
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

Halting, Undecidability, and Maybe
Some Complexity
Lecture 9
Tuesday, September 24, 2024

LATEXed: August 25, 2024 14:22

1 / 29

Quote

“Young man, in mathematics you don’t understand things. You just get used to them.”
– John von Neumann.

2 / 29

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

9.1
Cantor’s diagonalization argument
FLNAME:9.1.0.0 ZZZ:9.1.0.0 Cantor’s diagonalization argument

3 / 29

You can not count the real numbers

I = (0, 1).
N = {1, 2, 3, . . .} the integer numbers

Claim 9.1 (Cantor).

|N| ≠ |I |

Claim 9.2 (Warm-up).

|N| ≤ |I |

Proof.
|N| ≤ |I | exists a one-to-one mapping from N to I . One such mapping is f (i) = 1/i ,
which readily implies the claim.

4 / 29

You can not count the real numbers

I = (0, 1).
N = {1, 2, 3, . . .} the integer numbers

Claim 9.1 (Cantor).

|N| ≠ |I |

Claim 9.2 (Warm-up).

|N| ≤ |I |

Proof.
|N| ≤ |I | exists a one-to-one mapping from N to I . One such mapping is f (i) = 1/i ,
which readily implies the claim.

4 / 29

You can not count the real numbers II

I = (0, 1), N = {1, 2, 3, . . .}.

Claim 9.3 (Cantor).

|N| ≠ |I |, where I = (0, 1).

Proof.
Write every number in (0, 1) in its decimal expansion. E.g.,
1/3 = 0.33333333333333333333
Assume that |N| = |I |. Then there exists a one-to-one mapping f : N→ I . Let βi be
the i th digit of f (i) ∈ (0, 1).
di = any number in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} \ {di−1, βi}
D = 0.d1d2d3 . . . ∈ (0, 1).
D is a well defined unique number in (0, 1),
But there is no j such that f (j) = D. A contradiction.

5 / 29

You can not count the real numbers II

I = (0, 1), N = {1, 2, 3, . . .}.

Claim 9.3 (Cantor).

|N| ≠ |I |, where I = (0, 1).

Proof.
Write every number in (0, 1) in its decimal expansion. E.g.,
1/3 = 0.33333333333333333333
Assume that |N| = |I |. Then there exists a one-to-one mapping f : N→ I . Let βi be
the i th digit of f (i) ∈ (0, 1).
di = any number in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} \ {di−1, βi}
D = 0.d1d2d3 . . . ∈ (0, 1).
D is a well defined unique number in (0, 1),
But there is no j such that f (j) = D. A contradiction.

5 / 29

The matrix...

f (1) f (2) f (3) f (4) . . .

1 1 1 0 0 . . .
2 0 1 0 1 . . .
3 1 0 1 1 . . .
4 0 1 0 0 . . .
...

...
...

...
...

. . .

6 / 29

The matrix...

f (1) f (2) f (3) f (4) . . .

1 β1 = 1 1 0 0 . . .
2 0 β2 = 1 0 1 . . .
3 1 0 β3 = 1 1 . . .
4 0 1 0 β4 = 0 . . .
...

...
...

...
...

. . .

di = any number in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} \ {di−1, βi}

6 / 29

The matrix...

f (1) f (2) f (3) f (4) . . .

1 1 1 0 0 . . .
2 0 1 0 1 . . .
3 1 0 1 1 . . .
4 0 1 0 0 . . .
...

...
...

...
...

. . .

di = any number in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} \ {di−1, βi}
=⇒ ∀i βi ̸= di .

6 / 29

The matrix...

f (1) f (2) f (3) f (4) . . .

1 1 1 0 0 . . .
2 0 1 0 1 . . .
3 1 0 1 1 . . .
4 0 1 0 0 . . .
...

...
...

...
...

. . .

di = any number in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} \ {di−1, βi}
=⇒ ∀i βi ̸= di .
D = 0.23232323
D can not be the i column, because βi ̸= di .

6 / 29

The matrix...

f (1) f (2) f (3) f (4) . . .

1 1 1 0 0 . . .
2 0 1 0 1 . . .
3 1 0 1 1 . . .
4 0 1 0 0 . . .
...

...
...

...
...

. . .

di = any number in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} \ {di−1, βi}
=⇒ ∀i βi ̸= di .
D = 0.23232323
D can not be the i column, because βi ̸= di .
But D can not be in the matrix...

