
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

More Dynamic Programming
Lecture 14
Tuesday, October 15, 2024

LATEXed: October 15, 2024 10:12

1 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.1
Review of dynamic programming and some
new problems
FLNAME:14.1.0.0 ZZZ:14.1.0.0 Review of dynamic programming and some new problems

2 / 1

What is the running time of the following?

Consider computing f (x, y) by recursive function + memoization.

f (x, y) =
x+y−1∑

i=1

x ∗ f (x + y − i , i − 1),

f (0, y) = y f (x, 0) = x.

The resulting algorithm when computing f (n, n) would take:

(A) O(n)
(B) O(n log n)
(C) O(n2)

(D) O(n3)

(E) The function is ill defined - it can not be computed.

3 / 1

Recipe for Dynamic Programming

1. Develop a recursive backtracking style algorithm A for given problem.

2. Identify structure of subproblems generated by A on an instance I of size n
2.1 Estimate number of different subproblems generated as a function of n. Is it

polynomial or exponential in n?
2.2 If the number of problems is “small” (polynomial) then they typically have some

“clean” structure.

3. Rewrite subproblems in a compact fashion.

4. Rewrite recursive algorithm in terms of notation for subproblems.

5. Convert to iterative algorithm by bottom up evaluation in an appropriate order.

6. Optimize further with data structures and/or additional ideas.

4 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.1.1
Is in Lk?
FLNAME:14.1.1.0 ZZZ:14.1.1.0 Is in Lk?

5 / 1

A variation

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via function
IsStringinL(string x) that decides whether x is in L, and non-negative
integer k

Goal Decide if w ∈ Lk using IsStringinL(string x) as a black box sub-routine

Example 14.1.
Suppose L is English and we have a procedure to check whether a string/word is in the
English dictionary.

▶ Is the string “isthisanenglishsentence” in English5?

▶ Is the string “isthisanenglishsentence” in English4?

▶ Is “asinineat” in English2?

▶ Is “asinineat” in English4?

▶ Is “zibzzzad” in English1?

6 / 1

Recursive Solution

When is w ∈ Lk?
k = 0: w ∈ Lk iff w = ϵ
k = 1: w ∈ Lk iff w ∈ L
k > 1: w ∈ Lk if w = uv with u ∈ Lk−1 and v ∈ L
Assume w is stored in array A[1..n]

IsStringinLk(A[1 . . . i], k):
if k = 0 and i = 0 then return YES

if k = 0 then return NO // i > 0
if k = 1 then

return IsStringinL(A[1 . . . i])

for ℓ = 1 . . . i − 1 do
if IsStringinLk(A[1 . . . ℓ], k − 1) and IsStringinL(A[ℓ + 1 . . . i]) then

return YES

return NO

7 / 1

Recursive Solution

When is w ∈ Lk?
k = 0: w ∈ Lk iff w = ϵ
k = 1: w ∈ Lk iff w ∈ L
k > 1: w ∈ Lk if w = uv with u ∈ Lk−1 and v ∈ L
Assume w is stored in array A[1..n]

IsStringinLk(A[1 . . . i], k):
if k = 0 and i = 0 then return YES

if k = 0 then return NO // i > 0
if k = 1 then

return IsStringinL(A[1 . . . i])

for ℓ = 1 . . . i − 1 do
if IsStringinLk(A[1 . . . ℓ], k − 1) and IsStringinL(A[ℓ + 1 . . . i]) then

return YES

return NO

7 / 1

Recursive Solution

When is w ∈ Lk?
k = 0: w ∈ Lk iff w = ϵ
k = 1: w ∈ Lk iff w ∈ L
k > 1: w ∈ Lk if w = uv with u ∈ Lk−1 and v ∈ L
Assume w is stored in array A[1..n]

IsStringinLk(A[1 . . . i], k):
if k = 0 and i = 0 then return YES

if k = 0 then return NO // i > 0
if k = 1 then

return IsStringinL(A[1 . . . i])

for ℓ = 1 . . . i − 1 do
if IsStringinLk(A[1 . . . ℓ], k − 1) and IsStringinL(A[ℓ + 1 . . . i]) then

return YES

return NO

7 / 1

Analysis

IsStringinLk(A[1 . . . i], k):
if k = 0 and i = 0 then return YES

if k = 0 then return NO // i > 0
if k = 1 then

return IsStringinL(A[1 . . . i])

for ℓ = 1 . . . i − 1 do
if IsStringinLk(A[1 . . . ℓ], k − 1) and IsStringinL(A[ℓ + 1 . . . i]) then

return YES

return NO

▶ How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?
O(nk)

▶ How much space? O(nk)
▶ Running time if we use memoization? O(n2k)

