Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

DAGs, DFS, topological sorting, linear time algorithm for SCC

Lecture 17 Thursday, October 24, 2024

LATEXed: November 13, 2024 10:01

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.1

Overview: Depth First Search and SCC

Overview

Topics:

- Structure of directed graphs
- ► DAGs: Directed acyclic graphs.
- ► Topological ordering.
- ▶ DFS pre/post number, and its properties.
- ► Linear time algorithm for SCCs.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.2

Directed Acyclic Graphs

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

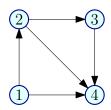
17.2.1

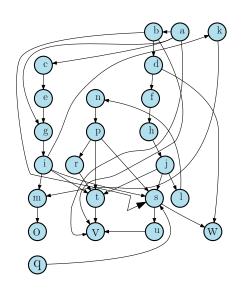
DAGs definition and basic properties

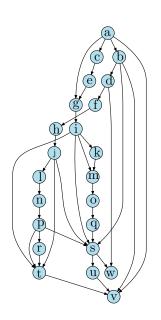
Directed Acyclic Graphs

Definition 17.1.

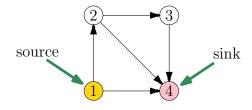
A directed graph G is a $\frac{\text{directed}}{\text{acyclic graph}}$ (DAG) if there is no directed cycle in G.





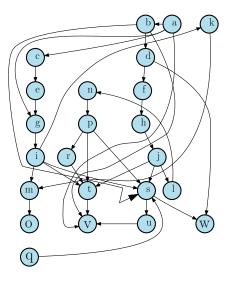


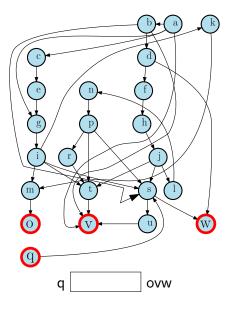
Sources and Sinks

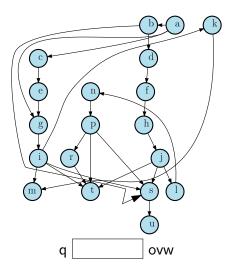


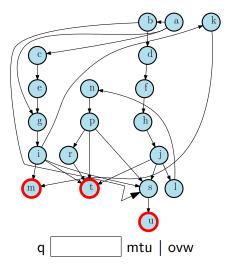
Definition 17.2.

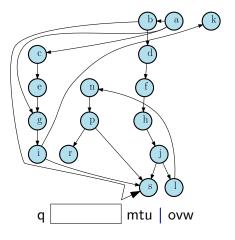
- 1. A vertex u is a **source** if it has no in-coming edges.
- 2. A vertex u is a **sink** if it has no out-going edges.

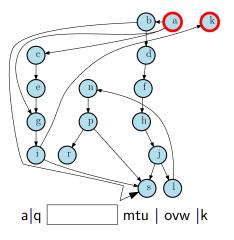


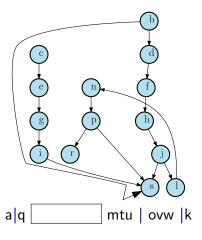


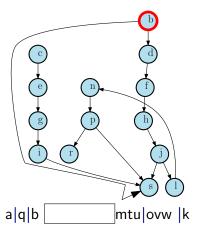


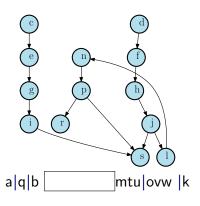


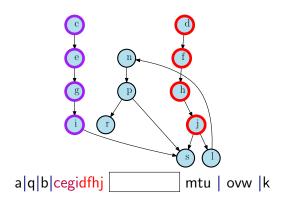


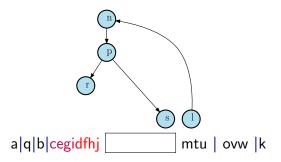


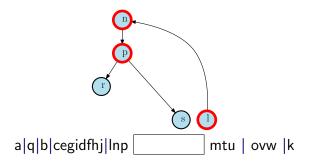




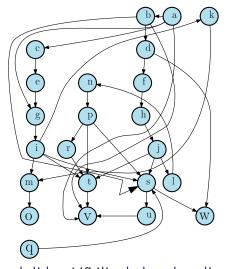








a|q|b|cegidfhj|Inp|rs|mtu|ovw|k



a|q|b|cegidfhj|Inp|rs|mtu|ovw|k abcdefghijkImnopqrstuvw

Simple DAG Properties

Proposition 17.3.

Every DAG G has at least one source and at least one sink.

Proof

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

Simple DAG Properties

Proposition 17.3.

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

DAG properties

- 1. G is a DAG if and only if G^{rev} is a DAG.
- 2. G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.2.2

Topological ordering

Total recall: Order on a set

Order or strict total order on a set X is a binary relation \prec on X, such that

- 1. Transitivity: $\forall x.y, z \in X$ $x \prec y$ and $y \prec z \implies x \prec z$.
- 2. For any $x, y \in X$, exactly one of the following holds: $x \prec y$, $y \prec x$ or x = y.

