
CS/ECE 374 A 6 Fall 2025
2 Homework 6 1

Due Tuesday, October 14, 2025 at 9pm Central Time

Please make sure that you read and understand the standard dynamic programming rubric.

1. A triumph in a sequence of integers (from the Latin tri-meaning “three” and -umphmeaning
“bodacious”) is a consecutive triple of sequence elements whose sum is a multiple of 3. For
example, the sequence

〈3,1, 4, 1,5, 9,6, 2,3, 5,8, 9,7,9, 3,2, 3,8, 4, 6, 2,6〉

contains five triumphs (indicated by lines above and below).

We say that one sequence A ismore triumphant (or less heinous) than another sequence B
if there are more triumphs in A than in B.

Describe and analyze an algorithm to compute the number of triumphs in the most
triumphant (or equivalently, least heinous) subsequence of a given array A[1 .. n] of integers.
For example:

• Given the input array [0, 1,0, 1,0], your algorithm should return the integer 1, which
is the number of triumphs in the subsequence [0,0, 0]. Notice that 0,0, 0 is a triumph
in the optimal subsequence even though those three 0s are not consecutive in the input
array.

• Given the input array [0, 1,1, 2,3, 5,8, 13,21], your algorithm should return the
integer 4, which is the number of triumphs in the most triumphant subsequence
[0,1, 2,3, 8,13, 21]. Again, 0,1, 2 and 3,8, 13 are triumphs in the optimal subsequence
even though they are not consecutive triples in the input array. Notice also that the
optimal subsequence includes the consecutive triple 2,3, 8, even though that triple is
not a triumph.

2. Several years after graduating from Sham-Poobanana University, you decide to open a
one-day pop-up art gallery selling NFTs, using the following dynamic pricing strategy.

All NFTs at your gallery have the same advertised price, which you set at the start of
the day, but which you can decrease later. Customers visit your gallery one at a time. If a
customer is willing to pay your current advertised price, they buy one NFT at that price.
On the other hand, if your advertised price is too high, the customer will suggest a lower
price that they are willing to pay. If you refuse to lower your advertised price, the customer
will leave without buying anything. If you agree to lower your advertised price to match
their offer, the customer will buy one NFT at the new lower price. Whenever you lower
your advertised price, the new lower price stays in effect until you lower it again, or until
the end of the day. You can never increase your advertised price.

CS/ECE 374 A Homework 6 (due October 14) Fall 2025

You know your customers extremely well, so you can accurately predict both when each
customer will come to the gallery, and how much each customer is willing to pay for one of
your NFTs.

Describe and analyze an algorithm that computes the maximum amount of money you
can earn using this dynamic pricing strategy. Your input consists of an array Value[1 .. n],
where Value[i] is the amount that the ith customer (in chronological order) is willing to
pay for one NFT.

For example, if the input array is [5, 3,1, 4,2], your algorithm should output 13, because
you can earn 5+3+0+3+2= 13 dollars using the prices [5, 3,3, 3,2], and this is optimal.

[Hint: Do not assume that the input values Value[i] are constants independent of n.
Your prices might be in Hungarian pengő, and one of your customers might be Elon Musk.]

2

CS/ECE 374 A Homework 6 (due October 14) Fall 2025

3. Practice only. Do not submit solutions.

(a) Any string can be decomposed into a sequence of palindromes. For example, the
string BUBBASEESABANANA (“Bubba sees a banana.”) can be broken into palindromes
in the following ways (and 65 others):

BUB • BASEESAB • ANANA
B • U • BB • ASEESA • B • ANANA

BUB • B • A • SEES • ABA • N • ANA
B • U • BB • A • S • EE • S • A • B • A • NAN • A

B • U • B • B • A • S • E • E • S • A • B • A • N • A • N • A

Describe and analyze an efficient algorithm to find the smallest number of palin-
dromes that make up a given input string. For example, given the input string
BUBBASEESABANANA, your algorithm should return 3.

(b) A metapalindrome is a decomposition of a string into a sequence of palindromes,
such that the sequence of palindrome lengths is itself a palindrome. For example,
the string BOBSMAMASEESAUKULELE (“Bob’s mama sees a ukulele”) has the following
metapalindromes (among others):

BOB • S • MAM • ASEESA • UKU • L • ELE
B • O • B • S • M • A • M • A • S • E • E • S • A • U • K • U • L • E • L • E

The length sequences of these metapalindromes are (3, 1,3, 6,3, 1,3) and (1,1,1, 1,1,
1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1); notice that both of these sequences are themselves
palindromes.

Describe and analyze an efficient algorithm to find the smallest number of
palindromes in any metapalindrome for a given string. For example, given the input
string BOBSMAMASEESAUKULELE, your algorithm should return 7.

3

CS/ECE 374 A Homework 6 (due October 14) Fall 2025

Solved Problems

3. A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both shuffles of
the strings DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

(a) Given three strings A[1 .. m], B[1 .. n], and C[1 .. m + n], describe and analyze an
algorithm to determine whether C is a shuffle of A and B.