6 / 29

The liar paradox
When one day an expedition was sent to the spatial coordinates that Voojagig
had claimed for this planet they discovered only a small asteroid inhabited by a
solitary old man who claimed repeatedly that nothing was true, though he was
later discovered to be lying.
– The Hitchhiker Guide to the Galaxy

1. The liar’s paradox: This sentence is false.

2. Related to Russell’s paradox.

3. Omnipotence paradox: Can [an omnipotent being] create a stone so heavy that it
cannot lift it?

7 / 29

The liar paradox
When one day an expedition was sent to the spatial coordinates that Voojagig
had claimed for this planet they discovered only a small asteroid inhabited by a
solitary old man who claimed repeatedly that nothing was true, though he was
later discovered to be lying.
– The Hitchhiker Guide to the Galaxy

1. The liar’s paradox: This sentence is false.

2. Related to Russell’s paradox.

3. Omnipotence paradox: Can [an omnipotent being] create a stone so heavy that it
cannot lift it?

7 / 29

The liar paradox
When one day an expedition was sent to the spatial coordinates that Voojagig
had claimed for this planet they discovered only a small asteroid inhabited by a
solitary old man who claimed repeatedly that nothing was true, though he was
later discovered to be lying.
– The Hitchhiker Guide to the Galaxy

1. The liar’s paradox: This sentence is false.

2. Related to Russell’s paradox.

3. Omnipotence paradox: Can [an omnipotent being] create a stone so heavy that it
cannot lift it?

7 / 29

The liar paradox
When one day an expedition was sent to the spatial coordinates that Voojagig
had claimed for this planet they discovered only a small asteroid inhabited by a
solitary old man who claimed repeatedly that nothing was true, though he was
later discovered to be lying.
– The Hitchhiker Guide to the Galaxy

1. The liar’s paradox: This sentence is false.

2. Related to Russell’s paradox.

3. Omnipotence paradox: Can [an omnipotent being] create a stone so heavy that it
cannot lift it?

7 / 29

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

9.2
Introduction to the halting theorem
FLNAME:9.2.0.0 ZZZ:9.2.0.0 Introduction to the halting theorem

8 / 29

The halting problem

Halting problem: Given a program Q, if we run it would it stop?
Q: Can one build a program P, that always stops, and solves the halting problem.

Theorem 9.1 (“Halting theorem”).
There is no program that always stops and solves the halting problem.

9 / 29

The halting problem

Halting problem: Given a program Q, if we run it would it stop?
Q: Can one build a program P, that always stops, and solves the halting problem.

Theorem 9.1 (“Halting theorem”).
There is no program that always stops and solves the halting problem.

9 / 29

Intuition, why solving the Halting problem is really hard

Definition 9.2.
An integer number n is a weird number if

▶ the sum of the proper divisors (including 1 but not itself) of n the number is > n,
▶ no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.
1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to 70.
Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check if they are weird. The
programs stops if it found such number.

If can solve halting problem =⇒ can resolve this open problem.

10 / 29

Intuition, why solving the Halting problem is really hard

Definition 9.2.
An integer number n is a weird number if

▶ the sum of the proper divisors (including 1 but not itself) of n the number is > n,
▶ no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.
1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to 70.
Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check if they are weird. The
programs stops if it found such number.

If can solve halting problem =⇒ can resolve this open problem.

10 / 29

Intuition, why solving the Halting problem is really hard

Definition 9.2.
An integer number n is a weird number if

▶ the sum of the proper divisors (including 1 but not itself) of n the number is > n,
▶ no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.
1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to 70.
Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check if they are weird. The
programs stops if it found such number.

If can solve halting problem =⇒ can resolve this open problem.

10 / 29

Intuition, why solving the Halting problem is really hard

Definition 9.2.
An integer number n is a weird number if

▶ the sum of the proper divisors (including 1 but not itself) of n the number is > n,
▶ no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.
1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to 70.
Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check if they are weird. The
programs stops if it found such number.

If can solve halting problem =⇒ can resolve this open problem.

10 / 29

If you can halt, you can prove or disprove anything...

1. Consider any math claim C .

2. Prover algorithm PC :

(A) Generate sequence of all possible proofs (sequence of strings) into a pipe/queue.
(B) ⟨p⟩ ← pop top of queue.
(C) Feed ⟨p⟩ and ⟨C⟩, into a proof verifier (“easy”).
(D) If ⟨p⟩ valid proof of ⟨C⟩, then stop and accept.
(E) Go to (B).

