Intro. Algorithms & Models of Computation

Divide & conquer:
Kartsuba’s Algorithm and Linear

Time Selection

Lecture 11
Thursday, October 3, 2024

IATEXed: October 8, 2024 20:53

1/52

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

11.1

Problem statement: Multiplying numbers +
a slow algorithm

2/52

The Problem: Multiplying numbers

Given two large positive integer numbers b and c, with n digits, compute the number
bxc.

3/52

Rhind Mathematical Papyrus

Roughly 3870 years ago

" Accurate reckoning for inquiring into things, and the knowledge of all things, mysteries
. all secrets”

4/52

Egyptian multiplication: 1850BC (3870 years ago?)

From the hieratic Moscow and Rhind Mathematical Papyri

76 | 35 |

5/52

Egyptian multiplication: 1850BC (3870 years ago?)

From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 |[344+1| 76

5/52

Egyptian multiplication: 1850BC (3870 years ago?)

From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 |[344+1| 76
76 34

5/52

Egyptian multiplication: 1850BC (3870 years ago?)

From the hieratic Moscow and Rhind Mathematical Papyri

76 35
76 |[344+1| 76
76 34

152 17

5/52

Egyptian multiplication: 1850BC (3870 years ago?)

From the hieratic Moscow and Rhind Mathematical Papyri

76

76

76
152
152

35
34 +1
34
17
16 +1

76

152

5/52

Egyptian multiplication: 1850BC (3870 years ago?)

From the hieratic Moscow and Rhind Mathematical Papyri

76

76

76
152
152
152

35
34 +1
34
17
16 +1
16

76

152

5/52

Egyptian multiplication: 1850BC (3870 years ago?)

From the hieratic Moscow and Rhind Mathematical Papyri

76

76

76
152
152
152
304

35
34 +1
34
17
16 +1
16
8

76

152

5/52

Egyptian multiplication: 1850BC (3870 years ago?)

From the hieratic Moscow and Rhind Mathematical Papyri

76

76

76
152
152
152
304
608

35
3441
34
17
16 +1
16
8
4

76

152

5/52

Egyptian multiplication: 1850BC (3870 years ago?)

From the hieratic Moscow and Rhind Mathematical Papyri

76
76
76
152
152
152
304
608
1216

35
3441
34
17
16 +1
16
8
4
2

76

152

5/52

Egyptian multiplication: 1850BC (3870 years ago?)

From the hieratic Moscow and Rhind Mathematical Papyri

76
76
76
152
152
152
304
608
1216
2432

35
34 +1
34
17
16 +1
16
8

4
2
1

76

152

2432

5/52

Egyptian multiplication: 1850BC (3870 years ago?)

From the hieratic Moscow and Rhind Mathematical Papyri

76
76
76
152
152
152
304
608
1216
2432

35
34 +1
34
17
16 +1
16
8

4
2
1

76

152

2432

2660

5/52

The problem: Multiplying Numbers
Problem Given two n-digit numbers x and y, compute their product.

Grade School Multiplication

Compute “partial product” by multiplying each digit of y with x and adding the partial

products.
3141

x2718

25128

3141
21987
6282
8537238

6/52

Time Analysis of Grade School Multiplication

1. Each partial product: ©(n)

2. Number of partial products: ®(n)
3. Addition of partial products: @(n?)
4. Total time: @(n?)

7/52

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

11.2
Multiplication using Divide and Conquer

8/52

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits
1. b= bn—lbn—z [P bo and c = Ch—1Ch—2 ...y
2. b= b,,_l...b,,/20...0+b,,/z_l...bo
3. b(x) = byx + bg, where x = 10"2, by = b,_; ... b,/> and
br = bpj2—1...bg

4. Similarly c¢(x) = c.x + cg where ¢, = Cp—1...Cnj2 and CR = Cpj2—1..-Cp

9/52

Example

1234 x 5678 = (12x + 34) x (56x + 78) for x = 100.
=12.56-x>+ (12-78 + 34 - 56)x + 34 - 78.

1234 x 5678 = (100 x 12 4 34) x (100 x 56 + 78)
10000 x 12 x 56

+100 x (12 x 78 + 34 x 56)

+34 x 78

10/52

Divide and Conquer for multiplication

Assume n is a power of 2 for simplicity and numbers are in decimal.

