
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

Breadth First Search, Dijkstra’s
Algorithm for Shortest Paths
Lecture 17
Tuesday, October 29, 2024

LATEXed: October 29, 2024 09:55

1 / 63

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.1
Maps as graphs
FLNAME:17.1.0.0 ZZZ:17.1.0.0 Maps as graphs

2 / 63

Maps as graphs

3 / 63

Maps as graphs II

1. Map was downloaded from https://www.openstreetmap.org

2. Open source alternative to google map.

3. Nice app (can download maps) + routing.

4. Graphs are everywhere, and easy to get and use.

4 / 63

https://www.openstreetmap.org

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.2
Breadth First Search
FLNAME:17.2.0.0 ZZZ:17.2.0.0 Breadth First Search

5 / 63

Breadth First Search (BFS)

Overview
(A) BFS is obtained from BasicSearch by processing edges using a queue data

structure.

(B) It processes the vertices in the graph in the order of their shortest distance from
the vertex s (the start vertex).

As such...
1. DFS good for exploring graph structure

2. BFS good for exploring distances

6 / 63

xkcd take on DFS

7 / 63

Queue Data Structure

Queues
A queue is a list of elements which supports the operations:

1. enqueue: Adds an element to the end of the list

2. dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in
the order in which they were inserted.

8 / 63

BFS Algorithm

Given (undirected or directed) graph G = (V ,E) and node s ∈ V

BFS(s)
Mark all vertices as unvisited

Initialize search tree T to be empty

Mark vertex s as visited

set Q to be the empty queue

enqueue(Q, s)
while Q is nonempty do

u = dequeue(Q)
for each vertex v ∈ Adj(u)

if v is not visited then
add edge (u, v) to T
Mark v as visited and enqueue(v)

Proposition 17.1.
BFS(s) runs in O(n + m) time.

9 / 63

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

6
T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

10 / 63

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

2 3

6
T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

10 / 63

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

2 3

6
T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

10 / 63

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

2 3

6
T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

10 / 63

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

2 3

7

8

6
T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

10 / 63

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

2 3

7

8

6
T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

10 / 63

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6
T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

10 / 63

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6
T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

10 / 63

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6
T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

10 / 63

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6
T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

10 / 63

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6
T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

10 / 63

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6
T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

10 / 63

BFS: An Example in Directed Graphs

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug 11 / 63

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.2.1
BFS with distances and layers
FLNAME:17.2.1.0 ZZZ:17.2.1.0 BFS with distances and layers

12 / 63

BFS with distances

BFS(s)
Mark all vertices as unvisited; for each v set dist(v) =∞
Initialize search tree T to be empty

Mark vertex s as visited and set dist(s) = 0
set Q to be the empty queue

enqueue(Q, s) // insert s to Q
while Q is nonempty do

u = dequeue(Q)
for each vertex v ∈ Adj(u) do

if v is not visited do
add edge (u, v) to T
Mark v as visited

enqueue(Q, v)
dist(v)⇐ dist(u) + 1

13 / 63

Properties of BFS: Undirected Graphs

Theorem 17.2.
The following properties hold upon termination of BFS(s)
(A) Search tree contains exactly the set of vertices in the connected component of s.
(B) If dist(u) < dist(v) then u is visited before v .
(C) For every vertex u, dist(u) is the length of a shortest path (in terms of number of

edges) from s to u.
(D) If u, v are in connected component of s and e = {u, v} is an edge of G , then
|dist(u)− dist(v)| ≤ 1.

14 / 63

Properties of BFS: Directed Graphs

Theorem 17.3.
The following properties hold upon termination of BFS(s):
(A) The search tree contains exactly the set of vertices reachable from s
(B) If dist(u) < dist(v) then u is visited before v
(C) For every vertex u, dist(u) is indeed the length of shortest path from s to u
(D) If u is reachable from s and e = (u, v) is an edge of G , then

dist(v)− dist(u) ≤ 1.
Not necessarily the case that dist(u)− dist(v) ≤ 1.

15 / 63

BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty

Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list

for each u in Li do
for each edge (u, v) ∈ Adj(u) do

if v is not visited

mark v as visited

add (u, v) to tree T
add v to Li+1

i = i + 1

Running time: O(n + m)

16 / 63

BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty

Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list

for each u in Li do
for each edge (u, v) ∈ Adj(u) do

if v is not visited

mark v as visited

add (u, v) to tree T
add v to Li+1

i = i + 1

Running time: O(n + m)

16 / 63

Example
1

2 3

4 5

6

7

8

17 / 63

BFS with Layers: Properties

Proposition 17.4.
The following properties hold on termination of BFSLayers(s).
1. BFSLayers(s) outputs a BFS tree

2. Li is the set of vertices at distance exactly i from s
3. If G is undirected, each edge e = {u, v} is one of three types:

3.1 tree edge between two consecutive layers
3.2 non-tree forward/backward edge between two consecutive layers
3.3 non-tree cross-edge with both u, v in same layer
3.4 =⇒ Every edge in the graph is either between two vertices that are either (i) in

the same layer, or (ii) in two consecutive layers.