Solution (design): We define a boolean function Shuf(i, j), which is True if
and only if the prefix C[1 .. i + j] is a shuffle of the prefixes A[1 .. i] and B[1 .. j].
We need to compute Shuf(m, n). The function Shuf satisfies the following
recurrence:

Shuf(i, j) =



































True if i = j = 0

Shuf(0, j − 1)∧ (B[j] = C[j]) if i = 0 and j > 0

Shuf(i − 1,0)∧ (A[i] = C[i]) if i > 0 and j = 0
�

Shuf(i − 1, j)∧ (A[i] = C[i + j])
�

∨
�

Shuf(i, j − 1)∧ (B[j] = C[i + j])
�

otherwise

We can memoize this function into a two-dimensional array Shuf[0 .. m][0 .. n].
Each array entry Shuf[i, j] depends only on the entries immediately above and
immediately to the left: Shuf[i − 1, j] and Shuf[i, j − 1]. Thus, we can fill the
array in standard row-major order in O(mn) time. ■

4

CS/ECE 374 A Homework 6 (due October 14) Fall 2025

Solution (pseudocode): The following algorithm runs in O(mn) time.

IsShuffle?(A[1 .. m], B[1 .. n], C[1 .. m+ n]):
Shuf[0,0]← True
for j← 1 to n

Shuf[0, j]← Shuf[0, j − 1]∧ (B[j] = C[j])
for i← 1 to n

Shuf[i, 0]← Shuf[i − 1,0]∧ (A[i] = B[i])
for j← 1 to n

Shuf[i, j]← False
if A[i] = C[i + j]

Shuf[i, j]← Shuf[i − 1, j]
if B[i] = C[i + j]

Shuf[i, j]← Shuf[i, j]∨ Shuf[i, j − 1]

return Shuf[m, n]

At the end of the algorithm, for all indices i and j, we have Shuf[i, j] = True
if the prefix C[1 .. i + j] is a shuffle of the prefixes A[1 .. i] and B[1 .. j], and
Shuf[i, j] = False otherwise. ■

Rubric: 5points, standarddynamicprogramming rubric. Eachof these solutions is separately
worth full credit. These are not the only correct solutions. −½ for reporting running time as
O(n2). 3 points for a slower polynomial-time algorithm; scale partial credit accordingly.

5

CS/ECE 374 A Homework 6 (due October 14) Fall 2025

(b) Given three strings A[1 .. m], B[1 .. n], and C[1 .. m + n], describe and analyze an
algorithm to determine the number of different ways that A and B can be shuffled to
obtain C .

Solution (design): Let #Shuf(i, j) denote the number of different ways that
the prefixes A[1 .. i] and B[1 .. j] can be shuffled to obtain the prefix C[1 .. i + j].
We need to compute #Shuf(m, n).

The #Shuf function satisfies the following recurrence. Here I am using
Iverson bracket notation to convert booleans to integers: For any proposition P,
the expression [P] is equal to 1 if P is true and 0 if P is false.

#Shuf(i, j) =



































1 if i = j = 0

#Shuf(0, j − 1) ·
�

B[j] = C[j]
�

if i = 0 and j > 0

#Shuf(i − 1,0) ·
�

A[i] = C[i]
�

if i > 0 and j = 0
�

#Shuf(i − 1, j) ·
�

A[i] = C[i]
��

+
�

#Shuf(i, j − 1) ·
�

B[j] = C[j]
��

otherwise

We can memoize this function into a two-dimensional array #Shuf[0 .. m][0 .. n].
As in part (a), we can fill this array in standard row-major order in O(mn)
time. ■

6

CS/ECE 374 A Homework 6 (due October 14) Fall 2025

Solution (pseudocode): The following algorithm runs in O(mn) time:

NumShuffles(A[1 .. m], B[1 .. n], C[1 .. m+ n]):
#Shuf[0,0]← 1

for j← 1 to n
#Shuf[0, j]← 0
if (B[j] = C[j])

#Shuf[0, j]← #Shuf[0, j − 1]
for i← 1 to n

#Shuf[0, j]← 0
if (A[i] = B[i])

#Shuf[0, j]← #Shuf[i − 1, 0]
for j← 1 to n

#Shuf[i, j]← 0
if A[i] = C[i + j]

#Shuf[i, j]← #Shuf[i − 1, j]
if B[i] = C[i + j]

#Shuf[i, j]← #Shuf[i, j] +#Shuf[i, j − 1]

return Shuf[m, n]

At the end of the algorithm, for all indices i and j, #Shuf[i, j] is the number of
different ways that the prefixes A[1 .. i] and B[1 .. j] can be shuffled to obtain
the prefix C[1 .. i + j]. ■

Rubric: 5 points, standard dynamic programming rubric. Again, each of these solutions is
separatelyworth full credit. These are not the only correct solutions. −½ for reporting running
time asO(n2). 3 points for a slower polynomial-time algorithm; scale partial credit accordingly.

7