8 / 1

Analysis

IsStringinLk(A[1 . . . i], k):
if k = 0 and i = 0 then return YES

if k = 0 then return NO // i > 0
if k = 1 then

return IsStringinL(A[1 . . . i])

for ℓ = 1 . . . i − 1 do
if IsStringinLk(A[1 . . . ℓ], k − 1) and IsStringinL(A[ℓ + 1 . . . i]) then

return YES

return NO

▶ How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?
O(nk)

▶ How much space? O(nk)
▶ Running time if we use memoization? O(n2k)

8 / 1

Analysis

IsStringinLk(A[1 . . . i], k):
if k = 0 and i = 0 then return YES

if k = 0 then return NO // i > 0
if k = 1 then

return IsStringinL(A[1 . . . i])

for ℓ = 1 . . . i − 1 do
if IsStringinLk(A[1 . . . ℓ], k − 1) and IsStringinL(A[ℓ + 1 . . . i]) then

return YES

return NO

▶ How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?
O(nk)

▶ How much space? O(nk)
▶ Running time if we use memoization? O(n2k)

8 / 1

Analysis

IsStringinLk(A[1 . . . i], k):
if k = 0 and i = 0 then return YES

if k = 0 then return NO // i > 0
if k = 1 then

return IsStringinL(A[1 . . . i])

for ℓ = 1 . . . i − 1 do
if IsStringinLk(A[1 . . . ℓ], k − 1) and IsStringinL(A[ℓ + 1 . . . i]) then

return YES

return NO

▶ How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?
O(nk)

▶ How much space? O(nk)
▶ Running time if we use memoization? O(n2k)

8 / 1

Analysis

IsStringinLk(A[1 . . . i], k):
if k = 0 and i = 0 then return YES

if k = 0 then return NO // i > 0
if k = 1 then

return IsStringinL(A[1 . . . i])

for ℓ = 1 . . . i − 1 do
if IsStringinLk(A[1 . . . ℓ], k − 1) and IsStringinL(A[ℓ + 1 . . . i]) then

return YES

return NO

▶ How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?
O(nk)

▶ How much space? O(nk)
▶ Running time if we use memoization? O(n2k)

8 / 1

Analysis

IsStringinLk(A[1 . . . i], k):
if k = 0 and i = 0 then return YES

if k = 0 then return NO // i > 0
if k = 1 then

return IsStringinL(A[1 . . . i])

for ℓ = 1 . . . i − 1 do
if IsStringinLk(A[1 . . . ℓ], k − 1) and IsStringinL(A[ℓ + 1 . . . i]) then

return YES

return NO

▶ How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?
O(nk)

▶ How much space? O(nk)
▶ Running time if we use memoization? O(n2k)

8 / 1

Another variant

Question: What if we want to check if w ∈ Li for some 0 ≤ i ≤ k? That is, is
w ∈ ∪k

i=0L
i?

9 / 1

Exercise

Definition 14.2.
A string is a palindrome if w = wR .
Examples: I , RACECAR, MALAYALAM , DOOFFOOD

Problem: Given a string w find the longest subsequence of w that is a palindrome.

Example 14.3.
MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM has
MHYMRORMYHM as a palindromic subsequence

10 / 1

Exercise

Definition 14.2.
A string is a palindrome if w = wR .
Examples: I , RACECAR, MALAYALAM , DOOFFOOD

Problem: Given a string w find the longest subsequence of w that is a palindrome.

Example 14.3.
MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM has
MHYMRORMYHM as a palindromic subsequence

10 / 1

Exercise

Assume w is stored in an array A[1..n]

LPS(A[1..n]): length of longest palindromic subsequence of A.

Recursive expression/code?

11 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.2
Edit Distance and Sequence Alignment
FLNAME:14.2.0.0 ZZZ:14.2.0.0 Edit Distance and Sequence Alignment

12 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.2.1
Problem definition and background
FLNAME:14.2.1.0 ZZZ:14.2.1.0 Problem definition and background

13 / 1

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker
suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a distance between
them?

Edit Distance: minimum number of “edits” to transform x into y .

14 / 1

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker
suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a distance between
them?

Edit Distance: minimum number of “edits” to transform x into y .

14 / 1

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker
suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a distance between
them?

Edit Distance: minimum number of “edits” to transform x into y .

14 / 1

Edit Distance

Definition 14.1.
Edit distance between two words X and Y is the number of letter insertions, letter
deletions and letter substitutions required to obtain Y from X .

Example 14.2.
The edit distance between FOOD and MONEY is at most 4:

FOOD→ MOOD→ MONOD→ MONED→ MONEY

15 / 1

Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word indicating insertions,
and gaps in the second word indicating deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) such that each index appears at most
once, and there is no “crossing”: i < i ′ and i is matched to j implies i ′ is matched to
j ′ > j . In the above example, this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an
alignment is the number of mismatched columns plus number of unmatched indices in
both strings.

