
CS/ECE 374 A 6 Fall 2025
2 Homework 5 1

Due Tuesday, October 7, 2023 at 9pm Central Time

Please read and understand the homework policies,
especially our expectations about describing algorithms

and the standard grading rubrics for algorithms questions.

1. Prince Hutterdink and Princess Bumpercup are celebrating their recent marriage by inviting
all the dukes and duchesses in the kingdom to sample the castle’s celebrated wine cellars.
Just before the drinking begins, the happy couple learns that exactly one of their n bottles
of wine has been laced with iocaine powder, one of the deadliest poisons known to man.

Hutterdink and Bumpercup employ an army of Royal Tasters, who have built up an
immunity to iocaine powder. To test a set S of wine bottles, a Taster mixes one drop of
wine from each bottle in S and consumes the resulting mixture. If the mixture contains any
iocaine, the Taster will become extremely ill, or as the Royal Miracle Workers optimistically
put it, only mostly dead. (Anyone else who consumes iocaine quickly becomes all dead.)

Each Taster must be paid 1000 guilders for each test they perform, so Hutterdink and
Bumpercup want to use as few tests as possible. Fortunately, they have an unlimited supply
of Tasters.

(a) Describe an algorithm to find the poisoned bottle using at most O(log n) tests. (This
is best possible in the worst case.)

(b) Now suppose two of the n bottles have been poisoned. Describe an algorithm to
identify both poisoned bottles, using as few tests as possible in the worst case.

(c) Finally, suppose the poisoners try to evade the Royal Tasters by reducing the amount
of iocaine in each poisoned bottle. Now when a Taster tests a set S of wine bottles,
they become mostly dead if and only if both poisoned bottles are in S. Describe an
algorithm to find both poisoned bottles using as few tests as possible in the worst case.

https://courses.grainger.illinois.edu/cs374al1/fa2025/hw-pol.html#content
https://courses.grainger.illinois.edu/cs374al1/fa2025/misc/f25-rubrics.pdf

CS/ECE 374 A Homework 5 (due October 7) Fall 2025

2. Before his untimely death, Captain Jack Sparrow buried several bottles of rum on Grid
Island. You have a map of Rum Island in the form of an n× n grid of squares, with rows
indexed from north to south and columns from west to east; each square on the map may
or may not correspond to the location of a bottle of rum. The only safe port on Grid Island
is in the northwest corner, next to square (1,1). You want to find a bottle of rum that is as
close as possible to the port; specifically, you want to find a grid square (i, j) that contains
a bottle of rum, such that i + j is as small as possible.

For example, in the figure below, solid green squares represent bottles of rum; your
ship is docked in the northwest corner. Your goal is to find one of the circled bottles of rum.

To aid in your quest, Davy Jones has given you a magical Device that will correctly
report whether any rectangular area on Grid Island contains at least one bottle of rum.
That is, given four integers t, b, l, r between 1 and n, if there is a rum bottle in any square
(i, j) such that t ≤ i ≤ b and l ≤ j ≤ r, the Device sounds a gentle mellifluous chime; if
there is no rum in that rectangular region, the Device emits a fart noise and a noxious
cloud of green “smoke”. By definition, each use of the Device takes O(1) time.

NO!YES!

You could use the Device to search the grid one square at a time, but that would require
Θ(n2) time in the worst case. Surely we can do better!

(•) Practice only. Do not submit solutions.
Describe how to find an arbitrary bottle of rum (not necessarily closest to the

northwest corner) in O(log n) time.

(a) Consider the following recursive algorithm to find a bottle of rum closest to the
northwest corner of the island. If n= 1, the only square must contain the only bottle

2

CS/ECE 374 A Homework 5 (due October 7) Fall 2025

of rum. Otherwise, split the n× n into four n/2× n/2 quadrants, use the Device to
test the northwest quadrant, and then proceed as follows:

• If the northwest quadrant does not contain any rum, then it certainly does not
contain the closest rum to your ship. Recursively search the northeast, southwest,
and southeast quadrants.

• On the other hand, if the northwest quadrant does contain rum, then the closest
rum to your ship cannot be in the southeast quadrant. Recursively search the
northwest, northeast, and southwest quadrants.

