Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

Proving Non-regularity

Lecture 6
Thursday, September 12, 2024

ATeXed: October 4, 2024 23:10

1/51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.1

Not all languages are regular

2/51

Regular Languages, DFAs, NFAs
Theorem 6.1.

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

» Each DFA M can be represented as a string over a finite alphabet X by
appropriate encoding

» Hence number of regular languages is countably infinite
» Number of languages is uncountably infinite

» Hence there must be a non-regular language!

3/51

A direct proof
L={01|i>0} = {e01,0011,000111,--- ,}

L is not regular.

Theorem 6.2. J

4/51

A Simple and Canonical Non-regular Language
L={01|i>0} = {e01,0011,000111,--- ,}

Theorem 6.3. J

L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in
input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

5/51

Proof by Contradiction

» Suppose L is regular. Then there is a DFA M such that L(M) = L.
> Let M =(Q,{0,1},9,s,A) where |Q| = n.
Consider strings €,0,00, 000, - - - , 0" total of n 4+ 1 strings.

What states does M reach on the above strings? Let q; = §*(s, 0').

By pigeon hole principle g; = g for some 0 < i < j < n.
That is, M is in the same state after reading 0’ and OV where i # j.

M should accept 0717 but then it will also accept 0/17 where i # j.
This contradicts the fact that M accepts L. Thus, there is no DFA for L.

6/51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.2

When two states are equivalent?

7/51

Equivalence between states

Definition 6.1.
M= (Q,X,d,s,A): DFA.
Two states p,q € Q are equivalent if for all strings w € X*, we have that

0"(p,w) € A <= 6*(q,w) € A.

One can merge any two states that are equivalent into a single state.

8/51

Distinguishing between states

Definition 6.2.
M= (Q,X,d,s,A): DFA.
Two states p,q € Q are distinguishable if there exists a string w € X*, such that

d*(p,w) € A and 6*(q,w) &€ A.

or
(p,w) & A and 6(q,w) € A.

9/51

Distinguishable prefixes
M = (Q,X,9,s,A): DFA
Idea: Every string w € X* defines a state Vw = §*(s, w).

Definition 6.3.

Two strings u, w € X* are distinguishable for M (or L(M)) if Vu and Vw are
distinguishable.

Definition 6.4 (Direct restatement).

Two prefixes u, w € X* are distinguishable for a language L if there exists a string x,
such that ux € L and wx ¢ L (or ux ¢ L and wx € L).

v

10/51

Distinguishable means different states

Lemma 6.5.

L: regular language.
M= (Q,X,éd,s,A): DFA for L.
If x,y € X* are distinguishable, then Vx # Vy.

Reminder: Vx = d*(s,x) € Q and Vy = §*(s,y) € Q

11/51

Proof by a figure

Possible Not possible

12/51

Distinguishable strings means different states: Proof

Lemma 6.6.

L: regular language.

M= (Q,X,éd,s,A): DFA for L.

If x,y € X* are distinguishable, then Vx # Vy.

Proof.

Assume for the sake of contradiction that Vx = Vy.

By assumption 3w € X* such that Vxw € A and Vyw ¢ A.

=> A D Vxw = §*(s,xw) = 6*(Vx, w)= 6*(Vy, w)

= 0*(s,yw) = Vyw ¢ A.

=—> AD Vyw & A. Impossible!

Assumption that Vx = Vy is false. O

13/51

Review questions...
1. Prove for any i # j then 0° and OV are distinguishable for the language
{0“1% | k > 0}.
2. Let L be a regular language, and let wy, ..., wi be strings that are all pairwise
distinguishable for L. Prove that any DFA for L must have at least k states.

3. Prove that {Oklk | k > 0} is not regular.

14 /51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.3

Fooling sets: Proving non-regularity

15 /51

Fooling Sets

Definition 6.1.

For a language L over X a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y € F are distinguishable.

Example: F = {07 | i > 0} is a fooling set for the language L = {0¥1% | kK > 0}.

Theorem 6.2.
Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L
with less than |F| states.

16 /51

Recall

Already proved the following lemma:

Lemma 6.3.
L: regular language.
M= (Q,X,éd,s,A): DFA for L.

If x,y € X* are distinguishable, then Vx # Vy.

Reminder: Vx = §*(s, x).

17/51

Proof of theorem

Theorem 6.4 (Reworded.).

L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let F = {wy, wy, ..., wy) be the fooling set.

Let M = (Q, X, 6, s, A) be any DFA that accepts L.

Let g = Vw; = (5*(5, X,').

By lemma q; # q; for all i # j.

As such, |Q| > |{q1y-++sqm}| = {w1, ..., wn}| = |F|. O]

18/51

Infinite Fooling Sets

Corollary 6.5.

If L has an infinite fooling set F then L is not regular.

Proof.

Let wy, wa, ... C F be an infinite sequence of strings such that every pair of them are
distinguishable.