1. b= bn_lbn_z...bo and ¢ = Ch—1Ch—2...Qy
2. b= b(X) = b[_X + bR
where x = 10n/2, bL = b,,_l cee b,,/z and bR = bn/2_1 e e b()

3. c=c(x) = cx+ cgpwhere ¢, = Cp_1...Cns2 and CR = Cpj2—1 - Co

11/52

Divide and Conquer for multiplication

Assume n is a power of 2 for simplicity and numbers are in decimal.

1. b= bn_lb,,_z e bo and ¢ = Ch—1Ch—2...Qy
2. b= b(X) = bLX-I- bR
where x = 10n/2, bL = b,,_l e b,,/z and bR = bn/2_1 cee b()
3. c=c(x) = cx+ cgpwhere ¢, = Cp_1...Cns2 and CR = Cpj2—1 - Co

Therefore, for x = 10™/2, we have

bc = b(X)C(X) = (bLX + bR)(CLX + CR)
= byc x* + (brcr + brc)x + brcr
=].Onb[_C[_ + 10"/2(b[_CR + bRCL) + bRCR

11/52

Time Analysis

bc =].Onb[_CL +].On/z(bLCR + bRCL) + bRCR

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts
(adding enough 0's to the right)

12/52

Time Analysis

bc =].Onb[_CL +].On/z(bLCR + bRCL) + bRCR

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts
(adding enough 0's to the right)

T(n) =4T(n/2) + O(n) T(1) = 0(1)

12/52

Time Analysis

bc =].Onb[_CL +].On/z(bLCR + bRCL) + bRCR

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts
(adding enough 0's to the right)

T(n) =4T(n/2) + O(n) T(1) = 0(1)

T(n) = ©(n?). No better than grade school multiplication!

12/52

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

11.3

Faster multiplication: Karatsuba's
Algorithm

13/52

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a+ bi)(c + di) = ac — bd + (ad + bc)i

14 /52

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a+ bi)(c + di) = ac — bd + (ad + bc)i

How many multiplications do we need?

14 /52

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a+ bi)(c + di) = ac — bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.

Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a+ b)(c + d) — ac — bd

14 /52

Gauss technique for polynomials
p(x) =ax+ b and g(x) =cx+d.

p(x)q(x) = acx?® + (ad + bc)x + bd.

15/52

Gauss technique for polynomials
p(x) =ax+ b and g(x) =cx+d.

p(x)q(x) = acx?® + (ad + bc)x + bd.

p(x)q(x) = acx* + ((a + b)(c + d) — ac — bd)x + bd.

15/52

Improving the Running Time

bc = b(X)C(X) = (bLX + bR)(CLX + CR)

16 /52

Improving the Running Time

bc = b(X)C(X) = (bLX + bR)(CLX + CR)
= bc x* + (bicr + brc)x + bgrcr

16 /52

Improving the Running Time

bc = b(X)C(X) = (b[_X + bR)(CLX + CR)
= bc x* + (bLcr + brcL)x + breg

= (bL*CL)X2+ ((bL+bR)*(CL+CR) —bL*CL— bR*CR)X+bR*CR

16 /52

Improving the Running Time

bc = b(X)C(X) = (b[_X + bR)(CLX + CR)
= bc x* + (bLcr + brcL)x + breg
= (bl_ * C[_)X2 + ((bl_ + bR) % (CL + CR) — bl_ * CL — bR % CR>X+ bR * Cr

Recursively compute only b, ¢, brcg, (b + br)(cL + cr).

16 /52

Improving the Running Time

bc = b(X)C(X) = (b[_X + bR)(CLX + CR)
= bc x* + (bLcr + brcL)x + breg
= (bl_ * C[_)X2 + ((bl_ + bR) % (CL + CR) — bl_ * CL — bR % CR>X+ bR * Cr

Recursively compute only b, ¢, brcg, (b + br)(cL + cr).

Time Analysis
Running time is given by

T(n) =3T(n/2) + O(n) T(1) = 0(1)
which means T(n) = O(n'°823) = O(n'-5%)

16 /52

State of the Art

Schénhage-Strassen 1971: O(nlog nlog log n) time using Fast-Fourier-Transform
(FFT)

Martin Fiirer 2007: O(nlog n2°0°&™ ")) time

Conjecture
There is an O(nlog n) time algorithm. J

17/52

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

11.3.1

Solving the recurrences for fast
multiplication

18/52

Analyzing the Recurrences

1. Basic divide and conquer: T(n) = 4T (n/2) 4+ O(n), T(1) = 1. Claim:
T(n) = ©(n?).

2. Saving a multiplication: T(n) = 3T (n/2) + O(n), T(1) = 1. Claim:
T(n) — @(nl+log1.5)

19/52

Analyzing the Recurrences

1. Basic divide and conquer: T(n) = 4T (n/2) 4+ O(n), T(1) = 1. Claim:
T(n) = O(n?).
2. Saving a multiplication: T(n) = 3T (n/2) + O(n), T(1) = 1. Claim:
T(n) — @(n1+logl.5)
Use recursion tree method:
1. In both cases, depth of recursion L = log n.

