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NP: Non-deterministic polynomial

Definition 23.1.
A decision problem is in NP, if it has a polynomial time certifier, for all the all the YES
instances.

Definition 23.2.
A decision problem is in co-NP, if it has a polynomial time certifier, for all the all the
NO instances.

Example 23.3.
1. 3SAT is in NP.

2. But Not3SAT is in co-NP.
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In the beginning...

5 / 54



In the beginning...

Undecidable

5 / 54



In the beginning...

Undecidable

EXP

5 / 54



In the beginning...

Undecidable

EXP
PSPACE

5 / 54



In the beginning...

Undecidable

EXP
PSPACE

P

5 / 54



In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

5 / 54



In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

5 / 54



In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

5 / 54



In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

5 / 54



In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

NPC

5 / 54



“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition
1. Hardest problem must be in NP.

2. Hardest problem must be at least as “difficult” as every other problem in NP.
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NP-Complete Problems

Definition 23.4.
A problem X is said to be NP-Complete if

1. X ∈ NP, and

2. (Hardness) For any Y ∈ NP, Y ≤P X.
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Solving NP-Complete Problems

Proposition 23.5.
Suppose X is NP-Complete. Then X can be solved in polynomial time ⇐⇒
P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

0.1 Let Y ∈ NP. We know Y ≤P X.
0.2 We showed that if Y ≤P X and X can be solved in polynomial time, then Y can

be solved in polynomial time.
0.3 Thus, every problem Y ∈ NP is such that Y ∈ P.
0.4 =⇒ NP ⊆ P.
0.5 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time algorithm for X .
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NP-Hard Problems

Definition 23.6.
A problem X is said to be NP-Hard if

1. (Hardness) For any Y ∈ NP, we have that Y ≤P X.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

9 / 54



Consequences of proving NP-Completeness

If X is NP-Complete

1. Since we believe P ̸= NP,

2. and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient
algorithm for X .
(This is proof by mob opinion — take with a grain of salt.)
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NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.
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Cook-Levin Theorem

Theorem 23.7 (Cook-Levin).
SAT is NP-Complete.

Need to show

1. SAT is in NP.

2. every NP problem X reduces in polynomial time to SAT.

Might see proof later...

Steve Cook won the Turing award for his theorem.
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Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

1. Show that X is in NP.

2. Give a polynomial-time reduction from a known NP-Complete problem such as
SAT to X

SAT ≤P X implies that every NP problem Y ≤P X . Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X .
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3-SAT is NP-Complete

▶ 3-SAT is in NP
▶ SAT ≤P 3-SAT as we saw
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NP-Completeness via Reductions

1. SAT is NP-Complete due to Cook-Levin theorem

2. SAT ≤P 3-SAT

3. 3-SAT ≤P Independent Set

4. Independent Set ≤P Vertex Cover

5. Independent Set ≤P Clique

6. 3-SAT ≤P 3-Color

7. 3-SAT ≤P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and
engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!
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Reducing 3-SAT to Independent Set
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Independent Set

Problem: Independent Set

Instance: A graph G, integer k .
Question: Is there an independent set in G of size k?

Lemma 23.1.
Independent set is in NP.
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3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula φ
Goal: Construct a graph Gφ and number k such that Gφ has an independent set of
size k if and only if φ is satisfiable.
Gφ should be constructable in time polynomial in size of φ

Importance of reduction: Although 3SAT is much more expressive, it can be reduced to
a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of
boolean formulas.
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Interpreting 3SAT

There are two ways to think about 3SAT

1. Find a way to assign 0/1 (false/true) to the variables such that the formula
evaluates to true, that is each clause evaluates to true.

2. Pick a literal from each clause and find a truth assignment to make all of them true.
You will fail if two of the literals you pick are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.
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The Reduction

1. Gφ will have one vertex for each literal in a clause

2. Connect the 3 literals in a clause to form a triangle; the independent set will pick
at most one vertex from each clause, which will correspond to the literal to be set
to true

3. Connect 2 vertices if they label complementary literals; this ensures that the literals
corresponding to the independent set do not have a conflict

4. Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for φ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)
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Correctness

Proposition 23.2.
φ is satisfiable iff Gφ has an independent set of size k (= number of clauses in φ).