16 / 1

Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word indicating insertions,
and gaps in the second word indicating deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) such that each index appears at most
once, and there is no “crossing”: i < i ′ and i is matched to j implies i ′ is matched to
j ′ > j . In the above example, this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an
alignment is the number of mismatched columns plus number of unmatched indices in
both strings.

16 / 1

Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word indicating insertions,
and gaps in the second word indicating deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) such that each index appears at most
once, and there is no “crossing”: i < i ′ and i is matched to j implies i ′ is matched to
j ′ > j . In the above example, this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an
alignment is the number of mismatched columns plus number of unmatched indices in
both strings.

16 / 1

Edit Distance Problem

Problem
Given two words, find the edit distance between them, i.e., an alignment of smallest
cost.

17 / 1

Applications

1. Spell-checkers and Dictionaries

2. Unix diff

3. DNA sequence alignment . . . but, we need a new metric

18 / 1

Similarity Metric

Definition 14.3.
For two strings X and Y , the cost of alignment M is

1. [Gap penalty] For each gap in the alignment, we incur a cost δ.

2. [Mismatch cost] For each pair p and q that have been matched in M , we incur
cost αpq ; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

19 / 1

Similarity Metric

Definition 14.3.
For two strings X and Y , the cost of alignment M is

1. [Gap penalty] For each gap in the alignment, we incur a cost δ.

2. [Mismatch cost] For each pair p and q that have been matched in M , we incur
cost αpq ; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

19 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.2.2
Edit distance as alignment
FLNAME:14.2.2.0 ZZZ:14.2.2.0 Edit distance as alignment

20 / 1

An Example

Example 14.4.

o c u r r a n c e
o c c u r r e n c e Cost = δ + αae

Alternative:

o c u r r a n c e
o c c u r r e n c e Cost = 3δ

Or a really stupid solution (delete string, insert other string):

o c u r r a n c e
o c c u r r e n c e

Cost = 19δ.

21 / 1

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

374

473

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

22 / 1

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

373

473

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

23 / 1

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

37

473

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

24 / 1

Sequence Alignment

Input Given two words X and Y , and gap penalty δ and mismatch costs αpq

Goal Find alignment of minimum cost

25 / 1

Sequence Alignment in Practice

1. Typically the DNA sequences that are aligned are about 105 letters long!

2. So about 1010 operations and 1010 bytes needed

3. The killer is the 10GB storage

4. Can we reduce space requirements?

26 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.2.3
Edit distance: The algorithm
FLNAME:14.2.3.0 ZZZ:14.2.3.0 Edit distance: The algorithm

27 / 1

Edit distance
Basic observation

Let X = αx and Y = βy
α, β: strings.
x and y single characters.
Think about optimal edit distance between X and Y as alignment, and consider last
column of alignment of the two strings:

α x
β y or

α x
βy or

αx
β y

Observation 14.5.
Prefixes must have optimal alignment!

28 / 1

Problem Structure

Observation 14.6.
Let X = x1x2 · · · xm and Y = y1y2 · · · yn. If (m, n) are not matched then either the
mth position of X remains unmatched or the nth position of Y remains unmatched.

1. Case xm and yn are matched.

1.1 Pay mismatch cost αxmyn plus cost of aligning strings x1 · · · xm−1 and y1 · · · yn−1

2. Case xm is unmatched.

2.1 Pay gap penalty plus cost of aligning x1 · · · xm−1 and y1 · · · yn

3. Case yn is unmatched.

3.1 Pay gap penalty plus cost of aligning x1 · · · xm and y1 · · · yn−1

29 / 1

Subproblems and Recurrence
x1 . . . xi−1 xi

y1 . . . yj−1 yj
or

x1 . . . xi−1 x
y1 . . . yj−1yj

or
x1 . . . xi−1xi

y1 . . . yj−1 yj

Optimal Costs

Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj . Then

Opt(i , j) = min


αxi yj + Opt(i − 1, j − 1),

δ + Opt(i − 1, j),
δ + Opt(i , j − 1)

Base Cases: Opt(i , 0) = δ · i and Opt(0, j) = δ · j

30 / 1

Subproblems and Recurrence
x1 . . . xi−1 xi

y1 . . . yj−1 yj
or

x1 . . . xi−1 x
y1 . . . yj−1yj

or
x1 . . . xi−1xi

y1 . . . yj−1 yj

Optimal Costs

Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj . Then

Opt(i , j) = min


αxi yj + Opt(i − 1, j − 1),

δ + Opt(i − 1, j),
δ + Opt(i , j − 1)

Base Cases: Opt(i , 0) = δ · i and Opt(0, j) = δ · j

30 / 1

Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]
Array COST stores cost of matching two chars. Thus COST [a, b] give the cost of
matching character a to character b.