Recurse!

Recurse!Recurse!

Recurse!

Recurse!

Recurse!

Who cares?

In both cases, each of the three recursive calls either returns the location of the
closest rum to your ship in that quadrant or correctly reports that there is no rum
in that quadrant. Moreover, at least one of the recursive calls finds some rum. The
closest rum to your ship is the closest of the one, two, or three bottles found by the
recursive calls.

What is the overall running time of this recursive algorithm?

(b) Now suppose we modify the algorithm in part (a) to partition into nine regions instead
of four. At each level of recursion, the new algorithm splits Grid Island into nine
(n/3)× (n/3) subgrids, tests all nine subgrids using the Device, and then recursively
searches a subset of those nine subgrids.

How many recursive calls do we need to make in the worst case? Prove your
answer is correct. What is the running time of the resulting recursive algorithm?

⋆(c) Describe an even faster algorithm to find a bottle of rum that is closest to the northwest
corner of Grid Island.

(As described in the homework policies and standard grading rubrics, full credit
requires meeting the target running time that we have in mind. Slower correct
algorithms that are still faster than parts (a) and (b) will receive significant partial
credit.)

3

CS/ECE 374 A Homework 5 (due October 7) Fall 2025

⋆3. Practice only. Do not submit solutions.

The following variant of the infamous StoogeSort algorithm1 was discovered by the
British actor Patrick Troughton during rehearsals for the 20th anniversary Doctor Who
special “The Five Doctors”.2

WhoSort(A[1 .. n]) :
if n< 13

sort A by brute force
else

k = ⌈n/5⌉
WhoSort(A[1 .. 3k]) 〈〈Hartnell〉〉
WhoSort(A[2k+ 1 .. n]) 〈〈Troughton〉〉
WhoSort(A[1 .. 3k]) 〈〈Pertwee〉〉
WhoSort(A[k+ 1 .. 4k]) 〈〈Davison〉〉

(a) Prove by induction that WhoSort correctly sorts its input. [Hint: Where can the
smallest k elements be?]

(b) Would WhoSort still sort correctly if we replaced “if n< 13” with “if n< 4”? Justify
your answer.

(c) Would WhoSort still sort correctly if we replaced “k = ⌈n/5⌉” with “k = ⌊n/5⌋”?
Justify your answer.

(d) What is the running time of WhoSort? (Set up a running-time recurrence and then
solve it, ignoring the floors and ceilings.)

(e) Forty years later, 15th Doctor Ncuti Gatwa discovered the following optimization
to WhoSort, which uses the standard Merge subroutine from mergesort, which
merges two sorted arrays into one sorted array.

NuWhoSort(A[1 .. n]) :
if n< 13

sort A by brute force
else

k = ⌈n/5⌉
NuWhoSort(A[1 .. 3k]) 〈〈Grant〉〉
NuWhoSort(A[2k+ 1 .. n]) 〈〈Whittaker〉〉
Merge(A[1 .. 2k], A[2k+ 1 .. 4k]) 〈〈Tennant〉〉

What is the running time of NuWhoSort?

1https://en.wikipedia.org/wiki/Stooge_sort
2Tom Baker, the fourth Doctor, declined to return for the reunion; hence, only four Doctors appeared in “The Five

Doctors”. (Well, okay, technically the BBC used excerpts of the unfinished episode “Shada” to include Baker, but
he wasn’t really there—to the extent that any fictional character in a television show about a time traveling wizard
arguing with several other versions of himself about immortality can be said to be “really” “there”.)

4

https://en.wikipedia.org/wiki/Stooge_sort

CS/ECE 374 A Homework 5 (due October 7) Fall 2025

Solved problems

4. Suppose we are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0 and
the other set {q1, q2, . . . ,qn} on the line y = 1. Consider the n line segments connecting
each point pi to the corresponding point qi. Describe and analyze a divide-and-conquer
algorithm to determine how many pairs of these line segments intersect, in O(n log n) time.
See the example below.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P[1 .. n] and Q[1 .. n] of x-coordinates; you may assume
that all 2n of these numbers are distinct. No proof of correctness is necessary, but you
should justify the running time.