18 / 63

Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug 19 / 63

BFS with Layers: Properties
For directed graphs

Proposition 17.5.
The following properties hold on termination of BFSLayers(s), if G is directed.
For each edge e = (u, v) is one of four types:

1. a tree edge between consecutive layers, u ∈ Li , v ∈ Li+1 for some i ≥ 0

2. a non-tree forward edge between consecutive layers

3. a non-tree backward edge

4. a cross-edge with both u, v in same layer

20 / 63

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.3
Shortest Paths and Dijkstra’s Algorithm
FLNAME:17.3.0.0 ZZZ:17.3.0.0 Shortest Paths and Dijkstra’s Algorithm

21 / 63

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.3.1
Problem definition
FLNAME:17.3.1.0 ZZZ:17.3.1.0 Problem definition

22 / 63

Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V ,E) with edge lengths (or

costs). For edge e = (u, v), ℓ(e) = ℓ(u, v) is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.

3. Find shortest paths for all pairs of nodes.

Many applications!

23 / 63

Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V ,E) with edge lengths (or

costs). For edge e = (u, v), ℓ(e) = ℓ(u, v) is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.

3. Find shortest paths for all pairs of nodes.

Many applications!

23 / 63

Single-Source Shortest Paths:
Non-Negative Edge Lengths

1. Single-Source Shortest Path Problems

1.1 Input: A (undirected or directed) graph G = (V ,E) with non-negative edge
lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v) is its length.

1.2 Given nodes s, t find shortest path from s to t.
1.3 Given node s find shortest path from s to all other nodes.

2. 2.1 Restrict attention to directed graphs
2.2 Undirected graph problem can be reduced to directed graph problem - how?

2.2.1 Given undirected graph G , create a new directed graph G ′ by replacing each edge
{u, v} in G by (u, v) and (v , u) in G ′.

2.2.2 set ℓ(u, v) = ℓ(v , u) = ℓ({u, v})
2.2.3 Exercise: show reduction works. Relies on non-negativity!

24 / 63

Single-Source Shortest Paths:
Non-Negative Edge Lengths

1. Single-Source Shortest Path Problems

1.1 Input: A (undirected or directed) graph G = (V ,E) with non-negative edge
lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v) is its length.

1.2 Given nodes s, t find shortest path from s to t.
1.3 Given node s find shortest path from s to all other nodes.

2. 2.1 Restrict attention to directed graphs
2.2 Undirected graph problem can be reduced to directed graph problem - how?

2.2.1 Given undirected graph G , create a new directed graph G ′ by replacing each edge
{u, v} in G by (u, v) and (v , u) in G ′.

2.2.2 set ℓ(u, v) = ℓ(v , u) = ℓ({u, v})
2.2.3 Exercise: show reduction works. Relies on non-negativity!

24 / 63

Single-Source Shortest Paths:
Non-Negative Edge Lengths

1. Single-Source Shortest Path Problems

1.1 Input: A (undirected or directed) graph G = (V ,E) with non-negative edge
lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v) is its length.

1.2 Given nodes s, t find shortest path from s to t.
1.3 Given node s find shortest path from s to all other nodes.

2. 2.1 Restrict attention to directed graphs
2.2 Undirected graph problem can be reduced to directed graph problem - how?

2.2.1 Given undirected graph G , create a new directed graph G ′ by replacing each edge
{u, v} in G by (u, v) and (v , u) in G ′.

2.2.2 set ℓ(u, v) = ℓ(v , u) = ℓ({u, v})
2.2.3 Exercise: show reduction works. Relies on non-negativity!

24 / 63

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.3.2
Shortest path via continuous Dijkstra
FLNAME:17.3.2.0 ZZZ:17.3.2.0 Shortest path via continuous Dijkstra

25 / 63

Animation

See animation here:
https://youtu.be/t7UjtzqIXSA

Also:
https://youtu.be/pktZ1QOA67s

26 / 63

https://youtu.be/t7UjtzqIXSA
https://youtu.be/pktZ1QOA67s

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.3.3
Shortest path in the weighted case using
BFS
FLNAME:17.3.3.0 ZZZ:17.3.3.0 Shortest path in the weighted case using BFS

27 / 63

Single-Source Shortest Paths via BFS

1. Special case: All edge lengths are 1.

1.1 Run BFS(s) to get shortest path distances from s to all other nodes.
1.2 O(m + n) time algorithm.

2. Special case: Suppose ℓ(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing ℓ(e)− 1 dummy
nodes on e.

28 / 63

Single-Source Shortest Paths via BFS

1. Special case: All edge lengths are 1.

1.1 Run BFS(s) to get shortest path distances from s to all other nodes.
1.2 O(m + n) time algorithm.

2. Special case: Suppose ℓ(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing ℓ(e)− 1 dummy
nodes on e.

28 / 63

Example of edge refinement

29 / 63

Example of edge refinement

29 / 63

Example of edge refinement

29 / 63

Shortest path using BFS

Let L = maxe ℓ(e). New graph has O(mL) edges and O(mL+ n) nodes. BFS takes
O(mL + n) time. Not efficient if L is large.