EDIST (A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = δ + EDIST (A[1..(m − 1)],B[1..n])
m2 = δ + EDIST (A[1..m],B[1..(n − 1)]))
m3 = COST [A[m],B[n]] + EDIST (A[1..(m − 1)],B[1..(n − 1)])
return min(m1,m2,m3)

31 / 1

Example: DEED and DREAD
ε D R E A D

ε

D

E

E

D

32 / 1

Example: DEED and DREAD
ε D R E A D

ε 0 1 2 3 4 5

D 1

E 2

E 3

D 3

32 / 1

Example: DEED and DREAD
ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2

E 3

D 3

32 / 1

Example: DEED and DREAD
ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3

D 3

32 / 1

Example: DEED and DREAD
ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 2 3

D 3

32 / 1

Example: DEED and DREAD
ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 2 3

D 3 3 3 2 2 2

D R E A D
D E E D

32 / 1

Example: DEED and DREAD
ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 2 3

D 3 3 3 2 2 2

D R E A D
D E E D

32 / 1

Example: DEED and DREAD
ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 2 3

D 3 3 3 2 2 2

D R E A D
D E E D

32 / 1

Example: DEED and DREAD
ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 2 3

D 3 3 3 2 2 2

D R E A D
D E E D

32 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.2.4
Dynamic programming algorithm for
edit-distance
FLNAME:14.2.4.0 ZZZ:14.2.4.0 Dynamic programming algorithm for edit-distance

33 / 1

As part of the input...
The cost of aligning a character against another character

Σ: Alphabet

We are given a cost function (in a table):

∀b, c ∈ Σ COST [b][c] = cost of aligning b with c.
∀b ∈ Σ COST [b][b] = 0

δ : price of deletion of insertion of a single character

34 / 1

Memoizing the Recursive Algorithm (Explicit Memoization)

Input: Two strings
A[1 . . .m]
B[1 . . . n]

EditDistance(A,B)

int M[0..m][0..n]
∀i , j M[i][j]←∞
return edEMI(m, n)

edEMI(i , j) // A[1 . . . i],B[1 . . . j]
if M[i][j] <∞

return M[i][j] // stored value

if i = 0 or j = 0
M[i][j] = (i + j)δ
return M[i][j]

m1 = δ + edEMI(i − 1 , j)
m2 = δ + edEMI(i , j − 1)

m3 = COST
[
A[i]

][
B[j]

]
+ edEMI(i − 1 , j − 1)

M[i][j] = min(m1,m2,m3)
return M[i][j]

35 / 1

Dynamic program for edit distance
Removing Recursion to obtain Iterative Algorithm

EDIST (A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i , 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i][j] = min


COST

[
A[i]

][
B[j]

]
+ M[i − 1][j − 1],

δ + M[i − 1][j],
δ + M[i][j − 1]

Analysis

1. Running time is O(mn).

36 / 1

Dynamic program for edit distance
Removing Recursion to obtain Iterative Algorithm

EDIST (A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i , 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i][j] = min


COST

[
A[i]

][
B[j]

]
+ M[i − 1][j − 1],

δ + M[i − 1][j],
δ + M[i][j − 1]

Analysis

1. Running time is O(mn).

36 / 1

Dynamic program for edit distance
Removing Recursion to obtain Iterative Algorithm

EDIST (A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i , 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i][j] = min


COST

[
A[i]

][
B[j]

]
+ M[i − 1][j − 1],

δ + M[i − 1][j],
δ + M[i][j − 1]

Analysis

1. Running time is O(mn).
2. Space used is O(mn).

36 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.2.5
Reducing space for edit distance
FLNAME:14.2.5.0 ZZZ:14.2.5.0 Reducing space for edit distance

37 / 1

Matrix and DAG of computation of edit distance

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j δ

δ

0, 0

Figure: Iterative algorithm in previous slide computes values in row order.

38 / 1

Optimizing Space

1. Recall

M(i , j) = min


αxi yj + M(i − 1, j − 1),

δ + M(i − 1, j),
δ + M(i , j − 1)

2. Entries in j th column only depend on (j − 1)st column and earlier entries in j th
column

3. Only store the current column and the previous column reusing space; N(i , 0)
stores M(i , j − 1) and N(i , 1) stores M(i , j)

39 / 1

Example: DEED vs. DREAD filled by column
ε D R E A D

ε

D

E

E

D

40 / 1

Example: DEED vs. DREAD filled by column
ε D R E A D

ε 0 1 2 3 4 5

D 1

E 2

E 3

D 4

40 / 1

Example: DEED vs. DREAD filled by column
ε D R E A D

ε 0 1 2 3 4 5

D 1 0

E 2 1

E 3 2

D 4 3

40 / 1

Example: DEED vs. DREAD filled by column
ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1

E 2 1 1

E 3 2 2

D 4 3 3

40 / 1

Example: DEED vs. DREAD filled by column
ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2

E 2 1 1 1

E 3 2 2 1

D 4 3 3 2

40 / 1

Example: DEED vs. DREAD filled by column
ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3

E 2 1 1 1 2

E 3 2 2 1 2

D 4 3 3 2 2

40 / 1

Example: DEED vs. DREAD filled by column
ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 2 3

D 4 3 3 2 2 2

40 / 1

Computing in column order to save space

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j δ

δ

0, 0

Figure: M(i , j) only depends on previous column values. Keep only two columns and compute
in column order.

