free to use any evaluation order to compute values of
dist2,ℓ, including evaluation order A.

The computation of dist2,r is symmetric, resulting in a working evaluation order of Br using
an independent recurrence. There is also a recurrence that is dependent on having precomputed
dist1, and this second recurrence works with any evaluation order including A.

3.3 Solving dist3

Finally, we return to the standard recurrence used to present Floyd-Warshall:

dist3(u, v, x) =


w(u�v) if x = 0

min

{
dist3(u, v, x− 1),

dist3(u, x, x− 1) + dist3(x, v, x− 1)

}
otherwise

There is no relationship between x and either of u or v, so we are forced to use an evaluation
order that iterates over x in the outer loop. Evaluation order C is the natural choice.

However, we can also define an alternative recurrence that relies on dist2,ℓ:

dist3(u, v, x) =


w(u�v) if x = 0

min

{
dist3(u, v, x− 1),

dist3(u, x, x− 1) + dist2,ℓ(x, v, x− 1)

}
otherwise

4 Emily Fox

While the possibility of x > v still prevents us from iterating over v in the outermost loop, we
can now use evalution order Bℓ.

Finally, if we rely on both dist2,ℓ and dist2,r:

dist3(u, v, x) =


w(u�v) if x = 0

min

{
dist3(u, v, x− 1),

dist2,r(u, x, x− 1) + dist2,ℓ(x, v, x− 1)

}
otherwise

Now any order is fine as long as x is increasing. In particular, we can use evaluation order A
again.

4 Three algorithms

The observations in the previous section suggest the following three dynamic programming algo-
rithms for APSP.

• We can evaluate each of the functions dist1, dist2,ℓ, dist3,r and dist3 in sequence using evalua-
tion order A. Later functions in the sequence use the recurrences that rely on earlier functions
in the sequence.

• We can evaluate the functions dist2,ℓ and dist3 in sequence using evaluation order Bℓ in a
similar manner.

• Finally, we can evaluate dist3 only using evaluation order C.

All three algorithms described above run in Θ(n3) time and use Θ(n3) space for their memo-
ization data structures.

Algorithms textbooks often present this final algorithm evaluating dist3 using evaluation order
C as Floyd-Warshall [CLRS22,Rou22]. That said, the original presentation of the Floyd-Warshall
algorithm [Flo62] does not use a memoization table indexed by all three parameters. Instead,
the table is parameterized only by u and v while the x parameter is essentially ignored in all
indexing operations. Correctness follows from the two-dimensional table of distances always storing
values that are at most each value of dist3(u, v, x) after iteration x of the outer loop. These same
textbooks [CLRS22,Rou22] leave this space-saving refinement as an exercise.

It turns out we can perform this trick with all three algorithms presented above by reusing the
same table through each stage of the process. In fact, we can reduce the number of runs in the
first algorithm to three by merging the computations of dist2,ℓ and dist2,r into a single run. In
order to more easily relate the progress of the resulting algorithms to the functions discussed in the
previous section, they are all described below with an outer for loop over variable i that runs for
one to three iterations total, ending with iteration i = 3. Other than the single iteration “loop”
surrounding the loops over the vertices, the third algorithm APSP-C is equivalent to the common
Θ(n2)-space presentation of Floyd-Warshall.

Jumbled Floyd-Warshall as dynamic programming 5

APSP-A(G) :
for u← 1 to n

for v ← 1 to n
dist [u, v]← w(u�v)

for i← 1 to 3
for u← 1 to n

for v ← 1 to n
for x← 1 to n

if dist [u, v] > dist [u, x] + dist [x, v]
dist [u, v]← dist [u, x] + dist [x, v]

APSP-B(G) :
for u← 1 to n

for v ← 1 to n
dist [u, v]← w(u�v)

for i← 2 to 3
for u← 1 to n

for x← 1 to n
for v ← 1 to n

if dist [u, v] > dist [u, x] + dist [x, v]
dist [u, v]← dist [u, x] + dist [x, v]

APSP-C(G) :
⟨⟨i.e., Floyd-Warshall⟩⟩
for u← 1 to n

for v ← 1 to n
dist [u, v]← w(u�v)

for i← 3 to 3
for x← 1 to n

for u← 1 to n
for v ← 1 to n

if dist [u, v] > dist [u, x] + dist [x, v]
dist [u, v]← dist [u, x] + dist [x, v]

At all times, the values dist [u, v] contain the length of some walk from u to v. However, we
still need to show that these pseudocode procedures actually compute the lengths of the shortest
walks by the time they terminate. We do so using a sequence of lemmas, all of which state that at
every moment during the algorithms’ execution, each dist [u, v] value is no greater than the most
update-to-date dist•(u, v, x) value available at that moment.