3. PC halts ⇐⇒ C is true and has a proof.

4. If halting is decidable, then can decide if any claim in math is true.

11 / 29

If you can halt, you can prove or disprove anything...

1. Consider any math claim C .

2. Prover algorithm PC :

(A) Generate sequence of all possible proofs (sequence of strings) into a pipe/queue.
(B) ⟨p⟩ ← pop top of queue.
(C) Feed ⟨p⟩ and ⟨C⟩, into a proof verifier (“easy”).
(D) If ⟨p⟩ valid proof of ⟨C⟩, then stop and accept.
(E) Go to (B).

3. PC halts ⇐⇒ C is true and has a proof.

4. If halting is decidable, then can decide if any claim in math is true.

11 / 29

If you can halt, you can prove or disprove anything...

1. Consider any math claim C .

2. Prover algorithm PC :

(A) Generate sequence of all possible proofs (sequence of strings) into a pipe/queue.
(B) ⟨p⟩ ← pop top of queue.
(C) Feed ⟨p⟩ and ⟨C⟩, into a proof verifier (“easy”).
(D) If ⟨p⟩ valid proof of ⟨C⟩, then stop and accept.
(E) Go to (B).

3. PC halts ⇐⇒ C is true and has a proof.

4. If halting is decidable, then can decide if any claim in math is true.

11 / 29

If you can halt, you can prove or disprove anything...

1. Consider any math claim C .

2. Prover algorithm PC :

(A) Generate sequence of all possible proofs (sequence of strings) into a pipe/queue.
(B) ⟨p⟩ ← pop top of queue.
(C) Feed ⟨p⟩ and ⟨C⟩, into a proof verifier (“easy”).
(D) If ⟨p⟩ valid proof of ⟨C⟩, then stop and accept.
(E) Go to (B).

3. PC halts ⇐⇒ C is true and has a proof.

4. If halting is decidable, then can decide if any claim in math is true.

11 / 29

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

9.3
The halting theorem
FLNAME:9.3.0.0 ZZZ:9.3.0.0 The halting theorem

12 / 29

Encodings

M : Turing machine
⟨M⟩: a binary string uniquely describing M (i.e., it is a number.
w : An input string.
⟨M,w⟩: A unique binary string encoding both M and input w .

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M accepts w
}
.

13 / 29

Encodings

M : Turing machine
⟨M⟩: a binary string uniquely describing M (i.e., it is a number.
w : An input string.
⟨M,w⟩: A unique binary string encoding both M and input w .

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M accepts w
}
.

13 / 29

Encodings

M : Turing machine
⟨M⟩: a binary string uniquely describing M (i.e., it is a number.
w : An input string.
⟨M,w⟩: A unique binary string encoding both M and input w .

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M accepts w
}
.

13 / 29

Complexity classes

Regular

Context free grammar

Turing decidable

Turing recognizable

Not Turing recognizable.

14 / 29

ATM is TM recognizable...

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M accepts w
}
.

Lemma 9.1.
ATM is Turing recognizable.

Proof.
Input: ⟨M,w⟩.
Using UTM simulate running M on w . If M accepts w then accept, if M rejects then
reject. Otherwise, the simulation runs forever.

15 / 29

ATM is TM recognizable...

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M accepts w
}
.

Lemma 9.1.
ATM is Turing recognizable.

Proof.
Input: ⟨M,w⟩.
Using UTM simulate running M on w . If M accepts w then accept, if M rejects then
reject. Otherwise, the simulation runs forever.

15 / 29

ATM is not TM decidable!

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M accepts w
}
.

Theorem 9.2 (The halting theorem.).
ATM is not Turing decidable.

Proof: Assume ATM is TM decidable...
Halt: TM deciding ATM. Halt always halts, and works as follows:

Halt
(
⟨M,w⟩

)
=

{
accept M accepts w
reject M does not accept w .

16 / 29

ATM is not TM decidable!

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M accepts w
}
.

Theorem 9.2 (The halting theorem.).
ATM is not Turing decidable.

Proof: Assume ATM is TM decidable...
Halt: TM deciding ATM. Halt always halts, and works as follows:

Halt
(
⟨M,w⟩

)
=

{
accept M accepts w
reject M does not accept w .

16 / 29

ATM is not TM decidable!