30 / 63

Why does BFS kind of works?

Why does BFS work?
BFS(s) explores nodes in increasing distance from s

31 / 63

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.3.4
On the hereditary nature of shortest paths
FLNAME:17.3.4.0 ZZZ:17.3.4.0 On the hereditary nature of shortest paths

32 / 63

You can not shortcut a shortest path

Lemma 17.1.
G : directed graph with non-negative edge lengths.
dist(s, v): shortest path length from s to v .
If s = v0 → v1 → v2 → . . .→ vk shortest path from s to vk then for any
0 ≤ i < j ≤ k :
vi → vi+1 → . . .→ vi is shortest path from vi to vj

Proof.
Suppose not. Then for some 0 ≤ i < j ≤ k there is a path P ′ from vi to vj of length
strictly less than that of s = vi → vi+1 → . . .→ vj . Then the path

s = v0 → v1 → · · · → vi·P ′·vj → vj+1 → · · · → vk

is a strictly shorter path from s to vk than s = v0 → v1 . . .→ vk .

33 / 63

You can not shortcut a shortest path

Lemma 17.1.
G : directed graph with non-negative edge lengths.
dist(s, v): shortest path length from s to v .
If s = v0 → v1 → v2 → . . .→ vk shortest path from s to vk then for any
0 ≤ i < j ≤ k :
vi → vi+1 → . . .→ vi is shortest path from vi to vj

Proof.
Suppose not. Then for some 0 ≤ i < j ≤ k there is a path P ′ from vi to vj of length
strictly less than that of s = vi → vi+1 → . . .→ vj . Then the path

s = v0 → v1 → · · · → vi·P ′·vj → vj+1 → · · · → vk

is a strictly shorter path from s to vk than s = v0 → v1 . . .→ vk .

33 / 63

A proof by picture

s = v0

v1

v2

v7

v8

v9

v10

Shortest path
from v0 to v10

v3

v4 v6

v5

34 / 63

A proof by picture

s = v0

v1

v2

v7

v8

v9

v10

Shortest path
from v0 to v10

Shorter path
from v2 to v8

v3

v4 v6

v5

34 / 63

A proof by picture

s = v0

v1

v2

v7

v8

v9

v10

Shortest path
from v0 to v10

A shorter path
from v0 to v10.
A contradic-
tion.

v3

v4 v6

v5

34 / 63

What we really need...

Corollary 17.2.
G : directed graph with non-negative edge lengths.
dist(s, v): shortest path length from s to v .
If s = v0 → v1 → v2 → . . .→ vk shortest path from s to vk then for any
0 ≤ i ≤ k :
1. s = v0 → v1 → v2 → . . .→ vi is shortest path from s to vi

2. dist(s, vi) ≤ dist(s, vk). Relies on non-neg edge lengths.

35 / 63

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.3.5
The basic algorithm: Find the ith closest
vertex
FLNAME:17.3.5.0 ZZZ:17.3.5.0 The basic algorithm: Find the ith closest vertex

36 / 63

A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s and that no edge has
zero length)

Initialize for each node v, dist(s, v) =∞
Initialize X = {s},
for i = 2 to |V | do

(* Invariant: X contains the i − 1 closest nodes to s *)

Among nodes in V − X, find the node v that is the

ith closest to s
Update dist(s, v)
X = X ∪ {v}

How can we implement the step in the for loop?

37 / 63

A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s and that no edge has
zero length)

Initialize for each node v, dist(s, v) =∞
Initialize X = {s},
for i = 2 to |V | do

(* Invariant: X contains the i − 1 closest nodes to s *)

Among nodes in V − X, find the node v that is the

ith closest to s
Update dist(s, v)
X = X ∪ {v}

How can we implement the step in the for loop?

37 / 63

Finding the ith closest node

1. X contains the i − 1 closest nodes to s
2. Want to find the i th closest node from V − X .

What do we know about the i th closest node?

Claim 17.3.
Let P be a shortest path from s to v where v is the i th closest node. Then, all
intermediate nodes in P belong to X .

Proof.
If P had an intermediate node u not in X then u will be closer to s than v . Implies v
is not the i th closest node to s - recall that X already has the i − 1 closest nodes.

