
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

Non-deterministic Finite Automata
(NFAs)
Lecture 4
Thursday, September 5, 2024

LATEXed: September 10, 2024 10:15

1 / 46

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

4.1
NFA Introduction
FLNAME:4.1.0.0 ZZZ:4.1.0.0 NFA Introduction

2 / 46

Non-deterministic Finite State Automata by example
When you come to a fork in the road, take it.

q

 0,1

q0
 0 q00

 0 q000
 0

 0,1

3 / 46

Non-deterministic Finite State Automata by example II
..but only if it is made out of silver.

s

 0,1 q ε

p

 ε

q0
 0 q00

 0 q000
 0

Fin

 ε

p1
 1

p11
 1

p111
 1

 ε

 0,1

4 / 46

Non-deterministic Finite State Automata by example II
..but only if it is made out of silver.

s

 0,1 q ε

p

 ε

q0
 0 q00

 0 q000
 0

Fin

 ε

p1
 1

p11
 1

p111
 1

 ε

 0,1

More efficient
NFA:

s

 0,1 q0 0

p1

 1

q00
 0

Fin

 0

p11
 1

 1

 0,1

4 / 46

Non-deterministic Finite State Automata by example II
..but only if it is made out of silver.

More efficient
NFA:

s

 0,1 q0 0

p1

 1

q00
 0

Fin

 0

p11
 1

 1

 0,1

Not the point...
...because DFA
can still do it ef-
ficiently.

q

q000

 0, 1

q0
 0 q001

 1

q00 0

 1

 0
 1

 0

q011 1
 1

 0

4 / 46

Non-deterministic Finite State Automata (NFAs)

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Differences from DFA

▶ From state q on same letter a ∈ Σ multiple possible states

▶ No transitions from q on some letters

▶ ε-transitions!

Questions:

▶ Is this a “real” machine?

▶ What does it do?

5 / 46

Non-deterministic Finite State Automata (NFAs)

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Differences from DFA

▶ From state q on same letter a ∈ Σ multiple possible states

▶ No transitions from q on some letters

▶ ε-transitions!

Questions:

▶ Is this a “real” machine?

▶ What does it do?

5 / 46

Non-deterministic Finite State Automata (NFAs)

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Differences from DFA

▶ From state q on same letter a ∈ Σ multiple possible states

▶ No transitions from q on some letters

▶ ε-transitions!

Questions:

▶ Is this a “real” machine?

▶ What does it do?

5 / 46

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states (could be empty)

▶ From qε on 1

▶ From qε on 0

▶ From q0 on ε

▶ From qε on 01

▶ From q00 on 00

6 / 46

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states (could be empty)

▶ From qε on 1

▶ From qε on 0

▶ From q0 on ε

▶ From qε on 01

▶ From q00 on 00

6 / 46

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states (could be empty)

▶ From qε on 1

▶ From qε on 0

▶ From q0 on ε

▶ From qε on 01

▶ From q00 on 00

6 / 46

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states (could be empty)

▶ From qε on 1

▶ From qε on 0

▶ From q0 on ε

▶ From qε on 01

▶ From q00 on 00

6 / 46

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states (could be empty)

▶ From qε on 1

▶ From qε on 0

▶ From q0 on ε

▶ From qε on 01

▶ From q00 on 00

6 / 46

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states (could be empty)

▶ From qε on 1

▶ From qε on 0

▶ From q0 on ε

▶ From qε on 01

▶ From q00 on 00

6 / 46

NFA acceptance: informal

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Informal definition: An NFA N accepts a string w iff some accepting state is
reached by N from the start state on input w .

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as:
L(N) = {w | N accepts w}.

7 / 46

NFA acceptance: informal

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Informal definition: An NFA N accepts a string w iff some accepting state is
reached by N from the start state on input w .

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as:
L(N) = {w | N accepts w}.

7 / 46

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Is 01 accepted?

▶ Is 001 accepted?

▶ Is 100 accepted?

▶ Are all strings in 1∗01 accepted?

▶ What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

8 / 46

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Is 01 accepted?

▶ Is 001 accepted?

▶ Is 100 accepted?

▶ Are all strings in 1∗01 accepted?

▶ What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

8 / 46

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Is 01 accepted?

▶ Is 001 accepted?

▶ Is 100 accepted?

▶ Are all strings in 1∗01 accepted?

▶ What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

8 / 46

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Is 01 accepted?

▶ Is 001 accepted?

▶ Is 100 accepted?