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M accepts w
}
.

Theorem 9.2 (The halting theorem.).
ATM is not Turing decidable.

Proof: Assume ATM is TM decidable...
Halt: TM deciding ATM. Halt always halts, and works as follows:

Halt
(
⟨M,w⟩

)
=

{
accept M accepts w
reject M does not accept w .

16 / 29

Halting theorem proof continued 1

We build the following new function:
Flipper(⟨M⟩)
res← Halt(⟨M,M⟩)
if res is accept then

reject
else

accept
Flipper always stops:

Flipper
(
⟨M⟩

)
=

{
reject M accepts ⟨M⟩
accept M does not accept ⟨M⟩ .

17 / 29

Halting theorem proof continued 1

We build the following new function:
Flipper(⟨M⟩)
res← Halt(⟨M,M⟩)
if res is accept then

reject
else

accept
Flipper always stops:

Flipper
(
⟨M⟩

)
=

{
reject M accepts ⟨M⟩
accept M does not accept ⟨M⟩ .

17 / 29

Halting theorem proof continued 2

Flipper
(
⟨M⟩

)
=

{
reject M accepts ⟨M⟩
accept M does not accept ⟨M⟩ .

Flipper is a TM (duh!), and as such it has an encoding ⟨Flipper⟩. Run Flipper on
itself:

Flipper
(
⟨Flipper⟩

)
=

{
reject Flipper accepts ⟨Flipper⟩
accept Flipper does not accept ⟨Flipper⟩ .

This is absurd. Ridiculous even!
Assumption that Halt exists is false. =⇒ ATM is not TM decidable.

18 / 29

Halting theorem proof continued 2

Flipper
(
⟨M⟩

)
=

{
reject M accepts ⟨M⟩
accept M does not accept ⟨M⟩ .

Flipper is a TM (duh!), and as such it has an encoding ⟨Flipper⟩. Run Flipper on
itself:

Flipper
(
⟨Flipper⟩

)
=

{
reject Flipper accepts ⟨Flipper⟩
accept Flipper does not accept ⟨Flipper⟩ .

This is absurd. Ridiculous even!
Assumption that Halt exists is false. =⇒ ATM is not TM decidable.

18 / 29

Halting theorem proof continued 2

Flipper
(
⟨M⟩

)
=

{
reject M accepts ⟨M⟩
accept M does not accept ⟨M⟩ .

Flipper is a TM (duh!), and as such it has an encoding ⟨Flipper⟩. Run Flipper on
itself:

Flipper
(
⟨Flipper⟩

)
=

{
reject Flipper accepts ⟨Flipper⟩
accept Flipper does not accept ⟨Flipper⟩ .

This is absurd. Ridiculous even!
Assumption that Halt exists is false. =⇒ ATM is not TM decidable.

18 / 29

But where is the diagonalization argument????
⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ . . .

M1 rej acc rej rej . . .
M2 rej acc rej acc . . .
M3 acc acc acc rej . . .
M4 rej acc acc rej . . .
...

...
...

...
...

. . .

19 / 29

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

9.4
Unrecognizable
FLNAME:9.4.0.0 ZZZ:9.4.0.0 Unrecognizable

20 / 29

TM recognizable

Definition 9.1.
Language L is TM decidable if there exists M that always stops, such that
L(M) = L.

Definition 9.2.
Language L is TM recognizable if there exists M that stops on some inputs, such
that L(M) = L.

Theorem 9.3 (Halting).

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M accepts w
}
. is TM recognizable, but not

decidable.

21 / 29

TM recognizable

Definition 9.1.
Language L is TM decidable if there exists M that always stops, such that
L(M) = L.

Definition 9.2.
Language L is TM recognizable if there exists M that stops on some inputs, such
that L(M) = L.

Theorem 9.3 (Halting).

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M accepts w
}
. is TM recognizable, but not

decidable.

21 / 29

TM recognizable

Definition 9.1.
Language L is TM decidable if there exists M that always stops, such that
L(M) = L.

Definition 9.2.
Language L is TM recognizable if there exists M that stops on some inputs, such
that L(M) = L.

Theorem 9.3 (Halting).

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M accepts w
}
. is TM recognizable, but not

decidable.

21 / 29

TM recognizable

Lemma 9.4.

If L and L = Σ∗ \ L are both TM recognizable, then L and L are decidable.