Assume for contradiction that 3 M a DFA for L.

Let F; = {Wl, 500 0 W,'}.

By theorem, # states of M > |F;| = i, for all i.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic f| n |te automata. But M not finite. L]

19/51

Examples

» {0k1k | kK > 0}
» {bitstrings with equal number of Os and 1s}
> {0K1° | k # £}

20/51

Harder example: The language of squares is not regular
{0¥ | k > 0}

21/51

Really hard: Primes are not regular

An exercise left for your enjoyment

{0" | k is a prime number}

Hints:
1. Probably easier to prove directly on the automata.
2. There are infinite number of prime numbers.

3. For every n > 0, observe that nl,n! 4+ 1,..., n! 4+ n are all composite — there
are arbitrarily big gaps between prime numbers.

22/51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.3.1
Exponential gap in number of states
between DFA and NFA sizes

23/51

Exponential gap between NFA and DFA size
Ly ={w € {0,1}* | w has a 1 located 4 positions from the end}

24 /51

Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
Recall that Ly is accepted by a NFA N with k + 1 states.

Theorem 6.6.
Every DFA that accepts Ly has at least 2% states.

Claim 6.7.
F={w € {0,1}* : |w| = k} is a fooling set of size 2% for L.

Why?
» Suppose a1a;...ax and by b, ... by are two distinct bitstrings of length k
» Let i be first index where a; # b;
» y = 0k——1 s a distinguishing suffix for the two strings

25/51

How to pick a fooling set

How do we pick a fooling set F?
» If x,y arein F and x # y they should be distinguishable! Of course.

» All strings in F except maybe one should be prefixes of strings in the language L.
For example if L = {0%1k | k > 0} do not pick 1 and 10 (say). Why?

26 /51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.4
Closure properties: Proving non-regularity

27/51

Non-regularity via closure properties
H = {bitstrings with equal number of Os and 1s}

H' = {0¥1% | k > 0}

Suppose we have already shown that H’ is non-regular. Can we show that L is
non-regular without using the fooling set argument from scratch?

H = H N L(0*1*)
Claim: The above and the fact that L is non-regular implies H is non-regular. Why?

Suppose H is regular. Then since L(0*1*) is regular, and regular languages are closed

under intersection, H’ also would be regular. But we know H’ is not regular, a
contradiction.

28/51

Non-regularity via closure properties

General recipe:

KNOWN
REGULAR

UNKNOWN L’_?

Y

Apply
closure
properties

|

—>L

non-regular

29 /51

Proving non-regularity: Summary

» Method of distinguishing suffixes. To prove that L is non-regular find an infinite
fooling set.

» Closure properties. Use existing non-regular languages and regular languages to
prove that some new language is non-regular.

» Pumping lemma. We did not cover it but it is sometimes an easier proof technique
to apply, but not as general as the fooling set technique.

30/51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.5
Myhill-Nerode Theorem

31/51

One automata to rule them all

“Myhill-Nerode Theorem”: A regular language L has a unique (up to naming) minimal
automata, and it can be computed efficiently once any DFA is given for L.

32/51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.5.1
Myhill-Nerode Theorem: Equivalence

between strings

33/51

Indistinguishability
Recall:

Definition 6.1.

For a language L over X and two strings x, y € X* we say that x and y are
distinguishable with respect to L if there is a string w € X* such that exactly one of
xw, yw is in L. x,y are indistinguishable with respect to L if there is no such w.

Given language L over X define a relation =, over strings in * as follows: x =, y iff
x and y are indistinguishable with respect to L.

Definition 6.2.

X =; y means thatVw € £*: xw € L <— yw € L.
In words: x is equivalent to y under L.

34/51

Example: Equivalence classes

35/51

Indistinguishability
Claim 6.3.

=, is an equivalence relation over X*.

Proof.
1. Reflexive: Vx e Z*: Vw e X*. xw e L <— xw € L. =— x =, x.
2. Symmetry: x =, ythenVw € X*: xw € L <— yw € L
VweX: ywel < xwel = y=;x.
3. Transitivity: x =, yandy =, z
VweX: xwel < ywelandVweX: ywel < zw € L
= VweX: xwel < zw e L
= X = Z.

36/51

Equivalences over automatas...

Claim 6.4 (Just proved.).

=, is an equivalence relation over X*.

Therefore, =, partitions X* into a collection of equivalence classes.

Definition 6.5.
L: A language For a string x € *, let

[xXI=[xl.={y e Z* | x =, y}
be the equivalence class of x according to L.

Definition 6.6.
[L] = {[x]. | x € £*} is the set of equivalence classes of L.

37/51

Strings in the same equivalence class are indistinguishable

Lemma 6.7.

Let x, y be two distinct strings.
X =,y <= x,y are indistinguishable for L.