Proof.
⇒ Let a be the truth assignment satisfying φ

▶ Pick one of the vertices, corresponding to true literals under a, from each triangle.
This is an independent set of the appropriate size. Why?
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Correctness

Proposition 23.2.
φ is satisfiable iff Gφ has an independent set of size k (= number of clauses in φ).

Proof.
⇐ Let S be an independent set of size k
1. S must contain exactly one vertex from each clause

2. S cannot contain vertices labeled by conflicting literals

3. Thus, it is possible to obtain a truth assignment that makes in the literals in S
true; such an assignment satisfies one literal in every clause
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Summary

Theorem 23.3.
Independent set is NP-Complete (i.e., NPC).
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23.3.1
Reduction from 3SAT to Hamiltonian Cycle:
Basic idea
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Directed Hamiltonian Cycle

Input Given a directed graph G = (V ,E) with n vertices

Goal Does G have a Hamiltonian cycle?

▶ A Hamiltonian cycle is a cycle in the graph that visits every vertex in
G exactly once
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Is the following graph Hamiltonian?

(A) Yes.

(B) No.

28 / 54



Directed Hamiltonian Cycle is NP-Complete

▶ Directed Hamiltonian Cycle is in NP: exercise

▶ Hardness: We will show 3SAT ≤P Directed Hamiltonian Cycle .
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Reduction construction
From 3SAT to Hamiltonian cycle in directed graph

1. To show reduction, we next describe an algorithm:
▶ Input: 3SAT formula φ
▶ Output: A graph Gφ.
▶ Running time is polynomial.
▶ Requirement: φ is satisfiable ⇐⇒ Gφ is Hamiltonian.

2. Given 3SAT formula φ create a graph Gφ such that
▶ Gφ has a Hamiltonian cycle if and only if φ is satisfiable
▶ Gφ should be constructible from φ by a polynomial time algorithm A

3. Notation: φ has n variables x1, x2, . . . , xn and m clauses C1,C2, . . . ,Cm.
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Encoding assignments
Converting φ to a graph

Given a formula with n variables, we need a graph with 2n different Hamiltonian paths,
that can encode their assignments.

x4

x3

x2

x1

1
5
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Encoding assignments
Converting φ to a graph

Given a formula with n variables, we need a graph with 2n different Hamiltonian paths,
that can encode their assignments.
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Encoding assignments
Converting φ to a graph

Given a formula with n variables, we need a graph with 2n different Hamiltonian paths,
that can encode their assignments.
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3SAT ≤P Directed Hamiltonian Cycle

Input: φ formula.
Output: Graph Gφ.

Saw: How to encode assignments...
Now need to encode constraints of φ.
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The reduction algorithm: Phase I
Converting φ to a graph

▶ Traverse path i from left to right iff xi is set to true

▶ Each path has 3(m + 1) nodes where m is number of clauses in φ; nodes
numbered from left to right (1 to 3m + 3)

x1

x2

x3

x4
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The Reduction algorithm: Phase II
▶ Add vertex cj for clause Cj . cj has edge from vertex 3j and to vertex 3j + 1 on

path i if xi appears in clause Cj , and has edge from vertex 3j + 1 and to vertex 3j
if ¬xi appears in Cj .

¬x1 ∨ ¬x2 ∨ ¬x3x1 ∨ ¬x2 ∨ x4

x1

x2

x3

x4
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If there is a satisfying assignment, then
there is a Hamiltonian cycle
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From satisfying assignment to Hamiltonian cycle: By figure

3SAT formula φ:

φ =
(
x1 ∨ ¬x2 ∨ x4

)
∧
(
¬x1 ∨ ¬x2 ∨ ¬x3

)

¬x1 ∨ ¬x2 ∨ ¬x3x1 ∨ ¬x2 ∨ x4

x1

x2

x3

x4
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3SAT formula φ:

φ =
(
x1 ∨ ¬x2 ∨ x4

)
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(
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)
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Reduction: Satisfying assignment ⇒ Hamiltonian cycle
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x4
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= 1
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Satisfying assignment: x1 = 0, x2 = 1, x3 = 0, x4 = 1
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Reduction: Satisfying assignment ⇒ Hamiltonian cycle
¬x1 ∨ ¬x2 ∨ ¬x3x1 ∨ ¬x2 ∨ x4

x1

x2

x3

x4

= 0

= 1

= 0

= 1

Satisfying assignment: x1 = 0, x2 = 1, x3 = 0, x4 = 1
Conclude: If φ has a satisfying assignment then there is an Hamiltonian cycle in Gφ.