41 / 1

Space Efficient Algorithm

for all i do N[i , 0] = iδ
for j = 1 to n do

N[0, 1] = jδ (* corresponds to M(0, j) *)

for i = 1 to m do

N[i , 1] = min


αxi yj + N[i − 1, 0]

δ + N[i − 1, 1]

δ + N[i , 0]
for i = 1 to m do

Copy N[i , 0] = N[i , 1]

Analysis

Running time is O(mn) and space used is O(2m) = O(m)

42 / 1

Analyzing Space Efficiency

1. From the m × n matrix M we can construct the actual alignment (exercise)

2. Matrix N computes cost of optimal alignment but no way to construct the actual
alignment

3. Space efficient computation of alignment? More complicated algorithm — see
notes and Kleinberg-Tardos book.

43 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.2.6
Longest Common Subsequence Problem
FLNAME:14.2.6.0 ZZZ:14.2.6.0 Longest Common Subsequence Problem

44 / 1

LCS Problem

Definition 14.7.
LCS between two strings X and Y is the length of longest common subsequence
between X and Y .

ABAZDC
BACBAD

ABAZDC
BACBAD

Example 14.8.
LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

45 / 1

LCS Problem

Definition 14.7.
LCS between two strings X and Y is the length of longest common subsequence
between X and Y .

ABAZDC
BACBAD

ABAZDC
BACBAD

Example 14.8.
LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

45 / 1

LCS Problem

Definition 14.7.
LCS between two strings X and Y is the length of longest common subsequence
between X and Y .

ABAZDC
BACBAD

ABAZDC
BACBAD

Example 14.8.
LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

45 / 1

LCS recursive definition

A[1..n],B[1..m]: Input strings.

LCS(i , j) =



0 i = 0 or j = 0

max

(
LCS(i − 1, j),
LCS(i , j − 1)

)
A[i] ̸= B[j]

max

 LCS(i − 1, j),
LCS(i , j − 1),

1 + LCS(i − 1, j − 1)

 A[i] = B[j]

Similar to edit distance... O(nm) time algorithm O(m) space. Better recurrence with
a bit of thinking:

LCS(i , j) =


0 i = 0 or j = 0

max

(
LCS(i − 1, j),
LCS(i , j − 1)

)
A[i] ̸= B[j]

1 + LCS(i − 1, j − 1) A[i] = B[j].

46 / 1

LCS recursive definition

A[1..n],B[1..m]: Input strings.

LCS(i , j) =



0 i = 0 or j = 0

max

(
LCS(i − 1, j),
LCS(i , j − 1)

)
A[i] ̸= B[j]

max

 LCS(i − 1, j),
LCS(i , j − 1),

1 + LCS(i − 1, j − 1)

 A[i] = B[j]

Similar to edit distance... O(nm) time algorithm O(m) space. Better recurrence with
a bit of thinking:

LCS(i , j) =


0 i = 0 or j = 0

max

(
LCS(i − 1, j),
LCS(i , j − 1)

)
A[i] ̸= B[j]

1 + LCS(i − 1, j − 1) A[i] = B[j].

46 / 1

Longest common subsequence is just edit distance for the two

sequences...

A,B: input sequences
Σ: “alphabet” all the different values in A and B

∀b, c ∈ Σ : b ̸= c COST [b][c] = +∞.

∀b ∈ Σ COST [b][b] = 1

1 : price of deletion of insertion of a single character

Length of longest common subsequence = m + n − ed(A,B)

47 / 1

Longest common subsequence is just edit distance for the two

sequences...

A,B: input sequences
Σ: “alphabet” all the different values in A and B

∀b, c ∈ Σ : b ̸= c COST [b][c] = +∞.

∀b ∈ Σ COST [b][b] = 1

1 : price of deletion of insertion of a single character

Length of longest common subsequence = m + n − ed(A,B)

47 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.3
Maximum Weighted Independent Set in
Trees
FLNAME:14.3.0.0 ZZZ:14.3.0.0 Maximum Weighted Independent Set in Trees

48 / 1

Maximum Weight Independent Set Problem

Input Graph G = (V ,E) and weights w(v) ≥ 0 for each v ∈ V
Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

49 / 1

Maximum Weight Independent Set Problem

Input Graph G = (V ,E) and weights w(v) ≥ 0 for each v ∈ V
Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

49 / 1

Maximum Weight Independent Set in a Tree

Input Tree T = (V ,E) and weights w(v) ≥ 0 for each v ∈ V
Goal Find maximum weight independent set in T

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Maximum weight independent set in above tree: ??