Proof.
X=1y = VweX:xwel < ywel
x and y are indistinguishable for L.

xZy = wer: xwelandyw &€ L
= x and y are distinguishable for L.

38/51

All strings arriving at a state are in the same class

Lemma 6.8.

M= (Q,X,4d,s,A) a DFA for a language L.

Foranyq € A, let Ly = {w € * | Vw = d*(s, w) = q}.
Then, there exists a string x, such that Ly C [x],.

39/51

An inefficient automata

40/51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.5.2
Stating and proving the Myhill-Nerode

Theorem

41/51

Equivalences over automatas...

Claim 6.9 (Just proved).

Let x,y be two distinct strings.
X =,y <= x,y are indistinguishable for L.

Corollary 6.10.

If = is finite with n equivalence classes then there is a fooling set F of size n for L.

Corollary 6.11.

If =1 has infinite number of equivalence classes == 3 infinite fooling set for L.
= L is not regular.

42/51

Equivalence classes as automata

Lemma 6.12.

For all x,y € X*, if [x]L = [y]., then for any a € X, we have [xa],. = [ya]..
Proof.

xX]=ly] = VWweX xwel < ywel

= Vw' €X* xaw' € L <= yaw’ € L /] w = aw’

> [xa],_ = [ya],_. L]

43/51

Set of equivalence classes

Lemma 6.13.
If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.

Set of states: Q = [L]

Start state: s = [€],.

Accept states: A = {[x]. | x € L}.

Transition function: §([x]., a) = [xa]..

M= (Q,X,4d,s,A): The resulting DFA.

Clearly, M is a DFA with n states, and it accepts L.

44 /51

Myhill-Nerode Theorem
Theorem 6.14 (Myhill-Nerode).

L is regular <> =, has a finite number of equivalence classes.
If = is finite with n equivalence classes then there is a DFA M accepting L with
exactly n states and this is the minimum possible.

Corollary 6.15.

A language L is non-regular if and only if there is an infinite fooling set F for L.

v

Algorithmic implication: For every DFA M one can find in polynomial time a DFA
M’ such that L(M) = L(M’) and M’ has the fewest possible states among all such
DFAs.

45/51

What was that all about

Summary: A regular language L has a unique (up to naming) minimal automata, and it
can be computed efficiently once any DFA is given for L.

46 /51

Exercise

1. Given two DFAs My, M, describe an efficient algorithm to decide if
L(My) = L(M>).

2. Given DFA M, and two states q, @’ of M, show an efficient algorithm to decide if
q and q’ are distinguishable. (Hint: Use the first part.)

3. Given a DFA M for a language L, describe an efficient algorithm for computing
the minimal automata (as far as the number of states) that accepts L.

47/51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.6
Roads not taken: Non-regularity via
pumping lemma

48 /51

Non-regularity via “looping”

Claim 6.1.
The language L = {a"b" | n > 0} is not regular. J

Proof: Assume for contradiction L is regular.

— I DFA M = (Q, %, 8, qo, F) for L. Thatis L = L(M).
n = |Q|: number of states of M.

Consider the string a"b". Let p, = 6*(qo,a”), for r =0,...,n.
PoP1 - - - Pn: N+ 1 states. M has n states.

By pigeon hole principle, must be i < j, such that p; = p;.

= §*(pi-a~") = p; (its a loop!).

Forx=a', y=a~ z=a"4b", we have

5*(610, an+j_ibn) = 6*(q07 nyZ) = 6" (6* <5* (5*(CIO, x),y),y),z)

49 /51

Proof continued

Non-regularity via “looping”

We have: p; = 6*(qqo, a’) and 6*(p;.a’~) = p;.

5 (an, a™ ") = 5% &° (5*<6*(qo,a"),af-’>,eﬂ'"),a"""’">

=0"| 6"

=0"| 6"

5* (5* (Pi, aj—i), aj—i>’ an_jbn>
5* (5*(%, a’), aj—i>’ an—jbn>

5* (Pi, aj—i>, an—jbn)

= (5*((]0, a"b") € A.

— a"t~ip" € L, which is false. Contradiction. [

50/51

The pumping lemma

The previous argument implies that any regular language must suffer from loops (we
omit the proof):

Theorem 6.2 (Pumping Lemma.).

Let L be a regular language. Then there exists an integer p (the “pumping length”)

such that for any string w € L with |w| > p, w can be written as xyz with the
following properties:

> [xy| < p.
» |y| > 1 (ie. y is not the empty string).
» xykz € L for every k > 0.

51/51

	Not all languages are regular
	When two states are equivalent?
	Fooling sets: Proving non-regularity
	Exponential gap in number of states between DFA and NFA sizes

	Closure properties: Proving non-regularity
	Myhill-Nerode Theorem
	Myhill-Nerode Theorem: Equivalence between strings
	Stating and proving the Myhill-Nerode Theorem

	Roads not taken: Non-regularity via pumping lemma