▶ Are all strings in 1∗01 accepted?

▶ What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

8 / 46

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Is 01 accepted?

▶ Is 001 accepted?

▶ Is 100 accepted?

▶ Are all strings in 1∗01 accepted?

▶ What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

8 / 46

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Is 01 accepted?

▶ Is 001 accepted?

▶ Is 100 accepted?

▶ Are all strings in 1∗01 accepted?

▶ What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

8 / 46

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Is 01 accepted?

▶ Is 001 accepted?

▶ Is 100 accepted?

▶ Are all strings in 1∗01 accepted?

▶ What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.

8 / 46

Simulating NFA
Example the first

(N1) A B C D E

a,b

a b a b

a,b

Run it on input
ababa.
Idea: Keep track of the states where the NFA might be at any given time.

9 / 46

Simulating NFA
Example the first

t = 0:

A B C D E

a,b

a b a b

a,b

Remaining input: ababa.

9 / 46

Simulating NFA
Example the first

t = 0:

A B C D E

a,b

a b a b

a,b

Remaining input: ababa.

t = 1:

A B C D E

a,b

a b a b

a,b

Remaining input: baba.

9 / 46

Simulating NFA
Example the first

t = 1:

A B C D E

a,b

a b a b

a,b

Remaining input: baba.

9 / 46

Simulating NFA
Example the first

t = 1:

A B C D E

a,b

a b a b

a,b

Remaining input: baba.

t = 2:

A B C D E

a,b

a b a b

a,b

Remaining input: aba.

9 / 46

Simulating NFA
Example the first

t = 2:

A B C D E

a,b

a b a b

a,b

Remaining input: aba.

9 / 46

Simulating NFA
Example the first

t = 2:

A B C D E

a,b

a b a b

a,b

Remaining input: aba.

t = 3:

A B C D E

a,b

a b a b

a,b

Remaining input: ba.

9 / 46

Simulating NFA
Example the first

t = 3:

A B C D E

a,b

a b a b

a,b

Remaining input: ba.

9 / 46

Simulating NFA
Example the first

t = 3:

A B C D E

a,b

a b a b

a,b

Remaining input: ba.

t = 4:

A B C D E

a,b

a b a b

a,b

Remaining input: a.

9 / 46

Simulating NFA
Example the first

t = 4:

A B C D E

a,b

a b a b

a,b

Remaining input: a.

9 / 46

Simulating NFA
Example the first

t = 4:

A B C D E

a,b

a b a b

a,b

Remaining input: a.

t = 5:

A B C D E

a,b

a b a b

a,b

Remaining input: ε.

9 / 46

Simulating NFA
Example the first

t = 5:

A B C D E

a,b

a b a b

a,b

Remaining input: ε.

Accepts: ababa.

9 / 46

An exercise
For you to think about...

A. What is the language that the following NFA accepts?

s

a0

 ε

b0
 ε

c0

 ε

a1 a2
 0

a3
 0 a4

 0 a5
 0

a6 0

 0

b1 b2
 0 b3

 0

b4 0

 0

c1

c2 0

 0

 0

 0

 0

B. What is the minimal number of states in a DFA that recognizes the same language?

10 / 46

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

4.1.1
Formal definition of NFA
FLNAME:4.1.1.0 ZZZ:4.1.1.0 Formal definition of NFA

11 / 46

Reminder: Power set

Q: a set. Power set of Q is: P(Q) = 2Q = {X | X ⊆ Q} is set of all subsets of Q.

Example 4.1.
Q = {1, 2, 3, 4}

P(Q) =


{1, 2, 3, 4} ,

{2, 3, 4} , {1, 3, 4} , {1, 2, 4} , {1, 2, 3} ,
{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4} ,

{1} , {2} , {3} , {4} ,
{}



12 / 46

Formal Tuple Notation

Definition 4.2.
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a five tuple where

▶ Q is a finite set whose elements are called states,

▶ Σ is a finite set called the input alphabet,

▶ δ : Q × Σ ∪ {ε} → P(Q) is the transition function (here P(Q) is the power
set of Q),

▶ s ∈ Q is the start state,

▶ A ⊆ Q is the set of accepting/final states.

δ(q, a) for a ∈ Σ ∪ {ε} is a subset of Q — a set of states.