39 / 54



Correctness Proof

Lemma 23.1.
φ has a satisfying assignment α =⇒ Gφ has a Hamiltonian cycle.

Proof.
Let a be the satisfying assignment for φ. Define Hamiltonian cycle as follows

▶ If α(xi) = 1 then traverse path i from left to right

▶ If α(xi) = 0 then traverse path i from right to left

▶ For each clause, path of at least one variable is in the “right” direction to splice in
the node corresponding to clause

▶ Clearly, resulting cycle is Hamiltonian.
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Reduction: Hamiltonian cycle =⇒ ∃ satisfying assignment

We are given a Hamiltonian cycle in Gφ:
¬x1 ∨ ¬x2 ∨ ¬x3x1 ∨ ¬x2 ∨ x4

x1

x2

x3

x4

= 0

= 1

= 0

= 1

Want to extract satisfying assignment...
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Reduction: Hamiltonian cycle =⇒ ∃ satisfying assignment
No shenanigan: Hamiltonian cycle can not leave a row in the middle

x1

x2

x3

x4
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Reduction: Hamiltonian cycle =⇒ ∃ satisfying assignment
No shenanigan: Hamiltonian cycle can not leave a row in the middle

x1

x2

x3

x4

Conclude: Hamiltonian cycle must go through each row completely from left to
right, or right to left. As such, can be interpreted as a valid assignment.
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Hamiltonian Cycle ⇒ Satisfying assignment

Suppose Π is a Hamiltonian cycle in Gφ

▶ If Π enters cj (vertex for clause Cj ) from vertex 3j on path i then it must leave
the clause vertex on edge to 3j + 1 on the same path i
▶ If not, then only unvisited neighbor of 3j + 1 on path i is 3j + 2
▶ Thus, we don’t have two unvisited neighbors (one to enter from, and the other to

leave) to have a Hamiltonian Cycle

▶ Similarly, if Π enters cj from vertex 3j + 1 on path i then it must leave the clause
vertex cj on edge to 3j on path i
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Hamiltonian Cycle =⇒ Satisfying assignment (contd)

▶ Thus, vertices visited immediately before and after Ci are connected by an edge

▶ We can remove cj from cycle, and get Hamiltonian cycle in G − cj

▶ Consider Hamiltonian cycle in G − {c1, . . . cm}; it traverses each path in only one
direction, which determines the truth assignment
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Correctness Proof

We just proved:

Lemma 23.2.
Gφ has a Hamiltonian cycle =⇒ φ has a satisfying assignment α.

Lemma 23.3.
φ has a satisfying assignment iff Gφ has a Hamiltonian cycle.

Proof.
Follows from Lemma 23.1 and Lemma 23.2 .
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Summary

What we did:

1. Showed that Directed Hamiltonian Cycle is in NP.

2. Provided a polynomial time reduction from 3SAT to Directed Hamiltonian
Cycle.

3. Proved that φ satisfiable ⇐⇒ Gφ is Hamiltonian.

Theorem 23.4.
The problem Hamiltonian Cycle in directed graphs is NP-Complete.
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Hamiltonian Cycle

Problem 23.1.
Input Given undirected graph G = (V ,E)

Goal Does G have a Hamiltonian cycle? That is, is there a cycle that visits
every vertex exactly one (except start and end vertex)?
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NP-Completeness

Theorem 23.2.
Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.
▶ The problem is in NP; proof left as exercise.

▶ Hardness proved by reducing Directed Hamiltonian Cycle to this problem
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Reduction Sketch

Goal: Given directed graph G , need to construct undirected graph G ′ such that G has
Hamiltonian Path iff G ′ has Hamiltonian path

Reduction
▶ Replace each vertex v by 3 vertices: vin, v , and vout

▶ A directed edge (a, b) is replaced by edge (aout, bin)

b

a

v

c

d
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Hamiltonian cycle reduction
Undirected to directed case

⇒
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Reduction: Wrap-up

▶ The reduction is polynomial time (exercise)

▶ The reduction is correct (exercise)
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