38 / 63

Finding the ith closest node

1. X contains the i − 1 closest nodes to s
2. Want to find the i th closest node from V − X .

What do we know about the i th closest node?

Claim 17.3.
Let P be a shortest path from s to v where v is the i th closest node. Then, all
intermediate nodes in P belong to X .

Proof.
If P had an intermediate node u not in X then u will be closer to s than v . Implies v
is not the i th closest node to s - recall that X already has the i − 1 closest nodes.

38 / 63

Finding the ith closest node

1. X contains the i − 1 closest nodes to s
2. Want to find the i th closest node from V − X .

What do we know about the i th closest node?

Claim 17.3.
Let P be a shortest path from s to v where v is the i th closest node. Then, all
intermediate nodes in P belong to X .

Proof.
If P had an intermediate node u not in X then u will be closer to s than v . Implies v
is not the i th closest node to s - recall that X already has the i − 1 closest nodes.

38 / 63

Finding the ith closest node repeatedly
An example

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

39 / 63

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

f

g

h

39 / 63

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

0

f

g

h

39 / 63

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

f

g

h

39 / 63

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

f

g

h

39 / 63

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19
f

g

h

39 / 63

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19

25

f

g

h

39 / 63

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19

25

36

f

g

h

39 / 63

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19

25

36

38

f

g

h

39 / 63

Finding the ith closest node

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

Corollary 17.4.
The i th closest node is adjacent to X .

40 / 63

Summary

Proved that the basic algorithm is (intuitively) correct...
...but is missing details
...and how to implement efficiently?

41 / 63

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.3.6
How to compute the ith closest vertex?
FLNAME:17.3.6.0 ZZZ:17.3.6.0 How to compute the ith closest vertex?

42 / 63

Finding the ith closest node

1. X contains the i − 1 closest nodes to s
2. Want to find the i th closest node from V − X .

1. For each u ∈ V − X let P(s, u,X) be a shortest path from s to u using only
nodes in X as intermediate vertices.

2. Let d ′(s, u) be the length of P(s, u,X)

Observations: for each u ∈ V − X ,

1. dist(s, u) ≤ d ′(s, u) since we are constraining the paths

2. d ′(s, u) = mint∈X (dist(s, t) + ℓ(t, u)) - Why?

Lemma 17.5 (d ′ has the right value for ith vertex).

If v is the i th closest node to s, then d ′(s, v) = dist(s, v).

43 / 63

Finding the ith closest node

1. X contains the i − 1 closest nodes to s
2. Want to find the i th closest node from V − X .

1. For each u ∈ V − X let P(s, u,X) be a shortest path from s to u using only
nodes in X as intermediate vertices.

2. Let d ′(s, u) be the length of P(s, u,X)

Observations: for each u ∈ V − X ,

1. dist(s, u) ≤ d ′(s, u) since we are constraining the paths

2. d ′(s, u) = mint∈X (dist(s, t) + ℓ(t, u)) - Why?

Lemma 17.5 (d ′ has the right value for ith vertex).

If v is the i th closest node to s, then d ′(s, v) = dist(s, v).

43 / 63

Finding the ith closest node

1. X contains the i − 1 closest nodes to s
2. Want to find the i th closest node from V − X .

1. For each u ∈ V − X let P(s, u,X) be a shortest path from s to u using only
nodes in X as intermediate vertices.

2. Let d ′(s, u) be the length of P(s, u,X)

Observations: for each u ∈ V − X ,

1. dist(s, u) ≤ d ′(s, u) since we are constraining the paths

2. d ′(s, u) = mint∈X (dist(s, t) + ℓ(t, u)) - Why?

Lemma 17.5 (d ′ has the right value for ith vertex).

If v is the i th closest node to s, then d ′(s, v) = dist(s, v).

43 / 63

Finding the ith closest node

Lemma 17.6 (d ′ has the right value for ith vertex).
Given:

1. X : Set of i − 1 closest nodes to s.
2. d ′(s, u) = mint∈X (dist(s, t) + ℓ(t, u))

If v is an i th closest node to s, then d ′(s, v) = dist(s, v).

Proof.
Let v be the i th closest node to s. Then there is a shortest path P from s to v that
contains only nodes in X as intermediate nodes (see previous claim). Therefore
d ′(s, v) = dist(s, v).

44 / 63

Finding the ith closest node

Lemma 17.7 (d ′ has the right value for ith vertex).

If v is an i th closest node to s, then d ′(s, v) = dist(s, v).

Corollary 17.8.
The i th closest node to s is the node v ∈ V − X such that
d ′(s, v) = minu∈V−X d ′(s, u).

Proof.
For every node u ∈ V − X , dist(s, u) ≤ d ′(s, u) and for the i th closest node v ,
dist(s, v) = d ′(s, v). Moreover, dist(s, u) ≥ dist(s, v) for each u ∈ V − X .