2. Work at depth i is 4'n/2' and 3'n/2' respectively: number of children at depth i
times the work at each child

3. Total work is therefore n Zf:o 2" and n Z,{'=0(3/2)" respectively.

19/52

Analyzing the recurrence with four recursive calls
T(n)=4T(n/2)+O(n), T(1) =1

20/52

Analyzing the recurrence with three recursive calls
T(n)=3T(n/2)+0O(n), T(1) =1

21/52

Analyzing the recurrence with two recursive calls
T(n)=2T(n/2)+ O(n), T(1) =1

22/52

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

11.4
Selecting in Unsorted Lists

23/52

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

11.4.1

Problem definition and basic algorithm

24 /52

Rank of element in an array

A: an unsorted array of n integers

Definition 11.1.

For 1 < j < n, element of rank j is the jth smallest element in A.

Unsorted array | 16| 14 [34 20| 12| 5

Ranks 6

Sort of array

w
Ut

1111214116 {19120 | 34

25 /52

Problem - Selection

Input Unsorted array A of n integers and integer j
Goal Find the jth smallest number in A (rank j number)

Median: j = [(n+1)/2]

26 /52

Problem - Selection

Input Unsorted array A of n integers and integer j
Goal Find the jth smallest number in A (rank j number)

Median: j = [(n+1)/2]

Simplifying assumption for sake of notation: elements of A are distinct

26 /52

Algorithm |

1. Sort the elements in A
2. Pick jth element in sorted order

Time taken = O(nlog n)

27 /52

Algorithm |

1. Sort the elements in A
2. Pick jth element in sorted order

Time taken = O(nlog n)

Do we need to sort? Is there an O(n) time algorithm?

27 /52

Algorithm |

If j is small or n — j is small then
1. Find j smallest/largest elements in A in O(jn) time. (How?)
2. Time to find median is O(n?).

28 /52

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

11.4.2

Quick select

29 /52

QuickSelect

Divide and Conquer Approach

1. Pick a pivot element a from A
2. Partition A based on a.
Aes = {x € A| x < a} and Ageater = {Xx € A| x > a}
3. |Aess| = Jj: return a
4. |Ajess| > J: recursively find jth smallest element in Ajegs
5. |Aess| < J: recursively find kth smallest element in Agreater Where k = j — | Ajess|-

30/52

Example

16

14

4

20

12

[@x

19

11

31/52

Time Analysis

1. Partitioning step: O(n) time to scan A

2. How do we choose pivot? Recursive running time?

32/52

Time Analysis

1. Partitioning step: O(n) time to scan A
2. How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

32/52

Time Analysis

1. Partitioning step: O(n) time to scan A
2. How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
Exercise: show that algorithm takes ©(n?) time

32/52

A Better Pivot

Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.

That is pivot is approximately in the middle of A
Then n/4 < |Aiss] < 3n/4 and n/4 < |Agreater] < 3n/4. If we apply recursion,

33/52

A Better Pivot

Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiss] < 3n/4 and n/4 < |Agreater] < 3n/4. If we apply recursion,

T(n) < T(3n/4) + O(n)

Implies T(n) = O(n)!

33/52

A Better Pivot

Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiss] < 3n/4 and n/4 < |Agreater] < 3n/4. If we apply recursion,

T(n) < T(3n/4) + O(n)
Implies T(n) = O(n)!

How do we find such a pivot?

33/52

A Better Pivot

Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiss] < 3n/4 and n/4 < |Agreater] < 3n/4. If we apply recursion,

T(n) < T(3n/4) + O(n)
Implies T(n) = O(n)!

How do we find such a pivot? Randomly?

