
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

Even More on Dynamic Programming
Lecture 15
Thursday, October 17, 2024

LATEXed: August 25, 2024 14:22

1 / 25



Part I

Longest Common Subsequence Problem

2 / 25



The LCS Problem

Definition 15.1.
LCS between two strings X and Y is the length of longest common subsequence
between X and Y .

Example 15.2.
LCS between ABAZDC and BACBAD is4 via ABAD

Derive a dynamic programming algorithm for the problem.

3 / 25



The LCS Problem

Definition 15.1.
LCS between two strings X and Y is the length of longest common subsequence
between X and Y .

Example 15.2.
LCS between ABAZDC and BACBAD is4 via ABAD

Derive a dynamic programming algorithm for the problem.

3 / 25



The LCS Problem

Definition 15.1.
LCS between two strings X and Y is the length of longest common subsequence
between X and Y .

Example 15.2.
LCS between ABAZDC and BACBAD is4 via ABAD

Derive a dynamic programming algorithm for the problem.

3 / 25



Part II

Maximum Weighted Independent Set in Trees

4 / 25



Maximum Weight Independent Set Problem

Input Graph G = (V ,E) and weights w(v) ≥ 0 for each v ∈ V
Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

5 / 25



Maximum Weight Independent Set Problem

Input Graph G = (V ,E) and weights w(v) ≥ 0 for each v ∈ V
Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

5 / 25



Maximum Weight Independent Set in a Tree

Input Tree T = (V ,E) and weights w(v) ≥ 0 for each v ∈ V
Goal Find maximum weight independent set in T

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Maximum weight independent set in above tree: ??

6 / 25



Towards a Recursive Solution

For an arbitrary graph G :

1. Number vertices as v1, v2, . . . , vn

2. Find recursively optimum solutions without vn (recurse on G − vn) and with vn
(recurse on G − vn − N(vn) & include vn).

3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small
number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

7 / 25



Towards a Recursive Solution

For an arbitrary graph G :

1. Number vertices as v1, v2, . . . , vn

2. Find recursively optimum solutions without vn (recurse on G − vn) and with vn
(recurse on G − vn − N(vn) & include vn).

3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small
number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

7 / 25



Towards a Recursive Solution

For an arbitrary graph G :

1. Number vertices as v1, v2, . . . , vn

2. Find recursively optimum solutions without vn (recurse on G − vn) and with vn
(recurse on G − vn − N(vn) & include vn).

3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small
number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

7 / 25



Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum solution to the whole
problem.

Case r ̸∈ O : Then O contains an optimum solution for each subtree of T hanging at
a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

8 / 25



Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum solution to the whole
problem.

Case r ̸∈ O : Then O contains an optimum solution for each subtree of T hanging at
a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

8 / 25



Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum solution to the whole
problem.

Case r ̸∈ O : Then O contains an optimum solution for each subtree of T hanging at
a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

8 / 25



Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum solution to the whole
problem.

Case r ̸∈ O : Then O contains an optimum solution for each subtree of T hanging at
a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

8 / 25



Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum solution to the whole
problem.

Case r ̸∈ O : Then O contains an optimum solution for each subtree of T hanging at
a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

8 / 25



Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

9 / 25



A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) = max

{∑
v child of u OPT (v),

w(u) +
∑

v grandchild of u OPT (v)

10 / 25



A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) = max

{∑
v child of u OPT (v),

w(u) +
∑

v grandchild of u OPT (v)

10 / 25



Iterative Algorithm

1. Compute OPT (u) bottom up. To evaluate OPT (u) need to have computed
values of all children and grandchildren of u

2. What is an ordering of nodes of a tree T to achieve above? Post-order traversal of
a tree.

11 / 25



Iterative Algorithm

1. Compute OPT (u) bottom up. To evaluate OPT (u) need to have computed
values of all children and grandchildren of u

2. What is an ordering of nodes of a tree T to achieve above? Post-order traversal of
a tree.

11 / 25



Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi ] = max

( ∑
vj child of vi

M[vj ],

w(vi ) +
∑

vj grandchild of vi
M[vj ]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1. Naive bound: O(n2) since each M[vi ] evaluation may take O(n) time and there
are n evaluations.