13 / 46

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Q = {qε, q0, q00, qp}
▶ Σ = {0, 1}
▶ δ

▶ s = qε

▶ A = {qp}

14 / 46

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Q = {qε, q0, q00, qp}
▶ Σ = {0, 1}
▶ δ

▶ s = qε

▶ A = {qp}

14 / 46

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Q = {qε, q0, q00, qp}
▶ Σ = {0, 1}
▶ δ

▶ s = qε

▶ A = {qp}

14 / 46

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Q = {qε, q0, q00, qp}
▶ Σ = {0, 1}
▶ δ

▶ s = qε

▶ A = {qp}

14 / 46

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Q = {qε, q0, q00, qp}
▶ Σ = {0, 1}
▶ δ

▶ s = qε

▶ A = {qp}

14 / 46

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Q = {qε, q0, q00, qp}
▶ Σ = {0, 1}
▶ δ

▶ s = qε

▶ A = {qp}

14 / 46

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Q = {qε, q0, q00, qp}
▶ Σ = {0, 1}
▶ δ

▶ s = qε

▶ A = {qp}

14 / 46

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Q = {qε, q0, q00, qp}
▶ Σ = {0, 1}
▶ δ

▶ s = qε

▶ A = {qp}

14 / 46

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

▶ Q = {qε, q0, q00, qp}
▶ Σ = {0, 1}
▶ δ

▶ s = qε

▶ A = {qp}

14 / 46

Example
Transition function in detail...

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

δ(qε, ε) = {qε}
δ(qε, 0) = {qε, q0}
δ(qε, 1) = {qε}

δ(q0, ε) = {q0, q00}
δ(q0, 0) = {q00}
δ(q0, 1) = {}

δ(q00, ε) = {q00}
δ(q00, 0) = {}
δ(q00, 1) = {qp}

δ(qp, ε) = {qp}
δ(qp, 0) = {qp}
δ(qp, 1) = {qp}

15 / 46

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

4.1.2
Extending the transition function to strings
FLNAME:4.1.2.0 ZZZ:4.1.2.0 Extending the transition function to strings

16 / 46

Extending the transition function to strings

1. NFA N = (Q,Σ, δ, s,A)

2. δ(q, a): set of states that N can go to from q on reading a ∈ Σ ∪ {ε}.
3. Want transition function δ∗ : Q × Σ∗ → P(Q)

4. δ∗(q,w): set of states reachable on input w starting in state q.

17 / 46

Extending the transition function to strings

1. NFA N = (Q,Σ, δ, s,A)

2. δ(q, a): set of states that N can go to from q on reading a ∈ Σ ∪ {ε}.
3. Want transition function δ∗ : Q × Σ∗ → P(Q)

4. δ∗(q,w): set of states reachable on input w starting in state q.

17 / 46

Extending the transition function to strings

1. NFA N = (Q,Σ, δ, s,A)

2. δ(q, a): set of states that N can go to from q on reading a ∈ Σ ∪ {ε}.
3. Want transition function δ∗ : Q × Σ∗ → P(Q)

4. δ∗(q,w): set of states reachable on input w starting in state q.

17 / 46

Extending the transition function to strings

1. NFA N = (Q,Σ, δ, s,A)

2. δ(q, a): set of states that N can go to from q on reading a ∈ Σ ∪ {ε}.
3. Want transition function δ∗ : Q × Σ∗ → P(Q)

4. δ∗(q,w): set of states reachable on input w starting in state q.

17 / 46

Extending the transition function to strings

Definition 4.3.
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the ϵreach(q) is the set of all states that q
can reach using only ε-transitions.

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions
It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

Definition 4.4.
For X ⊆ Q: ϵreach(X) =

⋃
x∈X ϵreach(x).

18 / 46

Extending the transition function to strings

Definition 4.3.
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the ϵreach(q) is the set of all states that q
can reach using only ε-transitions.

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions
It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

Definition 4.4.
For X ⊆ Q: ϵreach(X) =

⋃
x∈X ϵreach(x).

18 / 46

Extending the transition function to strings

ϵreach(q): set of all states that q can reach using only ε-transitions.

Definition 4.5.
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

▶ if w = ε, δ∗(q,w) = ϵreach(q)

▶ if w = a where a ∈ Σ: δ∗(q, a) = ϵreach

 ⋃
p∈ϵreach(q)

δ(p, a)


▶ if w = ax : δ∗(q,w) = ϵreach

 ⋃
p∈ϵreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)



19 / 46

Extending the transition function to strings

ϵreach(q): set of all states that q can reach using only ε-transitions.

