CS/ECE 374 A Lab 7a — October 8 Fall 2025

A subsequence of a sequence (for example, an array, linked list, or string), obtained by removing
zero or more elements and keeping the rest in the same order. A subsequence is called a substring
or an interval if its elements are contiguous in the original sequence. For example:

SUBSEQUENCE, UBSEQU, and the empty string ¢ are all substrings (and therefore sub-
sequences) of the string SUBSEQUENCE;

SBSQNC, SQUEE, and EEE are all subsequences of SUBSEQUENCE but not substrings;

QUEUE, EQUUS, and DIMAGGIO are not subsequences (and therefore not substrings) of
SUBSEQUENCE.

Questions to ask while designing a recursive backtracking algorithm:

How you would systematically solve the problem yourself? By hand, not by writing
code. What sequence of decisions do you need to make? For each decision, what are your
options?

After you’ve made some decisions, what portion(s) of the input data is(are) left?
Equivalently, what is the “shape” of your recursive subproblems? Prefixes, suffixes, intervals,
or something else? Do you need to remember anything else about your past decisions to
make consistent future decisions?

How can you specify the “shape” of a subproblem with only a small number of
parameters? (typically indices into an input array)?

What precise recursive problem are you trying to solve? Equivalently, after making
some decisions, what question are you asking about the remaining input data? This is the
most important step.

Finally, develop a recursive algorithm that answers the precise question you specified in
the previous step. Your recursive algorithm should explore all possible options for exactly
one decision, and each decision should be evaluated by recursively solving any resulting
subproblem(s).

Describe recursive backtracking algorithms for the following longest-subsequence problems.
Don’t worry about running times.

1.

Given an array A[1..n] of integers, compute the length of a longest increasing subsequence.
A sequence B[1..£] is increasing if B[i] > B[i — 1] for every index i > 2.

For example, given the array
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,7)

your algorithm should return the integer 6, because (1,4,5,6,8,9) is a longest increasing
subsequence (one of many).



CS/ECE 374 A Lab 7a — October 8 Fall 2025

2. Given an array A[1 .. n] of integers, compute the length of a longest decreasing subsequence.
A sequence B[1..{] is decreasing if B[i] < B[i — 1] for every index i > 2.

For example, given the array
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,7)

your algorithm should return the integer 5, because (9, 6,5,4,2) is a longest decreasing
subsequence (one of many).

3. GivenanarrayA[1..n] of integers, compute the length of a longest alternating subsequence.
A sequence B[1../] is alternating if B[i] < B[i — 1] for every even index i > 2, and
B[i] > B[i—1] for every odd index i > 3.

For example, given the array

your algorithm should return the integer 17, because (3,1,4,1,5,2,6,5,8,7,9,3,8,4,6,2,7)
is a longest alternating subsequence (one of many).

Harder problems to think about later:

4. Given an array A[1..n] of integers, compute the length of a longest convex subsequence
of A. A sequence B[1..£] is convex if B[i]—B[i —1] > B[i — 1] — B[i — 2] for every index
i>3.

For example, given the array
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,7)

your algorithm should return the integer 6, because (3,1,1,2,5,9) is a longest convex
subsequence (one of many).

5. Given an array A[1..n], compute the length of a longest palindrome subsequence of A.
Recall that a sequence B[1..£] is a palindrome if B[i] = B[{ —i + 1] for every index i.

For example, given the array
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,7)

your algorithm should return the integer 7, because (4,9, 5, 3,5,9, 4) is alongest palindrome
subsequence (one of many).