2. Better bound: O(n). A value M[vj ] is accessed only by its parent and grand
parent.

12 / 25



Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi ] = max

( ∑
vj child of vi

M[vj ],

w(vi ) +
∑

vj grandchild of vi
M[vj ]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1. Naive bound: O(n2) since each M[vi ] evaluation may take O(n) time and there
are n evaluations.

2. Better bound: O(n). A value M[vj ] is accessed only by its parent and grand
parent.

12 / 25



Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi ] = max

( ∑
vj child of vi

M[vj ],

w(vi ) +
∑

vj grandchild of vi
M[vj ]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1. Naive bound: O(n2) since each M[vi ] evaluation may take O(n) time and there
are n evaluations.

2. Better bound: O(n). A value M[vj ] is accessed only by its parent and grand
parent.

12 / 25



Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi ] = max

( ∑
vj child of vi

M[vj ],

w(vi ) +
∑

vj grandchild of vi
M[vj ]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1. Naive bound: O(n2) since each M[vi ] evaluation may take O(n) time and there
are n evaluations.

2. Better bound: O(n). A value M[vj ] is accessed only by its parent and grand
parent.

12 / 25



Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi ] = max

( ∑
vj child of vi

M[vj ],

w(vi ) +
∑

vj grandchild of vi
M[vj ]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1. Naive bound: O(n2) since each M[vi ] evaluation may take O(n) time and there
are n evaluations.

2. Better bound: O(n). A value M[vj ] is accessed only by its parent and grand
parent.

12 / 25



Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

13 / 25



Part III

Context free grammars: The CYK Algorithm

14 / 25



Parsing

We saw regular languages and context free languages.

Most programming languages are specified via context-free grammars. Why?

▶ CFLs are sufficiently expressive to support what is needed.

▶ At the same time one can “efficiently” solve the parsing problem: given a
string/program w , is it a valid program according to the CFG specification of the
programming language?

15 / 25



CFG specification for C

16 / 25



Algorithmic Problem

Given a CFG G = (V ,T ,P, S) and a string w ∈ T ∗, is w ∈ L(G)?

▶ That is, does S derive w?

▶ Equivalently, is there a parse tree for w?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

▶ Productions are all of the form A→ BC or A→ a.
If ϵ ∈ L then S → ϵ is also allowed.
(This is the only place in the grammar that has an ε.)

▶ Every CFG G can be converted into CNF form via an efficient algorithm

▶ Advantage: parse tree of constant degree.

17 / 25



Algorithmic Problem

Given a CFG G = (V ,T ,P, S) and a string w ∈ T ∗, is w ∈ L(G)?

▶ That is, does S derive w?

▶ Equivalently, is there a parse tree for w?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

▶ Productions are all of the form A→ BC or A→ a.
If ϵ ∈ L then S → ϵ is also allowed.
(This is the only place in the grammar that has an ε.)

▶ Every CFG G can be converted into CNF form via an efficient algorithm

▶ Advantage: parse tree of constant degree.

17 / 25



Example

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Question:

▶ Is 000111 in L(G)?

▶ Is 00011 in L(G)?

18 / 25



Towards Recursive Algorithm

Assume G is a CNF grammar.
S derives w iff one of the following holds:

▶ |w | = 1 and S → w is a rule in P
▶ |w | > 1 and there is a rule S → AB and a split w = uv with |u|, |v | ≥ 1 such

that A derives u and B derives v

Observation: Subproblems generated require us to know if some non-terminal A will
derive a substring of w .

19 / 25



Towards Recursive Algorithm

Assume G is a CNF grammar.
S derives w iff one of the following holds:

▶ |w | = 1 and S → w is a rule in P
▶ |w | > 1 and there is a rule S → AB and a split w = uv with |u|, |v | ≥ 1 such

that A derives u and B derives v

Observation: Subproblems generated require us to know if some non-terminal A will
derive a substring of w .