Cannot have
$$x_1, \ldots, x_m \in X$$
, such that $x_1 \prec x_2, x_2 \prec x_3, \ldots, x_{m-1} \prec x_m, x_m \prec x_1$, because...

Order on a (finite) set X: listing the elements of X from smallest to largest.

Total recall: Order on a set

Order or strict total order on a set X is a binary relation \prec on X, such that

- 1. Transitivity: $\forall x.y, z \in X$ $x \prec y$ and $y \prec z \implies x \prec z$.
- 2. For any $x, y \in X$, exactly one of the following holds: $x \prec y$, $y \prec x$ or x = y.

Cannot have $x_1, \ldots, x_m \in X$, such that $x_1 \prec x_2, x_2 \prec x_3, \ldots, x_{m-1} \prec x_m, x_m \prec x_1$, because...

Order on a (finite) set X: listing the elements of X from smallest to largest.

Total recall: Order on a set

Order or strict total order on a set X is a binary relation \prec on X, such that

- 1. Transitivity: $\forall x.y, z \in X$ $x \prec y$ and $y \prec z \implies x \prec z$.
- 2. For any $x, y \in X$, exactly one of the following holds: $x \prec y$, $y \prec x$ or x = y.

Cannot have $x_1, \ldots, x_m \in X$, such that $x_1 \prec x_2, x_2 \prec x_3, \ldots, x_{m-1} \prec x_m, x_m \prec x_1$, because...

Order on a (finite) set X: listing the elements of X from smallest to largest.

Convention about writing edges

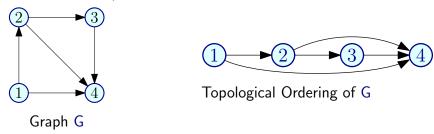
1. Undirected graph edges:

$$uv = \{u, v\} = vu \in E$$

2. Directed graph edges:

$$u \rightarrow v \equiv (u, v) \equiv (u \rightarrow v)$$

Topological Ordering/Sorting



Definition 17.4.

A <u>topological ordering</u>/<u>topological sorting</u> of G = (V, E) is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

DAGs and Topological Sort

Lemma 17.5.

A directed graph G can be topologically ordered \iff G is a DAG.

Need to show both directions.

DAGs and Topological Sort

Lemma 17.6.

A directed graph G is a $\overline{DAG} \implies G$ can be topologically ordered.

Proof.

Consider the following algorithm:

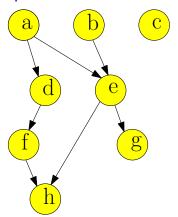
- 1. Pick a source **u**, output it.
- 2. Remove \boldsymbol{u} and all edges out of \boldsymbol{u} .
- 3. Repeat until graph is empty.

Exercise: prove this gives topological sort.

Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m + n) time.

Topological Sort: Example



DAGs and Topological Sort

Lemma 17.7.

A directed graph G can be topologically ordered \implies G is a DAG.

Proof.

Proof by contradiction. Suppose G is not a \overline{DAG} and has a topological ordering \prec . G has a cycle

$$C = u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow u_1.$$

Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$

$$\Longrightarrow u_1 \prec u_1$$

A contradiction (to \prec being an order). Not possible to topologically order the vertices.

DAGs and Topological Sort

Lemma 17.7.

A directed graph G can be topologically ordered \implies G is a DAG.

Proof.

Proof by contradiction. Suppose G is not a \overline{DAG} and has a topological ordering \prec . G has a cycle

$$C = u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow u_1.$$

Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1 \implies u_1 \prec u_1$.

A contradiction (to \prec being an order). Not possible to topologically order the vertices.

Regular sorting and DAGs

DAGs and Topological Sort

1. **Note:** A DAG G may have many different topological sorts.

- 2. **Exercise:** What is a DAG with the most number of distinct topological sorts for a given number *n* of vertices?
- 3. **Exercise:** What is a DAG with the least number of distinct topological sorts for a given number *n* of vertices?

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.2.2.1

Explicit definition of what topological ordering

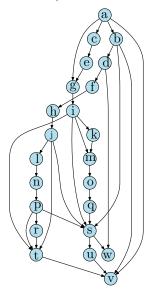
An explicit definition of what topological ordering of a graph is

For a graph G = (V, E) a **topological ordering** of a graph is a numbering $\pi : V \to \{1, 2, ..., n\}$, such that

$$\forall (u \rightarrow v) \in E(G) \implies \pi(u) < \pi(v).$$

(That is, π is one-to-one, and n = |V|)

Example...



Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.3 Depth First Search (DFS)

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.3.1

Depth First Search (DFS) in Undirected Graphs

Depth First Search

- 1. **DFS** special case of Basic Search.
- 2. **DFS** is useful in understanding graph structure.
- 3. **DFS** used to obtain linear time (O(m+n)) algorithms for
 - 3.1 Finding cut-edges and cut-vertices of undirected graphs
 - 3.2 Finding strong connected components of directed graphs
- 4. ...many other applications as well.

DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

```
\begin{array}{c} \mathsf{DFS}(G) \\ \text{ for all } u \in V(G) \text{ do} \\ & \mathsf{Mark } u \text{ as unvisited} \\ & \mathsf{Set } \mathsf{pred}(u) \text{ to null} \\ T \text{ is set to } \emptyset \\ \text{ while } \exists \text{ unvisited } u \text{ do} \\ & \mathsf{DFS}(u) \\ \mathsf{Output } T \end{array}
```

```
DFS(u)

Mark u as visited

for each uv in Out(u) do

if v is not visited then

add edge uv to T

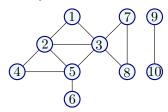
set pred(v) to u

DFS(v)
```

Implemented using a global array *Visited* for all recursive calls.

T is the search tree/forest.

Example



Edges classified into two types: $uv \in E$ is a

- 1. tree edge: belongs to *T*
- 2. non-tree edge: does not belong to *T*

Properties of DFS tree

Proposition 17.1.

- 1. **T** is a forest
- 2. connected components of T are same as those of G.
- 3. If $uv \in E$ is a non-tree edge then, in T, either:
 - 3.1 \mathbf{u} is an ancestor of \mathbf{v} , or
 - 3.2 \mathbf{v} is an ancestor of \mathbf{u} .

Question: Why are there no cross-edges?

Exercise

Prove that **DFS** of a graph G with n vertices and m edges takes O(n + m) time.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

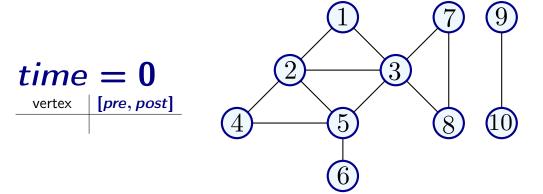
17.3.2

DFS with pre-post numbering

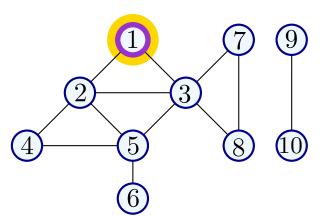
DFS with Visit Times

Keep track of when nodes are visited.

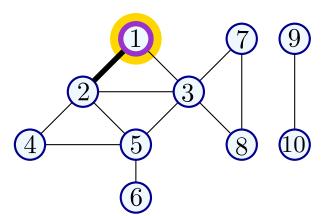
```
DFS(u)
    Mark u as visited
    pre(u) = ++time
    for each uv in Out(u) do
        if v is not marked then
            add edge uv to T
            DFS(v)
    post(u) = ++time
```



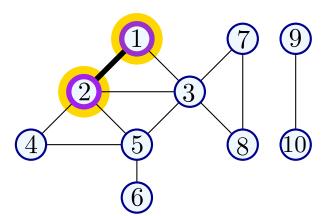
vertex	[pre, post]
1	[1,]



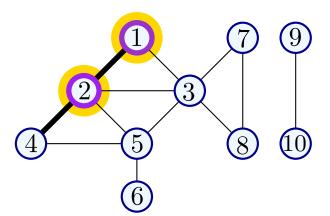
vertex	[pre, post]
1	[1,]



vertex	[pre, post]
1	[1,]
2	[2,]



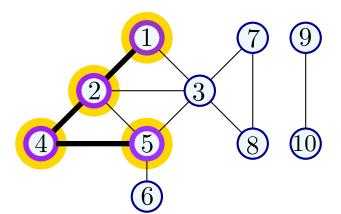
vertex	[pre, post]
1	[1,]
2	[2,]



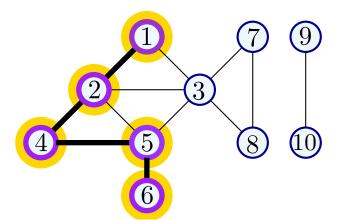
vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]



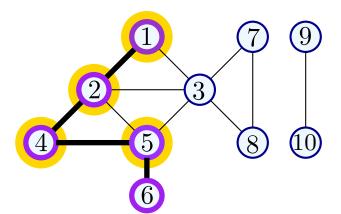
vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]



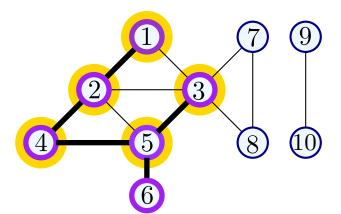
[pre, post]
[1,]
[2,]
[3,]
[4,]
[5,]



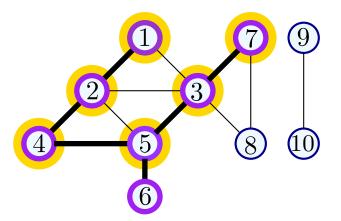
vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5,6]