33/52

A Better Pivot

Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiss] < 3n/4 and n/4 < |Agreater] < 3n/4. If we apply recursion,

T(n) < T(3n/4) + O(n)
Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

33/52

A Better Pivot

Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A

Then n/4 < |Aiss] < 3n/4 and n/4 < |Agreater] < 3n/4. If we apply recursion,
T(n) < T(3n/4) + O(n)
Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

33/52

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

11.4.3
Median of Medians

34/52

Divide and Conquer Approach

A game of medians

Idea
1. Break input A into many subarrays: Li,... L.
2. Find median m; in each subarray L;.
3. Find the median x of the medians my, ..., my.
4. Intuition: The median x should be close to being a good median of all the numbers
in A.
5. Use x as pivot in previous algorithm.

35/52

New example

The input:
75 |31 |13| 26 | 83 | 110 |60 | 120 | 63 |30 | 3 | 41|44 |107|30| 23 | 91 | 17 | 6 | 110
68 |24 41| 26 | 58 | 57 | 61| 20 | 52 | 45|13 |79 |86 | 91 | 55| 66 | 13 | 103 |36 | 60
19 |40 |45 | 111 | 56 | 74 | 17| 95 | 96 | 77|29 |65 |36 | 96 [93|119| 9 61 | 3 9
100 | 3 |88 | 47 | 115|107 | 79| 39 | 109 |20 |59 | 25| 92| 81 |36 | 10 | 30 |113 |73 | 116
72 |58 24| 16 | 12 | 69 (40| 24 | 19 |92 | 7 |65 |75 | 41 |43 |117|103| 38 | 8 | 20

36/52

New example

The input:

75 31|13 | 26 | 83 [110 |60 | 120 | 63 |30 | 3 |41 |44]107 30| 23 | 91 | 17 | 6 | 110
68 |24 |41 | 26 | 58 | 57 | 61| 20 | 52 | 45|13 |79 |86 | 91 | 55| 66 | 13 | 103 | 36 | 60
19 |40 |45 111 | 56 | 74 |17 | 95 | 96 | 772965 36| 96 |93 |119| 9 |61 | 3| 9
100 | 3 |88 | 47 | 115|107 | 79| 39 | 109 |20 |59 |25)92 | 81 |36 | 10 | 30 | 113 | 73 | 116
72 |58 |24 16 | 12 | 69 |40 | 24 | 19 |92 | 7 | 65| 75| 41 |43 117|103 | 38 | 8 | 20
Compute median of the medians (recursive call):

72|74 113 [66

3160|6530

4139|7561

266391 8

58 | 45 | 43 | 60

36 /52

New example

Th
75

e input:
26

31|13 83 | 110 |60 | 120 | 63 |30 | 3 | 41|44 |107|30| 23 | 91 | 17 | 6 | 110
68 |24 41| 26 | 58 | 57 | 61| 20 | 52 | 45|13 |79 |86 | 91 | 55| 66 | 13 | 103 |36 | 60
19 |40 |45 | 111 | 56 | 74 | 17| 95 | 96 | 77|29 |65|36| 96 |93 |119| 9 | 61 | 3 9
100 | 3 |88 | 47 | 115|107 | 79| 39 | 109 |20 |59 | 25| 92| 81 |36 | 10 | 30 |113 |73 | 116
72 |58 (24| 16 | 12 | 69 |40 | 24 | 19 |92 | 7 | 65| 75| 41 | 43| 117|103 | 38 | 8 | 20
Compute median of the medians (recursive call):
72|74 13|66
31160 [65]30
4139|7561
26 63]91 | 8
58 | 4543 |60
After partition (pivot 60):
1913|1316 |12 |57 |17|20[19 |20 3 [25[92|109| 96 | 79 |110| 69 | 83 | 75
41|24 |24 |26 |56 | 17 |40 |24 |52 |30 | 7 |60 | 77| 81 | 63 | 61 | 107 | 115 | 111 | 72
20 | 3141|2658 |30 (603936 [45]|13|65|75| 91 | 120 | 66 | 74 | 61 | 88 | 68
9 |40 |45|47| 3 |13|23|55|30|44|29|65|86| 96 | 95 | 117 | 91 | 103 | 100 | 110
[36 58] 8 | 6 [38] 9 | 1043|4136 |59 |79 |92 107 | 93 [119 103|113 | 73 | 116