50 / 1

Towards a Recursive Solution

For an arbitrary graph G :

1. Number vertices as v1, v2, . . . , vn

2. Find recursively optimum solutions without vn (recurse on G − vn) and with vn
(recurse on G − vn − N(vn) & include vn).

3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small
number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

51 / 1

Towards a Recursive Solution

For an arbitrary graph G :

1. Number vertices as v1, v2, . . . , vn

2. Find recursively optimum solutions without vn (recurse on G − vn) and with vn
(recurse on G − vn − N(vn) & include vn).

3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small
number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

51 / 1

Towards a Recursive Solution

For an arbitrary graph G :

1. Number vertices as v1, v2, . . . , vn

2. Find recursively optimum solutions without vn (recurse on G − vn) and with vn
(recurse on G − vn − N(vn) & include vn).

3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small
number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

51 / 1

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum solution to the whole
problem.

Case r ̸∈ O : Then O contains an optimum solution for each subtree of T hanging at
a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

52 / 1

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum solution to the whole
problem.

Case r ̸∈ O : Then O contains an optimum solution for each subtree of T hanging at
a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

52 / 1

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum solution to the whole
problem.

Case r ̸∈ O : Then O contains an optimum solution for each subtree of T hanging at
a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

52 / 1

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum solution to the whole
problem.

Case r ̸∈ O : Then O contains an optimum solution for each subtree of T hanging at
a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

52 / 1

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum solution to the whole
problem.

Case r ̸∈ O : Then O contains an optimum solution for each subtree of T hanging at
a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

52 / 1

Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

53 / 1

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) = max

{∑
v child of u OPT (v),

w(u) +
∑

v grandchild of u OPT (v)

54 / 1

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) = max

{∑
v child of u OPT (v),

w(u) +
∑

v grandchild of u OPT (v)

54 / 1

Iterative Algorithm

1. Compute OPT (u) bottom up. To evaluate OPT (u) need to have computed
values of all children and grandchildren of u

2. What is an ordering of nodes of a tree T to achieve above? Post-order traversal of
a tree.

55 / 1

Iterative Algorithm

1. Compute OPT (u) bottom up. To evaluate OPT (u) need to have computed
values of all children and grandchildren of u

2. What is an ordering of nodes of a tree T to achieve above? Post-order traversal of
a tree.

55 / 1

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1. Naive bound: O(n2) since each M[vi] evaluation may take O(n) time and there
are n evaluations.

2. Better bound: O(n). A value M[vj] is accessed only by its parent and grand
parent.

56 / 1

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1. Naive bound: O(n2) since each M[vi] evaluation may take O(n) time and there
are n evaluations.

2. Better bound: O(n). A value M[vj] is accessed only by its parent and grand
parent.

56 / 1

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1. Naive bound: O(n2) since each M[vi] evaluation may take O(n) time and there
are n evaluations.

2. Better bound: O(n). A value M[vj] is accessed only by its parent and grand
parent.

56 / 1

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1. Naive bound: O(n2) since each M[vi] evaluation may take O(n) time and there
are n evaluations.

2. Better bound: O(n). A value M[vj] is accessed only by its parent and grand
parent.

56 / 1

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1. Naive bound: O(n2) since each M[vi] evaluation may take O(n) time and there
are n evaluations.

2. Better bound: O(n). A value M[vj] is accessed only by its parent and grand
parent.

56 / 1

Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

57 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.4
Dynamic programming and DAGs
FLNAME:14.4.0.0 ZZZ:14.4.0.0 Dynamic programming and DAGs

58 / 1

Takeaway Points

1. Dynamic programming is based on finding a recursive way to solve the problem.
Need a recursion that generates a small number of subproblems.

2. Given a recursive algorithm there is a natural DAG associated with the
subproblems that are generated for given instance; this is the dependency graph.
An iterative algorithm simply evaluates the subproblems in some topological sort of
this DAG.

3. The space required to evaluate the answer can be reduced in some cases by a
careful examination of that dependency DAG of the subproblems and keeping only
a subset of the DAG at any time.

59 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.5
Supplemental: Context free grammars: The
CYK Algorithm
FLNAME:14.5.0.0 ZZZ:14.5.0.0 Supplemental: Context free grammars: The CYK Algorithm

60 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.5.1
CYK: Problem statement, basic idea, and
an example
FLNAME:14.5.1.0 ZZZ:14.5.1.0 CYK: Problem statement, basic idea, and an example

61 / 1

Parsing

We saw regular languages and context free languages.