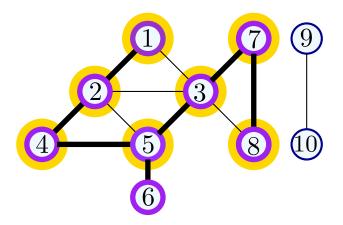
vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]



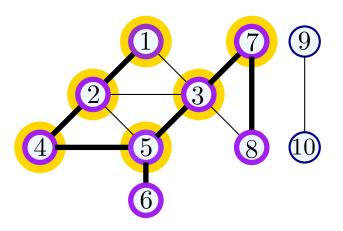
[pre, post]
[1,]
[2,]
[3,]
[4,]
[5, 6]
[7,]
[8,]



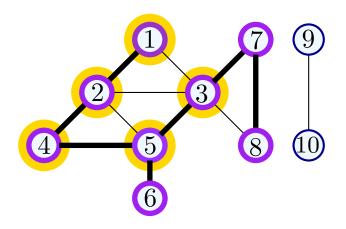
vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5,6]
3	[7,]
7	[8,]
8	[9,]



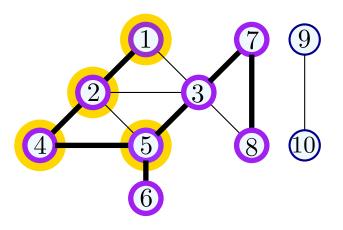
vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]
8	[9, 10]



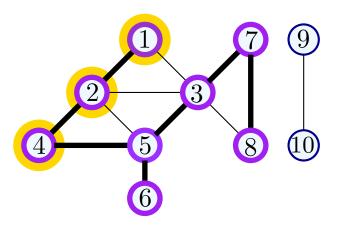
vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5,6]
3	[7,]
7	[8, 11]
8	[9, 10]



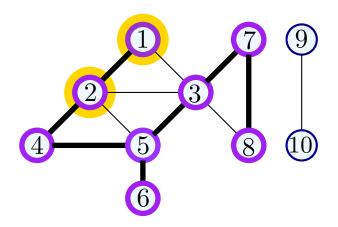
vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]



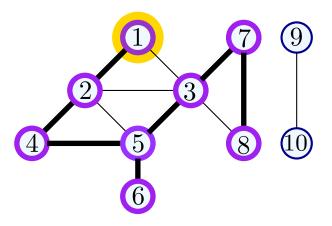
vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]



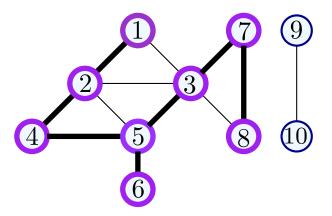
vertex	[pre, post]
1	[1,]
2	[2,]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]



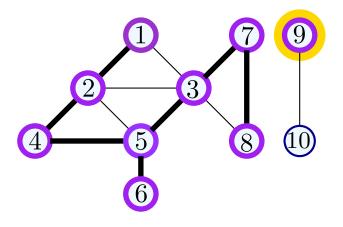
vertex	[pre, post]
1	[1,]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]



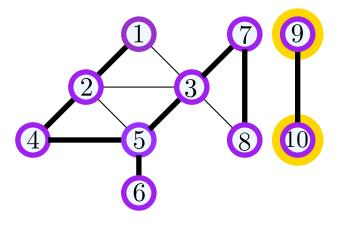
vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8,11]
8	[9, 10]
	_



vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17,]



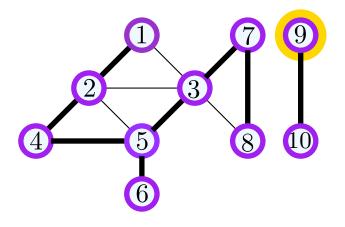
vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17,]
10	[18,]



Animation

time = 19

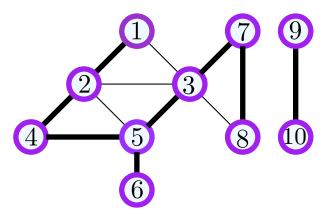
vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17,]
10	[18, 19]



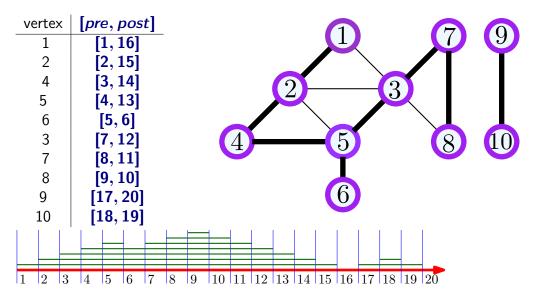
Animation

time = 20

vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17, 20]
10	[18, 19]



Animation



pre and post numbers

Node u is <u>active</u> in time interval [pre(u), post(u)]

Proposition 17.2.