Solution: We begin by sorting the array P[1 .. n] and permuting the array Q[1 .. n]
to maintain correspondence between endpoints, in O(n log n) time. Then for any
indices i < j, segments i and j intersect if and only if Q[i]>Q[j]. Thus, our goal is
to compute the number of pairs of indices i < j such that Q[i]>Q[j]. Such a pair is
called an inversion.

We count the number of inversions in Q using the following extension of mergesort;
as a side effect, this algorithm also sorts Q. If n < 100, we use brute force in O(1)
time. Otherwise:

• Color the elements in the Left half Q[1 .. ⌊n/2⌋] bLue.
• Color the elements in the Right half Q[⌊n/2⌋+ 1 .. n] Red.
• Recursively count inversions in (and sort) the blue subarray Q[1 .. ⌊n/2⌋].
• Recursively count inversions in (and sort) the red subarray Q[⌊n/2⌋+ 1 .. n].
• Count red/blue inversions as follows:

– Merge the sorted subarrays Q[1 .. n/2] and Q[n/2+1 .. n], maintaining the
element colors.

– For each blue element Q[i] of the now-sorted array Q[1 .. n], count the
number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

5

CS/ECE 374 A Homework 5 (due October 7) Fall 2025

CountRedBlue(A[1 .. n]):
count← 0
total← 0

for i← 1 to n
if A[i] is red

count← count+ 1
else

total← total+ count
return total

Merge and CountRedBlue each run in O(n) time. Thus, the running time of our
inversion-counting algorithm obeys the mergesort recurrence T (n) = 2T (n/2)+O(n).
(We can safely ignore the floors and ceilings in the recursive arguments.) We conclude
that the overall running time of our algorithm is O(n log n), as required.

Rubric: This is enough for full credit.

In fact, we can execute the third merge-and-count step directly by modifying
the Merge algorithm, without any need for “colors”. Here changes to the standard
Merge algorithm are indicated in red.

MergeAndCount(A[1 .. n], m):
i← 1; j← m+ 1; count← 0; total← 0

for k← 1 to n
if j > n

B[k]← A[i]; i← i + 1; total← total+ count
else if i > m

B[k]← A[j]; j← j + 1; count← count+ 1
else if A[i]< A[j]

B[k]← A[i]; i← i + 1; total← total+ count
else

B[k]← A[j]; j← j + 1; count← count+ 1

for k← 1 to n
A[k]← B[k]

return total

We can further optimize MergeAndCount by observing that count is always equal
to j −m− 1, so we don’t need an additional variable. (Proof: Initially, j = m+ 1 and
count= 0, and we always increment j and count together.)

6

CS/ECE 374 A Homework 5 (due October 7) Fall 2025

MergeAndCount2(A[1 .. n], m):
i← 1; j← m+ 1; total← 0

for k← 1 to n
if j > n

B[k]← A[i]; i← i + 1; total← total+ j −m − 1
else if i > m

B[k]← A[j]; j← j + 1
else if A[i]< A[j]

B[k]← A[i]; i← i + 1; total← total+ j −m − 1
else

B[k]← A[j]; j← j + 1

for k← 1 to n
A[k]← B[k]

return total

MergeAndCount2 still runs inO(n) time, so the overall running time is stillO(n log n),
as required. ■

Rubric: 10 points = 2 for base case + 2 for divide (split and recurse) + 4 for conquer (merge and count)
+ 2 for time analysis. This is neither the only way to correctly describe this algorithm nor the only
correct O(n log n)-time algorithm. No proof of correctness is required.

Max 3 points for a correct O(n2)-time algorithm.

Notice that each boxed algorithm is preceded by a clear English description of the task that algo-
rithm performs—not how the algorithm works, but the relationship between its input and its output.
Each English description is worth 25% of the credit for that algorithm (rounding to the nearest
half-point). For example, the COUNTREDBLUE algorithm is worth 4 points (“conquer”); the English
description alone (“For each blue element Q[i] of the now-sorted array Q[1 .. n], count the number of
smaller red elements Q[j].”) is worth 1 point.

7