Most programming languages are specified via context-free grammars. Why?

▶ CFLs are sufficiently expressive to support what is needed.

▶ At the same time one can “efficiently” solve the parsing problem: given a
string/program w , is it a valid program according to the CFG specification of the
programming language?

62 / 1

CFG specification for C

63 / 1

Algorithmic Problem

Given a CFG G = (V ,T ,P, S) and a string w ∈ T ∗, is w ∈ L(G)?

▶ That is, does S derive w?

▶ Equivalently, is there a parse tree for w?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

▶ Productions are all of the form A→ BC or A→ a.
If ϵ ∈ L then S → ϵ is also allowed.
(This is the only place in the grammar that has an ε.)

▶ Every CFG G can be converted into CNF form via an efficient algorithm

▶ Advantage: parse tree of constant degree.

64 / 1

Algorithmic Problem

Given a CFG G = (V ,T ,P, S) and a string w ∈ T ∗, is w ∈ L(G)?

▶ That is, does S derive w?

▶ Equivalently, is there a parse tree for w?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

▶ Productions are all of the form A→ BC or A→ a.
If ϵ ∈ L then S → ϵ is also allowed.
(This is the only place in the grammar that has an ε.)

▶ Every CFG G can be converted into CNF form via an efficient algorithm

▶ Advantage: parse tree of constant degree.

64 / 1

Towards Recursive Algorithm

CYK Algorithm = Cocke-Younger-Kasami algorithm

Assume G is a CNF grammar.
S derives w ⇐⇒ one of the following holds:

▶ |w | = 1 and S → w is a rule in P
▶ |w | > 1 and there is a rule S → AB and a split w = uv with |u|, |v | ≥ 1 such

that A derives u and B derives v

Observation: Subproblems generated require us to know if some non-terminal A will
derive a substring of w .

65 / 1

Towards Recursive Algorithm

CYK Algorithm = Cocke-Younger-Kasami algorithm

Assume G is a CNF grammar.
S derives w ⇐⇒ one of the following holds:

▶ |w | = 1 and S → w is a rule in P
▶ |w | > 1 and there is a rule S → AB and a split w = uv with |u|, |v | ≥ 1 such

that A derives u and B derives v

Observation: Subproblems generated require us to know if some non-terminal A will
derive a substring of w .

65 / 1

Example

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Question:

▶ Is 000111 in L(G)?

▶ Is 00011 in L(G)?

Order of evaluation for iterative algorithm: increasing order of substring length.

66 / 1

Example: 000111

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Input: 0 0 0 1 1 1

67 / 1

Example: 000111

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Len=1 A A A B B B
Input: 0 0 0 1 1 1

67 / 1

Example: 000111

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Len=3 X
Len=2 Y
Len=1 A A A B B B
Input: 0 0 0 1 1 1

67 / 1

Example: 000111

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Len=4 Y,S
Len=3 X
Len=2 Y
Len=1 A A A B B B
Input: 0 0 0 1 1 1

67 / 1

Example: 000111

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Len=5 X
Len=4 Y,S
Len=3 X
Len=2 Y
Len=1 A A A B B B
Input: 0 0 0 1 1 1

67 / 1

Example: 000111

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Len=6 S
Len=5 X
Len=4 Y,S
Len=3 X
Len=2 Y
Len=1 A A A B B B
Input: 0 0 0 1 1 1

67 / 1

Example II: 00111

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Input: 0 0 1 1 1

68 / 1

Example II: 00111

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Len=1 A A B B B
Input: 0 0 1 1 1

68 / 1

Example II: 00111

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Len=3 X
Len=2 Y
Len=1 A A B B B
Input: 0 0 1 1 1

68 / 1

Example II: 00111

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Len=4 Y,S
Len=3 X
Len=2 Y
Len=1 A A B B B
Input: 0 0 1 1 1

68 / 1

Example II: 00111

S → ϵ | AB | XB
Y → AB | XB
X → AY
A→ 0
B → 1

Len=5
Len=4 Y,S
Len=3 X
Len=2 Y
Len=1 A A B B B
Input: 0 0 1 1 1

68 / 1

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

14.5.2
Formal description of algorithm
FLNAME:14.5.2.0 ZZZ:14.5.2.0 Formal description of algorithm

69 / 1

Recursive solution

1. Input: w = w1w2 . . .wn

2. Assume r non-terminals in G : R1, . . . ,Rr .

3. R1: Start symbol.

4. f (ℓ, s, b): TRUE ⇐⇒ wsws+1 . . . ,ws+ℓ−1 ∈ L(Rb).
= Substring w starting at pos ℓ of length s is deriveable by Rb.

5. Recursive formula: f (1, s, a) is 1 ⇐⇒
(
Ra → ws

)
∈ G .