45 / 63

Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize X = ∅, d ′(s, s) = 0
for i = 1 to |V | do

(* Invariant: X contains the i − 1 closest nodes to s *)

(* Invariant: d ′(s, u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d ′(s, v) = minu∈V−X d ′(s, u)
dist(s, v) = d ′(s, v)
X = X ∪ {v}
for each node u in V − X do

d ′(s, u) = mint∈X

(
dist(s, t) + ℓ(t, u)

)
Correctness: By induction on i using previous lemmas.
Running time: O(n · (n + m)) time.

1. n outer iterations. In each iteration, d ′(s, u) for each u by scanning all edges out
of nodes in X ; O(m + n) time/iteration.

46 / 63

Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize X = ∅, d ′(s, s) = 0
for i = 1 to |V | do

(* Invariant: X contains the i − 1 closest nodes to s *)

(* Invariant: d ′(s, u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d ′(s, v) = minu∈V−X d ′(s, u)
dist(s, v) = d ′(s, v)
X = X ∪ {v}
for each node u in V − X do

d ′(s, u) = mint∈X

(
dist(s, t) + ℓ(t, u)

)
Correctness: By induction on i using previous lemmas.
Running time: O(n · (n + m)) time.

1. n outer iterations. In each iteration, d ′(s, u) for each u by scanning all edges out
of nodes in X ; O(m + n) time/iteration.

46 / 63

Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize X = ∅, d ′(s, s) = 0
for i = 1 to |V | do

(* Invariant: X contains the i − 1 closest nodes to s *)

(* Invariant: d ′(s, u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d ′(s, v) = minu∈V−X d ′(s, u)
dist(s, v) = d ′(s, v)
X = X ∪ {v}
for each node u in V − X do

d ′(s, u) = mint∈X

(
dist(s, t) + ℓ(t, u)

)
Correctness: By induction on i using previous lemmas.
Running time: O(n · (n + m)) time.

1. n outer iterations. In each iteration, d ′(s, u) for each u by scanning all edges out
of nodes in X ; O(m + n) time/iteration.

46 / 63

Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize X = ∅, d ′(s, s) = 0
for i = 1 to |V | do

(* Invariant: X contains the i − 1 closest nodes to s *)

(* Invariant: d ′(s, u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d ′(s, v) = minu∈V−X d ′(s, u)
dist(s, v) = d ′(s, v)
X = X ∪ {v}
for each node u in V − X do

d ′(s, u) = mint∈X

(
dist(s, t) + ℓ(t, u)

)
Correctness: By induction on i using previous lemmas.
Running time: O(n · (n + m)) time.

1. n outer iterations. In each iteration, d ′(s, u) for each u by scanning all edges out
of nodes in X ; O(m + n) time/iteration.

46 / 63

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.3.7
Dijkstra’s algorithm
FLNAME:17.3.7.0 ZZZ:17.3.7.0 Dijkstra’s algorithm

47 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

00

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

S

0

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

S

0

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

S

9

6

13

0

48 / 63

Example: Dijkstra algorithm in action
S

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

48 / 63

Example: Dijkstra algorithm in action
S

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

48 / 63

Example: Dijkstra algorithm in action
S

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

3625

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

36

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

363636

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

363636

48 / 63

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

363636

38

48 / 63

Improved Algorithm

1. Main work is to compute the d ′(s, u) values in each iteration
2. d ′(s, u) changes from iteration i to i + 1 only because of the node v that is

added to X in iteration i .
Initialize for each node v, dist(s, v) = d ′(s, v) =∞
Initialize X = ∅, d ′(s, s) = 0
for i = 1 to |V | do

// X contains the i − 1 closest nodes to s,
// and the values of d ′(s, u) are current

Let v be node realizing d ′(s, v) = minu∈V−X d ′(s, u)
dist(s, v) = d ′(s, v)
X = X ∪ {v}
Update d ′(s, u) for each u in V − X as follows:

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + ℓ(v , u)

)
Running time: O(m + n2) time.
1. n outer iterations and in each iteration following steps
2. updating d ′(s, u) after v is added takes O(deg(v)) time so total work is O(m)

since a node enters X only once
3. Finding v from d ′(s, u) values is O(n) time 49 / 63

Improved Algorithm

1. Main work is to compute the d ′(s, u) values in each iteration
2. d ′(s, u) changes from iteration i to i + 1 only because of the node v that is

added to X in iteration i .
Initialize for each node v, dist(s, v) = d ′(s, v) =∞
Initialize X = ∅, d ′(s, s) = 0
for i = 1 to |V | do

// X contains the i − 1 closest nodes to s,
// and the values of d ′(s, u) are current

Let v be node realizing d ′(s, v) = minu∈V−X d ′(s, u)
dist(s, v) = d ′(s, v)
X = X ∪ {v}
Update d ′(s, u) for each u in V − X as follows:

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + ℓ(v , u)

)
Running time: O(m + n2) time.
1. n outer iterations and in each iteration following steps
2. updating d ′(s, u) after v is added takes O(deg(v)) time so total work is O(m)

since a node enters X only once
3. Finding v from d ′(s, u) values is O(n) time 49 / 63

Improved Algorithm

Initialize for each node v, dist(s, v) = d ′(s, v) =∞
Initialize X = ∅, d ′(s, s) = 0
for i = 1 to |V | do

// X contains the i − 1 closest nodes to s,
// and the values of d ′(s, u) are current

Let v be node realizing d ′(s, v) = minu∈V−X d ′(s, u)
dist(s, v) = d ′(s, v)
X = X ∪ {v}
Update d ′(s, u) for each u in V − X as follows:

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + ℓ(v , u)

)
Running time: O(m + n2) time.

1. n outer iterations and in each iteration following steps

2. updating d ′(s, u) after v is added takes O(deg(v)) time so total work is O(m)
since a node enters X only once

3. Finding v from d ′(s, u) values is O(n) time

49 / 63

Dijkstra’s Algorithm

1. eliminate d ′(s, u) and let dist(s, u) maintain it

2. update dist values after adding v by scanning edges out of v

Initialize for each node v, dist(s, v) =∞
Initialize X = ∅, dist(s, s) = 0
for i = 1 to |V | do

Let v be such that dist(s, v) = minu∈V−X dist(s, u)
X = X ∪ {v}
for each u in Adj(v) do

dist(s, u) = min
(
dist(s, u), dist(s, v) + ℓ(v , u)

)
Priority Queues to maintain dist values for faster running time

1. Using heaps and standard priority queues: O((m + n) log n)
2. Using Fibonacci heaps: O(m + n log n).

50 / 63

Dijkstra’s Algorithm

1. eliminate d ′(s, u) and let dist(s, u) maintain it

2. update dist values after adding v by scanning edges out of v

Initialize for each node v, dist(s, v) =∞
Initialize X = ∅, dist(s, s) = 0
for i = 1 to |V | do

Let v be such that dist(s, v) = minu∈V−X dist(s, u)
X = X ∪ {v}
for each u in Adj(v) do

dist(s, u) = min
(
dist(s, u), dist(s, v) + ℓ(v , u)

)
Priority Queues to maintain dist values for faster running time

1. Using heaps and standard priority queues: O((m + n) log n)
2. Using Fibonacci heaps: O(m + n log n).

50 / 63

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.3.8
Dijkstra using priority queues
FLNAME:17.3.8.0 ZZZ:17.3.8.0 Dijkstra using priority queues

51 / 63

Priority Queues

Data structure to store a set S of n elements where each element v ∈ S has an
associated real/integer key k(v) such that the following operations:

1. makePQ: create an empty queue.

2. findMin: find the minimum key in S .
3. extractMin: Remove v ∈ S with smallest key and return it.

4. insert(v , k(v)): Add new element v with key k(v) to S .
5. delete(v): Remove element v from S .
6. decreaseKey(v , k ′(v)): decrease key of v from k(v) (current key) to k ′(v)

(new key). Assumption: k ′(v) ≤ k(v).
7. meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.
decreaseKey is implemented via delete and insert.

52 / 63

Priority Queues

Data structure to store a set S of n elements where each element v ∈ S has an
associated real/integer key k(v) such that the following operations:

1. makePQ: create an empty queue.

2. findMin: find the minimum key in S .
3. extractMin: Remove v ∈ S with smallest key and return it.

4. insert(v , k(v)): Add new element v with key k(v) to S .
5. delete(v): Remove element v from S .
6. decreaseKey(v , k ′(v)): decrease key of v from k(v) (current key) to k ′(v)

(new key). Assumption: k ′(v) ≤ k(v).
7. meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.
decreaseKey is implemented via delete and insert.

52 / 63

Priority Queues

Data structure to store a set S of n elements where each element v ∈ S has an
associated real/integer key k(v) such that the following operations:

1. makePQ: create an empty queue.

2. findMin: find the minimum key in S .
3. extractMin: Remove v ∈ S with smallest key and return it.

4. insert(v , k(v)): Add new element v with key k(v) to S .
5. delete(v): Remove element v from S .
6. decreaseKey(v , k ′(v)): decrease key of v from k(v) (current key) to k ′(v)

(new key). Assumption: k ′(v) ≤ k(v).
7. meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.
decreaseKey is implemented via delete and insert.

52 / 63

Dijkstra’s Algorithm using Priority Queues

Q ← makePQ()

insert(Q, (s, 0))
for each node u ̸= s do

insert(Q, (u,∞))

X ← ∅
for i = 1 to |V | do

(v , dist(s, v)) = extractMin(Q)
X = X ∪ {v}
for each u in Adj(v) do

decreaseKey
(
Q,

(
u,min

(
dist(s, u), dist(s, v) + ℓ(v , u)

)))
.