We prove the first of these lemmas in detail below. The rest of the proofs are nearly identical
and ⟨⟨will⟩⟩ appear in the appendix. �����

Lemma 4.1. Let u, v, x ∈ V . Immediately after iteration (1, u, v, x) of APSP-A(G), we have
dist [u, v] ≤ dist1(u, v, x).

Proof: Assume for any u′, v′, x′ ∈ V with (u′, v′, x′) < (u, v, x) that immediately after iteration
(1, u′, v′, x′), we have dist [u′, v′] ≤ dist1(u

′, v′, x′).
If x = 1, then dist [u, v] = w(u�v) = dist1(u, v, 0) at the beginning of iteration (1, u, v, x).

Otherwise, the induction hypothesis guarantees dist [u, v] ≤ dist1(u, v, x − 1) immediately after
iteration (1, u, v, x−1). Either way, dist [u, v] ≤ dist1(u, v, x) at the beginning of iteration (1, u, v, x).

6 Emily Fox

Suppose x ≥ min {u, v}. During iteration (1, u, v, x), value dist [u, v] remains at most

dist1(u, v, x− 1) = dist1(u, v, x).

Now, suppose x < min {u, v}. If x = 1, then dist [u, x] = w(u�x) = dist1(u, x, x − 1) at the
beginning of iteration (1, u, v, x), and it has not increased since then. Otherwise, by the induction
hypothesis, dist [u, x] ≤ dist1(u, x, x − 1) at the end of iteration (1, u, x, x − 1), and it, again, has
not increased since then. Either way, dist [u, x] ≤ dist1(u, x, x − 1) at the beginning of iteration
(1, u, v, x). Similarly, dist [x, v] ≤ dist1(x, v, x− 1) at the beginning of the iteration. By the end of
iteration (1, u, v, x), value dist [u, v] is at most

min

{
dist [u, v],

dist [u, x] + dist [x, v]

}
≤ min

{
dist1(u, v, x− 1),

dist1(u, x, x− 1) + dist1(x, v, x− 1)

}
= dist1(u, v, x).

In both cases, dist [u, v] ≤ dist1(u, v, x) at the end of iteration (1, u, v, x).
□

Lemma 4.2. Let u, v, x ∈ V . Immediately after iteration (2, u, v, x) of APSP-A(G), we have
dist [u, v] ≤ min {dist2,ℓ(u, v, x), dist2,r(u, v, x)}.

Lemma 4.3. Let u, v, x ∈ V . Immediately after iteration (3, u, v, x) of APSP-A(G), we have
dist [u, v] ≤ dist3(u, v, x).

Corollary 4.4. APSP-A(G) computes all-pairs shortest paths in G in O(n3) time.

Lemma 4.5. Let u, v, x ∈ V . Immediately after iteration (2, u, x, v) of APSP-B(G), we have
dist [u, v] ≤ dist2,ℓ(u, v, x).

Lemma 4.6. Let u, v, x ∈ V . Immediately after iteration (3, u, x, v) of APSP-B(G), we have
dist [u, v] ≤ dist3(u, v, x).

Corollary 4.7. APSP-B(G) computes all-pairs shortest paths in G in O(n3) time.

Lemma 4.8. Let u, v, x ∈ V . Immediately after iteration (3, x, u, v) of APSP-C(G), we have
dist [u, v] ≤ dist3(u, v, x).

Corollary 4.9. APSP-C(G) computes all-pairs shortest paths in G in O(n3) time.

References

[CLRS22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. MIT Press and McGraw-Hill, 4th edition, 2022.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, June 1962.

[HKM19] Ikumi Hide, Soh Kumabe, and Takanori Maehara. Incorrect implementations of
the floyd-warshall algorithm give correct solutions after three repeats. CoRR,
abs/1904.01210, 2019.

[Rou22] Tim Roughgarden. Algorithms Illuminated Omnibus Edition. Cambridge University
Press, 2022.

	Introduction
	Notation and definitions
	Subproblems and evaluation orders
	Solving dist1
	Solving dist2, and dist2, r
	Solving dist3

	Three algorithms