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- ▶ If DFS(v) invoked before DFS(u) finished, post(v) < post(u)
- ▶ If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

pre and post numbers

Node u is <u>active</u> in time interval [pre(u), post(u)]

Proposition 17.2.

For any two nodes u and v, the two intervals $[\operatorname{pre}(u), \operatorname{post}(u)]$ and $[\operatorname{pre}(v), \operatorname{post}(v)]$ are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- ▶ If DFS(v) invoked before DFS(u) finished, post(v) < post(u).
- ▶ If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

pre and post numbers

Node u is <u>active</u> in time interval [pre(u), post(u)]

Proposition 17.2.

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- ▶ If DFS(v) invoked before DFS(u) finished, post(v) < post(u).
- ▶ If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.4

DFS in Directed Graphs

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

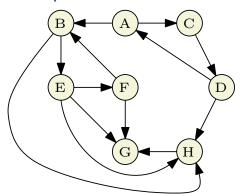
17.4.1

DFS in Directed Graphs: Pre/Post numbering

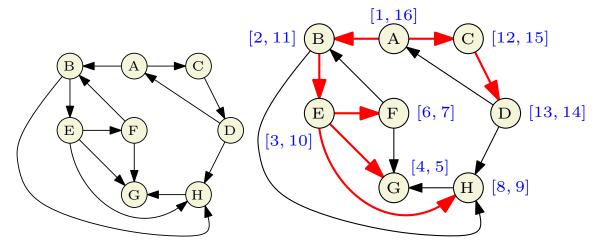
DFS in Directed Graphs

```
DFS(u)
   Mark u as visited
   pre(u) = ++time
   for each edge (u, v) in Out(u) do
      if v is not visited
        add edge (u, v) to T
        DFS(v)
   post(u) = ++time
```

Example of DFS in directed graph



Example of DFS in directed graph



Generalizing ideas from undirected graphs:

- 1. **DFS**(G) takes O(m + n) time.
- 2. Edges added form a <u>branching</u>: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.
- 3. If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
- 4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

Generalizing ideas from undirected graphs:

- 1. **DFS**(G) takes O(m + n) time.
- 2. Edges added form a <u>branching</u>: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.
- 3. If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
- 4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

Generalizing ideas from undirected graphs:

- 1. **DFS**(G) takes O(m + n) time.
- 2. Edges added form a <u>branching</u>: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.
- 3. If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
- 4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

Generalizing ideas from undirected graphs:

- 1. **DFS**(G) takes O(m + n) time.
- 2. Edges added form a <u>branching</u>: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.
- 3. If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
- 4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

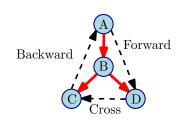
Generalizing ideas from undirected graphs:

- 1. **DFS**(G) takes O(m + n) time.
- 2. Edges added form a <u>branching</u>: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.
- 3. If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
- 4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

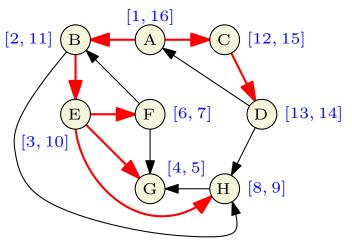
DFS tree and related edges

Edges of *G* can be classified with respect to the **DFS** tree *T* as:

- 1. **Tree edges** that belong to **T**
- 2. A <u>forward edge</u> is a non-tree edges (x, y) such that pre(x) < pre(y) < post(y) < post(x).
- 3. A <u>backward edge</u> is a non-tree edge (y, x) such that pre(x) < pre(y) < post(y) < post(x).
- 4. A <u>cross edge</u> is a non-tree edges (x, y) such that the intervals [pre(x), post(x)] and [pre(y), post(y)] are disjoint.



Types of Edges



Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.4.2

DFS and cycle detection: Topological sorting using **DFS**

Cycles in graphs

Question: Given an <u>undirected</u> graph how do we check whether it has a cycle and output one if it has one?

Question: Given an <u>directed</u> graph how do we check whether it has a cycle and output one if it has one?

Cycles in graphs

Question: Given an <u>undirected</u> graph how do we check whether it has a cycle and output one if it has one?

Question: Given an <u>directed</u> graph how do we check whether it has a cycle and output one if it has one?

Cycle detection in directed graph using topological sorting

Question

Given G, is it a DAG?

If it is, compute a topological sort. If it is not, then output the cycle \boldsymbol{C} .

Topological sort a graph using DFS...

And detect a cycle in the process

DFS based algorithm:

- 1. Compute **DFS**(*G*)
- 2. If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- 3. Otherwise output nodes in decreasing post-visit order. Note: no need to sort, **DFS(G)** can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

Topological sort a graph using DFS...

And detect a cycle in the process

DFS based algorithm:

- 1. Compute **DFS**(*G*)
- 2. If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- 3. Otherwise output nodes in decreasing post-visit order. Note: no need to sort, **DFS(G)** can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

Topological sort a graph using DFS...