19 / 25



Recursive solution

1. Input: w = w1w2 . . .wn

2. Assume r non-terminals in G : R1, . . . ,Rr .

3. R1: Start symbol.

4. f (ℓ, s, b): TRUE ⇐⇒ wsws+1 . . . ,ws+ℓ−1 ∈ L(Rb).
= Substring w starting at pos ℓ of length s is deriveable by Rb.

5. Recursive formula: f (1, s, a) is 1 iff
(
Ra → ws

)
∈ G .

6. For ℓ > 1:

f (ℓ, s, a) =
ℓ−1∨
p=1

∨
(Ra→RbRc)∈G

(
f (p, s, b) ∧ f (ℓ− p, s + p, c)

)

7. Output: w ∈ L(G) ⇐⇒ f (n, 1, 1) = 1.

20 / 25



Recursive solution

1. Input: w = w1w2 . . .wn

2. Assume r non-terminals in G : R1, . . . ,Rr .

3. R1: Start symbol.

4. f (ℓ, s, b): TRUE ⇐⇒ wsws+1 . . . ,ws+ℓ−1 ∈ L(Rb).
= Substring w starting at pos ℓ of length s is deriveable by Rb.

5. Recursive formula: f (1, s, a) is 1 iff
(
Ra → ws

)
∈ G .

6. For ℓ > 1:

f (ℓ, s, a) =
ℓ−1∨
p=1

∨
(Ra→RbRc)∈G

(
f (p, s, b) ∧ f (ℓ− p, s + p, c)

)

7. Output: w ∈ L(G) ⇐⇒ f (n, 1, 1) = 1.

20 / 25



Analysis

Assume G = {R1,R2, . . . ,Rr} with start symbol R1

▶ Number of subproblems: O(rn2)

▶ Space: O(rn2)

▶ Time to evaluate a subproblem from previous ones: O(|P|n) where P is set of
rules

▶ Total time: O(|P|rn3) which is polynomial in both |w | and |G |. For fixed G the
run time is cubic in input string length.

▶ Running time can be improved to O(n3|P|).
▶ Not practical for most programming languages. Most languages assume restricted

forms of CFGs that enable more efficient parsing algorithms.

21 / 25



CYK Algorithm

Input string: X = x1 . . . xn.

Input grammar G: r nonterminal symbols R1...Rr, R1 start symbol.

P[n][n][r ]: Array of booleans. Initialize all to FALSE
for s = 1 to n do

for each unit production Rv → xs do
P[1][s][v ]← TRUE

for ℓ = 2 to n do // Length of span

for s = 1 to n − ℓ + 1 do // Start of span

for p = 1 to ℓ− 1 do // Partition of span

for all (Ra → RbRc) ∈ G do
if P[p][s][b] and P[l − p][s + p][c] then

P[l ][s][a]← TRUE
if P[n][1][1] is TRUE then

return ‘‘X is member of language’’

else
return ‘‘X is not member of language’’

22 / 25



Example

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Question:

▶ Is 000111 in L(G)?

▶ Is 00011 in L(G)?

Order of evaluation for iterative algorithm: increasing order of substring length.

23 / 25



Example

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

24 / 25



Takeaway Points

1. Dynamic programming is based on finding a recursive way to solve the problem.
Need a recursion that generates a small number of subproblems.

2. Given a recursive algorithm there is a natural DAG associated with the
subproblems that are generated for given instance; this is the dependency graph.
An iterative algorithm simply evaluates the subproblems in some topological sort of
this DAG.

3. The space required to evaluate the answer can be reduced in some cases by a
careful examination of that dependency DAG of the subproblems and keeping only
a subset of the DAG at any time.

25 / 25


	Longest Common Subsequence Problem
	Maximum Weighted Independent Set in Trees
	Context free grammars: The CYK Algorithm