Priority Queue operations:

1. O(n) insert operations

2. O(n) extractMin operations

3. O(m) decreaseKey operations

53 / 63

Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

1. All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n + m) log n) time.

54 / 63

Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

1. All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n + m) log n) time.

54 / 63

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

1. extractMin, insert, delete, meld in O(log n) time

2. decreaseKey in O(1) amortized time: ℓ decreaseKey operations for ℓ ≥ n take
together O(ℓ) time

3. Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of
meld (not necessary for Dijkstra’s algorithm)

1. Dijkstra’s algorithm can be implemented in O(n log n + m) time. If
m = Ω(n log n), running time is linear in input size.

2. Data structures are complicated to analyze/implement. Recent work has obtained
data structures that are easier to analyze and implement, and perform well in
practice. Rank-Pairing Heaps, for example.

3. Boost library implements both Fibonacci heaps and rank-pairing heaps.

55 / 63

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

1. extractMin, insert, delete, meld in O(log n) time

2. decreaseKey in O(1) amortized time: ℓ decreaseKey operations for ℓ ≥ n take
together O(ℓ) time

3. Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of
meld (not necessary for Dijkstra’s algorithm)

1. Dijkstra’s algorithm can be implemented in O(n log n + m) time. If
m = Ω(n log n), running time is linear in input size.

2. Data structures are complicated to analyze/implement. Recent work has obtained
data structures that are easier to analyze and implement, and perform well in
practice. Rank-Pairing Heaps, for example.

3. Boost library implements both Fibonacci heaps and rank-pairing heaps.

55 / 63

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

1. extractMin, insert, delete, meld in O(log n) time

2. decreaseKey in O(1) amortized time: ℓ decreaseKey operations for ℓ ≥ n take
together O(ℓ) time

3. Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of
meld (not necessary for Dijkstra’s algorithm)

1. Dijkstra’s algorithm can be implemented in O(n log n + m) time. If
m = Ω(n log n), running time is linear in input size.

2. Data structures are complicated to analyze/implement. Recent work has obtained
data structures that are easier to analyze and implement, and perform well in
practice. Rank-Pairing Heaps, for example.

3. Boost library implements both Fibonacci heaps and rank-pairing heaps.

55 / 63

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

1. extractMin, insert, delete, meld in O(log n) time

2. decreaseKey in O(1) amortized time: ℓ decreaseKey operations for ℓ ≥ n take
together O(ℓ) time

3. Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of
meld (not necessary for Dijkstra’s algorithm)

1. Dijkstra’s algorithm can be implemented in O(n log n + m) time. If
m = Ω(n log n), running time is linear in input size.

2. Data structures are complicated to analyze/implement. Recent work has obtained
data structures that are easier to analyze and implement, and perform well in
practice. Rank-Pairing Heaps, for example.

3. Boost library implements both Fibonacci heaps and rank-pairing heaps.

55 / 63

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.4
Shortest path trees and variants
FLNAME:17.4.0.0 ZZZ:17.4.0.0 Shortest path trees and variants

56 / 63

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.4.1
Shortest Path Tree
FLNAME:17.4.1.0 ZZZ:17.4.1.0 Shortest Path Tree

57 / 63

Shortest Path Tree

Dijkstra’s algorithm finds the shortest path distances from s to V .
Question: How do we find the paths themselves?

Q = makePQ()

insert(Q, (s, 0))
prev(s)← null
for each node u ̸= s do

insert(Q, (u,∞))

prev(u)← null

X = ∅
for i = 1 to |V | do

(v , dist(s, v)) = extractMin(Q)
X = X ∪ {v}
for each u in Adj(v) do

if (dist(s, v) + ℓ(v , u) < dist(s, u)) then
decreaseKey(Q, (u, dist(s, v) + ℓ(v , u)))
prev(u) = v

58 / 63

Shortest Path Tree

Dijkstra’s algorithm finds the shortest path distances from s to V .
Question: How do we find the paths themselves?

Q = makePQ()

insert(Q, (s, 0))
prev(s)← null
for each node u ̸= s do

insert(Q, (u,∞))

prev(u)← null

X = ∅
for i = 1 to |V | do

(v , dist(s, v)) = extractMin(Q)
X = X ∪ {v}
for each u in Adj(v) do

if (dist(s, v) + ℓ(v , u) < dist(s, u)) then
decreaseKey(Q, (u, dist(s, v) + ℓ(v , u)))
prev(u) = v

58 / 63

Shortest Path Tree

Lemma 17.1.
The edge set (u, prev(u)) is the reverse of a shortest path tree rooted at s. For each
u, the reverse of the path from u to s in the tree is a shortest path from s to u.