And detect a cycle in the process

DFS based algorithm:

- 1. Compute **DFS**(*G*)
- 2. If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- 3. Otherwise output nodes in decreasing post-visit order. Note: no need to sort, **DFS(G)** can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

Back edge and Cycles

Proposition 17.1.

G has a cycle \iff there is a back-edge in **DFS**(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in **DFS** search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$.

Let v_i be first node in C visited in DFS.

All other nodes in C are descendants of v_i since they are reachable from v_i .

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

Decreasing post numbering is valid

Proposition 17.2.

Let G be a DAG. If post(v) > post(u), then $(u \to v)$ is not in G.

Proof. Assume $(u \rightarrow v) \in E(G)$. $pre(u) \quad post(u) \quad pre(v) \quad post(v)$ I(u)I(v): But if $(u \to v) \in E(G) \implies I(v) \subset I(v)$. $pre(u) \quad post(u) \quad post(v)$ I(v): u is decedent of v in **DFS** tree $\implies (u \rightarrow v)$ is a back edge \implies there is a cycle in G. Contradiction.

Decreasing post numbering is valid (alt proof)

Proposition 17.3.

Let G be a DAG. If post(v) > post(u), then $(u \to v)$ is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two holds:

- ► Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
- ► Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

Decreasing post numbering is valid (alt proof)

Proposition 17.3.

Let G be a DAG. If post(v) > post(u), then $(u \to v)$ is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two holds:

- ▶ Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
- ▶ Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

Decreasing post numbering is valid (alt proof)

Proposition 17.3.

Let G be a DAG. If post(v) > post(u), then $(u \to v)$ is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is explored during DFS(v) and hence is a descendant of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot happen since v would be explored from u.

Translation

We just proved:

Proposition 17.4.

If G is a DAG and post(v) > post(u), then $(u \rightarrow v)$ is not in G.

⇒ sort the vertices of a DAG by decreasing post numbering in decreasing order, then this numbering is valid.

Topological sorting

Theorem 17.5.

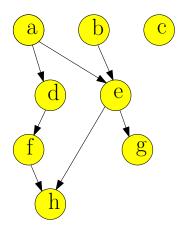
G = (V, E): Graph with n vertices and m edges.

Compute a topological sorting of G using DFS in O(n + m) time.

That is, compute a numbering $\pi:V o\{1,2,\ldots,n\}$, such that

$$(u \to v) \in E(G) \implies \pi(u) < \pi(v).$$

Example



Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.5

The meta graph of strong connected components

Strong Connected Components (SCCs)

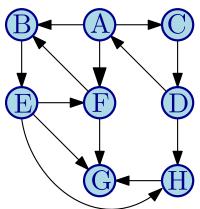
Algorithmic Problem

Find all SCCs of a given directed graph.

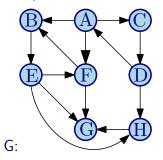
Previous lecture:

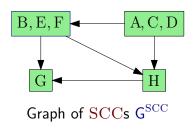
Saw an $O(n \cdot (n + m))$ time algorithm.

This lecture: sketch of a O(n+m) time algorithm.



Graph of SCCs





Meta-graph of SCCs

Let $S_1, S_2, ..., S_k$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is G^{SCC}

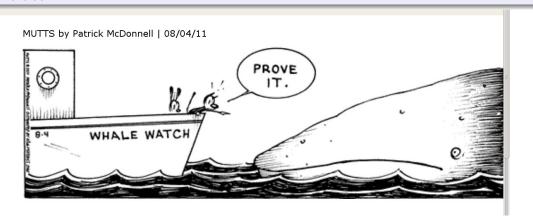
- 1. Vertices are $S_1, S_2, \dots S_k$
- 2. There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

Reversal and SCCs

Proposition 17.1.

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC} .

Proof. Exercise.



The meta graph of SCCs is a DAG...

Proposition 17.2.

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ should be in the same SCC in G. Formal details: exercise.

To Remember: Structure of Graphs

Undirected graph: connected components of G = (V, E) partition V and can be computed in O(m + n) time.

Directed graph: the meta-graph G^{SCC} of G can be computed in O(m+n) time. G^{SCC} gives information on the partition of V into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.6

Linear time algorithm for finding all strong connected components of a directed graph

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.6.1

Wishful thinking linear-time SCC algorithm

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm

```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find \mathrm{SCC}(G,u) the strong component of u:

Compute \mathrm{rch}(G,u) using \mathrm{DFS}(G,u)

Compute \mathrm{rch}(G^{\mathrm{rev}},u) using \mathrm{DFS}(G^{\mathrm{rev}},u)

\mathrm{SCC}(G,u) \Leftarrow \mathrm{rch}(G,u) \cap \mathrm{rch}(G^{\mathrm{rev}},u)

\forall u \in \mathrm{SCC}(G,u): Mark u as visited.
```

```
Running time: O(n(n+m))
Is there an O(n+m) time algorithm?
```