36 /52

New example

The mput

31113 83 | 110 |60 | 120 | 63 |30 | 3 |41 |44 |107 30| 23 | 91 17 | 6 | 110
68 24 | 41 26 58 | 57 | 61| 20 | 52 |45|13|79|86| 91 |55| 66 | 13 | 103 |36 | 60
19 |40 |45 | 111 | 56 | 74 | 17| 95 | 96 |77 |29 |65 |36| 96 |93 | 119 | 9 61 | 3 9
100 | 3 |88 | 47 | 115|107 | 79| 39 | 109 |20 |59 (25|92 | 81 |36 | 10 | 30 | 113 |73]| 116
72 |58 (24| 16 12 69 |40 | 24 19 |92 7 | 65| 75| 41 | 43| 117|103 | 38 8 20
Compute median of the medians (recursive call):
72|74 |13 | 66
3160|6530
41|39 |75 |61
26|63 |91 8
58 | 45 | 43 | 60
After partition p|vot 60):
19 3 |13]|16 12|57 |17 20 20| 3 [25[92(109| 9 | 79 |[110| 69 | 83 | 75
41|24 |24 126 56|17 | 40 | 24 52 30| 7 |[60]77] 81 | 63 | 61 | 107 | 115|111 | 72
20|31 |41[26[58|30]|60|39(36|45|13[65|75| 91 [120| 66 | 74 | 61 88 | 68
9 |40 |45 |47 | 3 |13 |23 |55(30|44|29|65|86| 96 | 95 | 117 | 91 | 103 | 100 | 110
[36 (58| 8 | 6 |38| 9 |10 |43 |41 |36|59|79|92|107 | 93 | 119 | 103 | 113 | 73 | 116
Tail recursive call: Select element of rank 50 out of 56 elements.
19| 3 |13|16 (12|57 |17(20|19|20| 3 25‘
41|24 |24 126 (56|17 |40 |24 |52 (30| 7
20|31 |41 [26[58|30|60 3936|4513
L40 45 |47 | 3 [1323 (55(30 (44|29
36(58| 8|6 (38| 9 |10]|43]|41 (36|59

36 /52

Example

11

-3
w

42 11743100 1 |92 [87| 12| 19| 15

37/52

Example

11

-3
w

42 11743100 1 |92 [87| 12| 19| 15

37/52

Choosing the pivot

A clash of medians

1.

Partition array A into [n/5] lists of 5 items each.
L, = {A[1], A[2],...,A[5]} L, = {A[6],...,A[10]}, ...,
L; = {A[5i+1],...,A[5i — 4]}, ... Lias) = {A[5[n/5] —4,...,Aln]}.

2. For each i find median b; of L; using brute-force in O(1) time. Total O(n) time

Let B = {b1, bz, ceey brn/51}

4. Find median b of B

38/52

Choosing the pivot

A clash of medians

1. Partition array A into [n/5] lists of 5 items each.

Ly = {A[1], A[2), -, A[5]}, Lo = {A[6], ..., A[10]}, ...,

L; = {A[5i+1],...,A[5i — 4]}, ... Lias) = {A[5[n/5] —4,...,Aln]}.
2. For each i find median b; of L; using brute-force in O(1) time. Total O(n) time
3. Let B = {bl, by, ..., b|’,,/5'|}
4. Find median b of B

Lemma 11.2.

Median of B is an approximate median of A. That is, if b is used a pivot to partition
A, then |Ajess) < Tn/10 + 6 and |Agreater| < 7n/10 + 6.

38/52

Algorithm for Selection

A storm of medians

select (A, j):
Form lists Ly, Lp,...,Lrnss) where L; = {A[5i —4],..., A[5i]}
Find median b; of each L; using brute-force
Find median b of B = {by, by,...,brn/51}
Partition A into Ajess and Agreater using b as pivot
if (|Aiess|) =J return b
else if (|Aiess]) > J)
return select (Ayogs, J)
else
return select (Agreater, J — |Aress|)

39/52

Algorithm for Selection

A storm of medians

select (A, j):
Form lists Ly, Lp,...,Lrnss) where L; = {A[5i —4],..., A[5i]}
Find median b; of each L; using brute-force
Find median b of B = {by, by,...,brn/51}
Partition A into Ajess and Agreater using b as pivot
if (|Aiess|) =J return b
else if (|Aiess]) > J)
return select (Ayogs, J)
else
return select (Agreater, J — |Aress|)

How do we find median of B?

39/52

Algorithm for Selection

A storm of medians

select (A, j):
Form lists Ly, Lp,...,Lrnss) where L; = {A[5i —4],..., A[5i]}
Find median b; of each L; using brute-force
Find median b of B = {by, by,...,brn/51}
Partition A into Ajess and Agreater using b as pivot
if (|Aiess|) =J return b
else if (|Aiess]) > J)
return select (Ayogs, J)
else
return select (Agreater, J — |Aress|)

How do we find median of B? Recursively!