Proof Sketch.
1. The edge set {(u, prev(u)) | u ∈ V} induces a directed in-tree rooted at s

(Why?)

2. Use induction on |X | to argue that the tree is a shortest path tree for nodes in V .

59 / 63

Shortest paths to s

Dijkstra’s algorithm gives shortest paths from s to all nodes in V .
How do we find shortest paths from all of V to s?
1. In undirected graphs shortest path from s to u is a shortest path from u to s so

there is no need to distinguish.

2. In directed graphs, use Dijkstra’s algorithm in G rev!

60 / 63

Shortest paths to s

Dijkstra’s algorithm gives shortest paths from s to all nodes in V .
How do we find shortest paths from all of V to s?
1. In undirected graphs shortest path from s to u is a shortest path from u to s so

there is no need to distinguish.

2. In directed graphs, use Dijkstra’s algorithm in G rev!

60 / 63

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.4.2
Variants on the shortest path problem
FLNAME:17.4.2.0 ZZZ:17.4.2.0 Variants on the shortest path problem

61 / 63

Shortest paths between sets of nodes

Suppose we are given S ⊂ V and T ⊂ V . Want to find shortest path from S to T
defined as:

dist(S,T) = min
s∈S,t∈T

dist(s, t)

How do we find dist(S,T)?

62 / 63

Example Problem

You want to go from your house to a friend’s house. Need to pick up some dessert
along the way and hence need to stop at one of the many potential stores along the
way. How do you calculate the “shortest” trip if you include this stop?
Given G = (V ,E) and edge lengths ℓ(e), e ∈ E . Want to go from s to t. A subset
X ⊂ V that corresponds to stores. Want to find minx∈X d(s, x) + d(x, t).

Basic solution: Compute for each x ∈ X , d(s, x) and d(x, t) and take minimum.
2|X | shortest path computations. O(|X |(m + n log n)).

Better solution: Compute shortest path distances from s to every node v ∈ V with
one Dijkstra. Compute from every node v ∈ V shortest path distance to t with one
Dijkstra.

63 / 63

Example Problem

You want to go from your house to a friend’s house. Need to pick up some dessert
along the way and hence need to stop at one of the many potential stores along the
way. How do you calculate the “shortest” trip if you include this stop?
Given G = (V ,E) and edge lengths ℓ(e), e ∈ E . Want to go from s to t. A subset
X ⊂ V that corresponds to stores. Want to find minx∈X d(s, x) + d(x, t).

Basic solution: Compute for each x ∈ X , d(s, x) and d(x, t) and take minimum.
2|X | shortest path computations. O(|X |(m + n log n)).

Better solution: Compute shortest path distances from s to every node v ∈ V with
one Dijkstra. Compute from every node v ∈ V shortest path distance to t with one
Dijkstra.

63 / 63

Example Problem

You want to go from your house to a friend’s house. Need to pick up some dessert
along the way and hence need to stop at one of the many potential stores along the
way. How do you calculate the “shortest” trip if you include this stop?
Given G = (V ,E) and edge lengths ℓ(e), e ∈ E . Want to go from s to t. A subset
X ⊂ V that corresponds to stores. Want to find minx∈X d(s, x) + d(x, t).

Basic solution: Compute for each x ∈ X , d(s, x) and d(x, t) and take minimum.
2|X | shortest path computations. O(|X |(m + n log n)).

Better solution: Compute shortest path distances from s to every node v ∈ V with
one Dijkstra. Compute from every node v ∈ V shortest path distance to t with one
Dijkstra.

63 / 63

Example Problem

You want to go from your house to a friend’s house. Need to pick up some dessert
along the way and hence need to stop at one of the many potential stores along the
way. How do you calculate the “shortest” trip if you include this stop?
Given G = (V ,E) and edge lengths ℓ(e), e ∈ E . Want to go from s to t. A subset
X ⊂ V that corresponds to stores. Want to find minx∈X d(s, x) + d(x, t).

Basic solution: Compute for each x ∈ X , d(s, x) and d(x, t) and take minimum.
2|X | shortest path computations. O(|X |(m + n log n)).

Better solution: Compute shortest path distances from s to every node v ∈ V with
one Dijkstra. Compute from every node v ∈ V shortest path distance to t with one
Dijkstra.

63 / 63

	Maps as graphs
	Breadth First Search
	BFS with distances and layers

	Shortest Paths and Dijkstra's Algorithm
	Problem definition
	Shortest path via continuous Dijkstra
	Shortest path in the weighted case using BFS
	On the hereditary nature of shortest paths
	The basic algorithm: Find the ith closest vertex
	How to compute the ith closest vertex?
	Dijkstra's algorithm
	Dijkstra using priority queues

	Shortest path trees and variants
	Shortest Path Tree
	Variants on the shortest path problem