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)

Compute rch(G^{rev}, u) using DFS(G^{rev}, u)

SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)

\forall u \in SCC(G, u): Mark u as visited.
```

Running time: O(n(n+m))

Is there an O(n+m) time algorithm?

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)

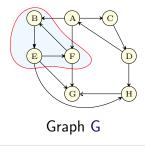
Compute rch(G^{rev}, u) using DFS(G^{rev}, u)

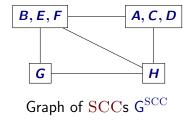
SCC(G, u) \Leftarrow rch(G, u) \cap rch(G^{rev}, u)

\forall u \in SCC(G, u): Mark u as visited.
```

Running time: O(n(n+m))Is there an O(n+m) time algorithm?

Structure of a Directed Graph





Reminder

 $\mathsf{G}^{\mathrm{SCC}}$ is created by collapsing every strong connected component to a single vertex.

Proposition 17.1.

For a directed graph G, its meta-graph G^{SCC} is a DAG.

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- 1. Let u be a vertex in a sink SCC of G^{SCC}
- 2. Do DFS(u) to compute SCC(u)
- 3. Remove SCC(u) and repeat

- 1. $\mathsf{DFS}(u)$ only visits vertices (and edges) in $\mathsf{SCC}(u)$
- 2.
- 3.
- 4

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- 1. Let \boldsymbol{u} be a vertex in a sink SCC of G^{SCC}
- 2. Do **DFS**(u) to compute SCC(u)
- 3. Remove SCC(u) and repeat

- 1. **DFS**(u) only visits vertices (and edges) in SCC(u)
- 2
- 3.
- 4

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- 1. Let u be a vertex in a sink SCC of G^{SCC}
- 2. Do DFS(u) to compute SCC(u)
- 3. Remove SCC(u) and repeat

- 1. DFS(u) only visits vertices (and edges) in SCC(u)
- 2. ... since there are no edges coming out a sink!
- 3.
- 4

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- 1. Let \boldsymbol{u} be a vertex in a sink SCC of G^{SCC}
- 2. Do **DFS**(u) to compute SCC(u)
- 3. Remove SCC(u) and repeat

- 1. DFS(u) only visits vertices (and edges) in SCC(u)
- 2. ... since there are no edges coming out a sink!
- 3. **DFS**(u) takes time proportional to size of SCC(u)
- 4.

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- 1. Let \boldsymbol{u} be a vertex in a sink SCC of G^{SCC}
- 2. Do **DFS**(u) to compute SCC(u)
- 3. Remove SCC(u) and repeat

- 1. DFS(u) only visits vertices (and edges) in SCC(u)
- 2. ... since there are no edges coming out a sink!
- 3. **DFS**(u) takes time proportional to size of SCC(u)
- 4. Therefore, total time O(n + m)!

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without computing GSCC

Answer: DFS(G) gives some information!

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without computing GSCC?

Answer: DFS(G) gives some information!

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without computing GSCC?

Answer: **DFS**(*G*) gives some information!

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.6.2

Maximum post numbering and the source of the meta-graph

Post numbering and the meta graph

Claim 17.2.

Let v be the vertex with maximum post numbering in DFS(G). Then v is in a SCC S, such that S is a source of G^{SCC} .

Reverse post numbering and the meta graph

Claim 17.3.

Let v be the vertex with maximum post numbering in $DFS(G^{rev})$. Then v is in a SCC S, such that S is a sink of G^{SCC} .

Holds even after we delete the vertices of S (i.e., the vertex with the maximum post numbering, is in a sink of the meta graph).

Reverse post numbering and the meta graph

Claim 17.3.

Let v be the vertex with maximum post numbering in $DFS(G^{rev})$. Then v is in a SCC S, such that S is a sink of G^{SCC} .

Holds even after we delete the vertices of S (i.e., the vertex with the maximum post numbering, is in a sink of the meta graph).

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.6.3

The linear-time SCC algorithm itself

Linear Time Algorithm

...for computing the strong connected components in $\boldsymbol{\mathsf{G}}$

```
do DFS(G^{\mathrm{rev}}) and output vertices in decreasing post order. Mark all nodes as unvisited for each u in the computed order do if u is not visited then DFS(u)

Let S_u be the nodes reached by u
Output S_u as a strong connected component Remove S_u from G
```

Theorem 17.4.

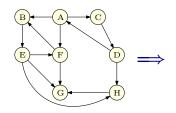
Algorithm runs in time O(m+n) and correctly outputs all the SCCs of G.