Proof.
M : TM recognizing L.
Mc : TM recognizing L.
Given input x , using UTM simulating running M and Mc on x in parallel. One of
them must stop and accept. Return result.
=⇒ L is decidable.

22 / 29

TM recognizable

Lemma 9.4.

If L and L = Σ∗ \ L are both TM recognizable, then L and L are decidable.

Proof.
M : TM recognizing L.
Mc : TM recognizing L.
Given input x , using UTM simulating running M and Mc on x in parallel. One of
them must stop and accept. Return result.
=⇒ L is decidable.

22 / 29

Complement language for ATM

ATM = Σ∗ \
{
⟨M,w⟩

∣∣∣M is a TM and M accepts w
}
.

But don’t really care about invalid inputs. So, really:

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M does not accept w
}
.

23 / 29

Complement language for ATM

ATM = Σ∗ \
{
⟨M,w⟩

∣∣∣M is a TM and M accepts w
}
.

But don’t really care about invalid inputs. So, really:

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M does not accept w
}
.

23 / 29

Complement language for ATM is not TM-recognizable

Theorem 9.5.
The language

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M does not accept w
}
.

is not TM recognizable.

Proof.
ATM is TM-recognizable.
If ATM is TM-recognizable
=⇒ (by Lemma)
ATM is decidable. A contradiction.

24 / 29

Complement language for ATM is not TM-recognizable

Theorem 9.5.
The language

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M does not accept w
}
.

is not TM recognizable.

Proof.
ATM is TM-recognizable.
If ATM is TM-recognizable
=⇒ (by Lemma)
ATM is decidable. A contradiction.

24 / 29

Complement language for ATM is not TM-recognizable

Theorem 9.5.
The language

ATM =
{
⟨M,w⟩

∣∣∣M is a TM and M does not accept w
}
.

is not TM recognizable.

Proof.
ATM is TM-recognizable.
If ATM is TM-recognizable
=⇒ (by Lemma)
ATM is decidable. A contradiction.

24 / 29

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

9.5
Turing complete
FLNAME:9.5.0.0 ZZZ:9.5.0.0 Turing complete

25 / 29

Equivalent to a program

Definition 9.1.
A system is Turing complete if one can simulate a Turing machine using it.

1. Programming languages (yey!).

2. C++ templates system (boo).

3. John Conway’s game of life.

4. Many games (Minesweeper).

5. Post’s correspondence problem.

26 / 29

Equivalent to a program

Definition 9.1.
A system is Turing complete if one can simulate a Turing machine using it.

1. Programming languages (yey!).

2. C++ templates system (boo).

3. John Conway’s game of life.

4. Many games (Minesweeper).

5. Post’s correspondence problem.

26 / 29

Post’s correspondence problem

S : set of domino tiles.

abb
bc : domino piece a string at the top and a string at the bottom.

Example:

S =

{
b
ca ,

a
ab ,

ca
a ,

abc
c

}
.

27 / 29

Matching dominos

S =

{
b
ca ,

a
ab ,

ca
a ,

abc
c

}
.

match for S : ordered list of dominos from S , such that top strings make same string
as bottom strings. Example:

a
ab

b
ca

ca
a

a
ab

abc
c .

(1) Can use same domino more than once.
(2) Do not have to use all pieces of S .

28 / 29

Matching dominos

S =

{
b
ca ,

a
ab ,

ca
a ,

abc
c

}
.

match for S : ordered list of dominos from S , such that top strings make same string
as bottom strings. Example:

a
ab

b
ca

ca
a

a
ab

abc
c .

(1) Can use same domino more than once.
(2) Do not have to use all pieces of S .

28 / 29

Matching dominos

S =

{
b
ca ,

a
ab ,

ca
a ,

abc
c

}
.

match for S : ordered list of dominos from S , such that top strings make same string
as bottom strings. Example:

a
ab

b
ca

ca
a

a
ab

abc
c .

(1) Can use same domino more than once.
(2) Do not have to use all pieces of S .

28 / 29

Post’s Correspondence Problem

Post’s Correspondence Problem (PCP) is deciding whether a set of dominos has a
match or not.
modified Post’s Correspondence Problem (MPCP): PCP + a special tile.
Matches for MPCP have to start with the special tile.

Theorem 9.2.
The MPCP problem is undecidable.

29 / 29

	Cantor's diagonalization argument
	Introduction to the halting theorem
	The halting theorem
	Unrecognizable
	Turing complete