6. For ℓ > 1: f
(
length, start pos, variable index

)
f (ℓ, s, a) =

ℓ−1∨
µ=1

∨
(Ra→RβRγ)∈G

(
f (µ, s, β) ∧ f (ℓ− µ, s + µ, γ)

)

7. Output: w ∈ L(G) ⇐⇒ f (n, 1, 1) = 1.

70 / 1

Recursive solution

1. Input: w = w1w2 . . .wn

2. Assume r non-terminals in G : R1, . . . ,Rr .

3. R1: Start symbol.

4. f (ℓ, s, b): TRUE ⇐⇒ wsws+1 . . . ,ws+ℓ−1 ∈ L(Rb).
= Substring w starting at pos ℓ of length s is deriveable by Rb.

5. Recursive formula: f (1, s, a) is 1 ⇐⇒
(
Ra → ws

)
∈ G .

6. For ℓ > 1: f
(
length, start pos, variable index

)
f (ℓ, s, a) =

ℓ−1∨
µ=1

∨
(Ra→RβRγ)∈G

(
f (µ, s, β) ∧ f (ℓ− µ, s + µ, γ)

)

7. Output: w ∈ L(G) ⇐⇒ f (n, 1, 1) = 1.

70 / 1

Recursive solution

1. Input: w = w1w2 . . .wn

2. Assume r non-terminals in G : R1, . . . ,Rr .

3. R1: Start symbol.

4. f (ℓ, s, b): TRUE ⇐⇒ wsws+1 . . . ,ws+ℓ−1 ∈ L(Rb).
= Substring w starting at pos ℓ of length s is deriveable by Rb.

5. Recursive formula: f (1, s, a) is 1 ⇐⇒
(
Ra → ws

)
∈ G .

6. For ℓ > 1: f
(
length, start pos, variable index

)
f (ℓ, s, a) =

ℓ−1∨
µ=1

∨
(Ra→RβRγ)∈G

(
f (µ, s, β) ∧ f (ℓ− µ, s + µ, γ)

)

7. Output: w ∈ L(G) ⇐⇒ f (n, 1, 1) = 1.

70 / 1

Analysis

Assume G = {R1,R2, . . . ,Rr} with start symbol R1

▶ f
(
length, start pos, variable index

)
.

▶ Number of subproblems: O(rn2)

▶ Space: O(rn2)

▶ Time to evaluate a subproblem from previous ones: O(|P|n)
P is set of rules

▶ Total time: O(|P|rn3) which is polynomial in both |w | and |G |. For fixed G the
run time is cubic in input string length.

▶ Running time can be improved to O(n3|P|).
▶ Not practical for most programming languages. Most languages assume restricted

forms of CFGs that enable more efficient parsing algorithms.

71 / 1

Analysis

Assume G = {R1,R2, . . . ,Rr} with start symbol R1

▶ f
(
length, start pos, variable index

)
.

▶ Number of subproblems: O(rn2)

▶ Space: O(rn2)

▶ Time to evaluate a subproblem from previous ones: O(|P|n)
P is set of rules

▶ Total time: O(|P|rn3) which is polynomial in both |w | and |G |. For fixed G the
run time is cubic in input string length.

▶ Running time can be improved to O(n3|P|).
▶ Not practical for most programming languages. Most languages assume restricted

forms of CFGs that enable more efficient parsing algorithms.

71 / 1

Analysis

Assume G = {R1,R2, . . . ,Rr} with start symbol R1

▶ f
(
length, start pos, variable index

)
.

▶ Number of subproblems: O(rn2)

▶ Space: O(rn2)

▶ Time to evaluate a subproblem from previous ones: O(|P|n)
P is set of rules

▶ Total time: O(|P|rn3) which is polynomial in both |w | and |G |. For fixed G the
run time is cubic in input string length.

▶ Running time can be improved to O(n3|P|).
▶ Not practical for most programming languages. Most languages assume restricted

forms of CFGs that enable more efficient parsing algorithms.

71 / 1

CYK Algorithm

Input string: X = x1 . . . xn.

Input grammar G: r nonterminal symbols R1...Rr, R1 start symbol.

P[n][n][r]: Array of booleans. Initialize all to FALSE
for s = 1 to n do

for each unit production Rv → xs do
P[1][s][v]← TRUE

for ℓ = 2 to n do // Length of span

for s = 1 to n − ℓ + 1 do // Start of span

for µ = 1 to ℓ− 1 do // Partition of span

for all (Ra → RβRγ) ∈ G do
if P[p][s][β] and P[ℓ− µ][s + µ][γ] then

P[ℓ][s][a]← TRUE
if P[n][1][1] is TRUE then

return ‘‘X is member of language’’

else
return ‘‘X is not member of language’’

72 / 1