39/52

Algorithm for Selection

A storm of medians

select(A, j):
Form lists Ly, Lp,...,Lrnss) where L; = {A[5i —4],..., A[5i]}
Find median b; of each L; using brute-force
B = [by, by, ..., bry5]
b = select(B, [n/107)
Partition A into Ajess and Agreater using b as pivot
if (|Aless|) =j return b
EISe |f (IAlessl) >j)
return select (Ayogs, J)
else
return select (Agreater, J — |Aress|)

40/52

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

11.4.4
Median of medians is a good median

41/52

Median of Medians: Proof of Lemma

Proposition 11.3.

There are at least 3n/10 — 6 elements smaller than the median of medians b. J

.........EOOOOOOO
OO0000000O:
[esessee

0000000000000000)
0000060000000000

42/52

Median of Medians: Proof of Lemma

Proposition 11.4.
There are at least 3n/10 — 6 elements smaller than the median of medians b.

Proof.

At least half of the | n/5] groups have at least 3 elements smaller than b, except for
the group containing b which has 2 elements smaller than b. Hence number of
elements smaller than b is:

|n/5] +1

51 —1>3n/10-6 O

30

43/52

Median of Medians: Proof of Lemma

Proposition 11.5.

There are at least 3n/10 — 6 elements smaller than the median of medians b.

Corollary 11.6.
| Agrester] < 7n/10 + 6.

Via symmetric argument,

Corollary 11.7.
|Arss| < 7n/10 + 6. J

44 /52

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

11.4.5

Running time of deterministic median
selection

45 /52

Running time of deterministic median selection

A dance with recurrences

T(n) < T([n/5]) + max{ T (|Aiss|); T (|Agreater) |} + O(n)

46 /52

Running time of deterministic median selection

A dance with recurrences

T(n) < T([n/5]) + max{ T (|Aiss|); T (|Agreater) |} + O(n)

From Lemma,

T(n) < T([n/51) + T(L7n/10 4 6]) + O(n)

and

T(n)=0(1) n<10

46 /52

Running time of deterministic median selection

A dance with recurrences

T(n) < T([n/5]) + max{ T (|Aiss|); T (|Agreater) |} + O(n)

From Lemma,

T(n) < T([n/5])+ T([7n/10 +6]) + O(n)
and

T(n)=0(1) n<10

Exercise: show that T(n) = O(n)

46 /52

Recursion tree fill in

47/52

Recursion tree fill in

(1/5)n, (7/10)n

Recursion tree fill in

S
N I G I N N

(1/25)n, (7/50)n, (7/50)n, (49/100)n

47 /52

Recursion tree fill in

I T T H\H |
(1/125)n, (7/250)n, (7/250)n, (49/500)n, (7/250)n, (49/500)n, (49/500)n,
(343/1000) n

47 /52

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

11.4.6

Epilogue: On selection in linear time

48 /52

Summary: Selection in linear time

Theorem 11.8.

The algorithm select(A[1 .. n], k) computes in O(n) deterministic time the kth
smallest element in A.

On the other hand, we have:
Lemma 11.9.

The algorithm QuickSelect(A[l .. n], k) computes the kth smallest element in A.
The running time of QuickSelect is @(n?) in the worst case.

49 /52

Questions to ponder

1. Why did we choose lists of size 57 Will lists of size 3 work?

2. Write a recurrence to analyze the algorithm's running time if we choose a list of
size k.

50 /52

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.

Journal of Computer System Sciences (JCSS), 1973.

51/52

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?

51/52

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.

“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
All except Vaughn Pratt!

51/52

Takeaway Points

1. Recursion tree method and guess and verify are the most reliable methods to
analyze recursions in algorithms.

2. Recursive algorithms naturally lead to recurrences.

3. Some times one can look for certain type of recursive algorithms (reverse
engineering) by understanding recurrences and their behavior.

52/52

	Problem statement: Multiplying numbers + a slow algorithm
	Multiplication using Divide and Conquer
	Faster multiplication: Karatsuba's Algorithm
	Solving the recurrences for fast multiplication

	Selecting in Unsorted Lists
	Problem definition and basic algorithm
	Quick select
	Median of Medians
	Median of medians is a good median
	Running time of deterministic median selection
	Epilogue: On selection in linear time