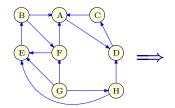
Linear Time Algorithm: An Example - Initial steps 1

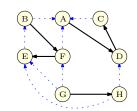
Graph G:

Reverse graph **G**^{rev}:

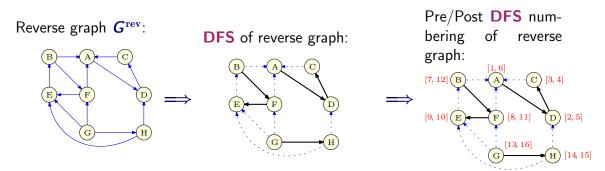
DFS of reverse graph:





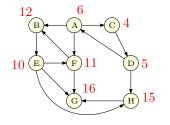


Linear Time Algorithm: An Example - Initial steps 2

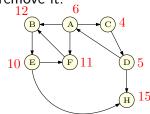


Removing connected components: 1

Original graph G with rev post numbers:



Do **DFS** from vertex G remove it.

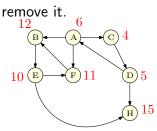


SCC computed:

{**G**}

Removing connected components: 2

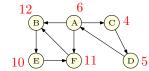
Do **DFS** from vertex G



SCC computed:

{**G**}

Do **DFS** from vertex *H*, remove it.



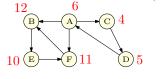
 \Longrightarrow

SCC computed:

$$\{G\},\{H\}$$

Removing connected components: 3

Do **DFS** from vertex *H*, remove it.



Do **DFS** from vertex B Remove visited vertices: $\{F, B, E\}$.

$$\{G\},\{H\}$$

Removing connected components: 4

Do **DFS** from vertex **F** Remove visited vertices:

 $\{F,B,E\}.$

SCC computed:

$$\{G\}, \{H\}, \{F, B, E\}$$

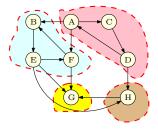
Do **DFS** from vertex **A** Remove visited vertices:

 $\Rightarrow \begin{cases} A, C, D \}. \end{cases}$

SCC computed:

$$\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$$

Final result



SCC computed:

$$\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$$

Which is the correct answer!

Obtaining the meta-graph...

Once the strong connected components are computed.

Exercise:

Given all the strong connected components of a directed graph G = (V, E) show that the meta-graph G^{SCC} can be obtained in O(m + n) time.

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

- ▶ Is the problem solvable when *G* is strongly connected?
- ▶ Is the problem solvable when *G* is a DAG?
- ▶ If the above two are feasible then is the problem solvable in a general directed graph G by considering the meta graph G^{SCC}?

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.7

An Application of directed graphs to make

Make/Makefile

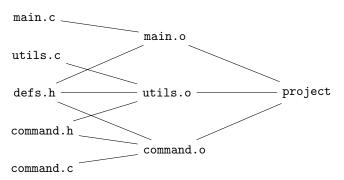
- (A) I know what make/makefile is.
- (B) I do NOT know what make/makefile is.

make Utility [Feldman]

- 1. Unix utility for automatically building large software applications
- 2. A makefile specifies
 - 2.1 Object files to be created,
 - 2.2 Source/object files to be used in creation, and
 - 2.3 How to create them

An Example makefile

makefile as a Digraph



Computational Problems for make

- 1. Is the makefile reasonable?
- 2. If it is reasonable, in what order should the object files be created?
- 3. If it is not reasonable, provide helpful debugging information.
- 4. If some file is modified, find the fewest compilations needed to make application consistent.

Algorithms for make

- 1. Is the makefile reasonable? Is G a DAG?
- 2. If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- 3. If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- 4. If some file is modified, find the fewest compilations needed to make application consistent.
 - 4.1 Find all vertices reachable (using **DFS/BFS**) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

17.8 Summary

Take away Points

- 1. DAGs
- 2. Topological orderings.
- 3. **DFS**: pre/post numbering.
- 4. Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.
- 5. There is a **DFS** based linear time algorithm to compute all the SCCs and the meta-graph. Properties of **DFS** crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm
 design. Linear time algorithms to compute a topological sort (there can be many
 possible orderings so not unique).

Intro. Algorithms & Models of Computation

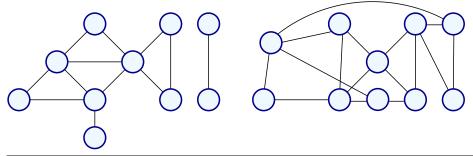
CS/ECE 374A, Fall 2024

17.9

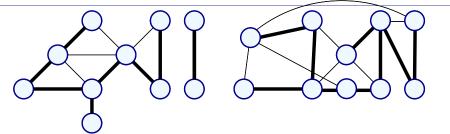
An example of DFS forests

Example: Undirected **DFS** forest

The input graph (disconnected in this case):

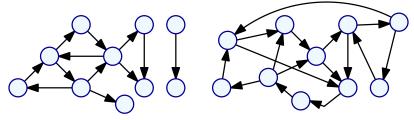


The resulting **DFS** forest:



Example: Directed **DFS** forest

The input graph:



The resulting **DFS** forest (numbers indicate the order of **DFS**):