Definition 4.5.
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

▶ if w = ε, δ∗(q,w) = ϵreach(q)

▶ if w = a where a ∈ Σ: δ∗(q, a) = ϵreach

 ⋃
p∈ϵreach(q)

δ(p, a)


▶ if w = ax : δ∗(q,w) = ϵreach

 ⋃
p∈ϵreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)



19 / 46

Extending the transition function to strings

ϵreach(q): set of all states that q can reach using only ε-transitions.

Definition 4.5.
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

▶ if w = ε, δ∗(q,w) = ϵreach(q)

▶ if w = a where a ∈ Σ: δ∗(q, a) = ϵreach

 ⋃
p∈ϵreach(q)

δ(p, a)


▶ if w = ax : δ∗(q,w) = ϵreach

 ⋃
p∈ϵreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)



19 / 46

Transition for strings: w = ax
Translation...

δ∗(q,w) = ϵreach

 ⋃
p∈ϵreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)



1. R = ϵreach(q) =⇒ δ∗(q,w) = ϵreach

⋃
p∈R

⋃
r∈δ∗(p,a)

δ∗(r , x)


2. N =

⋃
p∈R

δ∗(p, a): All the states reachable from q with the letter a.

3. δ∗(q,w) = ϵreach

(⋃
r∈N

δ∗(r , x)

)

20 / 46

Transition for strings: w = ax
Translation...

δ∗(q,w) = ϵreach

 ⋃
p∈ϵreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)



1. R = ϵreach(q) =⇒ δ∗(q,w) = ϵreach

⋃
p∈R

⋃
r∈δ∗(p,a)

δ∗(r , x)


2. N =

⋃
p∈R

δ∗(p, a): All the states reachable from q with the letter a.

3. δ∗(q,w) = ϵreach

(⋃
r∈N

δ∗(r , x)

)

20 / 46

Transition for strings: w = ax
Translation...

δ∗(q,w) = ϵreach

 ⋃
p∈ϵreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)



1. R = ϵreach(q) =⇒ δ∗(q,w) = ϵreach

⋃
p∈R

⋃
r∈δ∗(p,a)

δ∗(r , x)


2. N =

⋃
p∈R

δ∗(p, a): All the states reachable from q with the letter a.

3. δ∗(q,w) = ϵreach

(⋃
r∈N

δ∗(r , x)

)

20 / 46

Transition for strings: w = ax
Translation...

δ∗(q,w) = ϵreach

 ⋃
p∈ϵreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)



1. R = ϵreach(q) =⇒ δ∗(q,w) = ϵreach

⋃
p∈R

⋃
r∈δ∗(p,a)

δ∗(r , x)


2. N =

⋃
p∈R

δ∗(p, a): All the states reachable from q with the letter a.

3. δ∗(q,w) = ϵreach

(⋃
r∈N

δ∗(r , x)

)

20 / 46

Formal definition of language accepted by N

Definition 4.6.
A string w is accepted by NFA N if δ∗

N(s,w) ∩ A ̸= ∅.

Definition 4.7.
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A ̸= ∅}.

Important: Formal definition of the language of NFA above uses δ∗ and not δ. As
such, one does not need to include ε-transitions closure when specifying δ, since δ∗

takes care of that.

21 / 46

Formal definition of language accepted by N

Definition 4.6.
A string w is accepted by NFA N if δ∗

N(s,w) ∩ A ̸= ∅.

Definition 4.7.
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A ̸= ∅}.

Important: Formal definition of the language of NFA above uses δ∗ and not δ. As
such, one does not need to include ε-transitions closure when specifying δ, since δ∗

takes care of that.

21 / 46

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions
It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

▶ δ∗(s, ϵ)
▶ δ∗(s, 0)
▶ δ∗(c, 0)
▶ δ∗(b, 00)

22 / 46

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions
It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

▶ δ∗(s, ϵ)
▶ δ∗(s, 0)
▶ δ∗(c, 0)
▶ δ∗(b, 00)

22 / 46

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions
It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

▶ δ∗(s, ϵ)
▶ δ∗(s, 0)
▶ δ∗(c, 0)
▶ δ∗(b, 00)

22 / 46

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions
It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

▶ δ∗(s, ϵ)
▶ δ∗(s, 0)
▶ δ∗(c, 0)
▶ δ∗(b, 00)

22 / 46

Another definition of computation

Definition 4.8.

q w−→N p: State p of NFA N is reachable from q on w ⇐⇒ there exists a
sequence of states r0, r1, . . . , rk and a sequence x1, x2, . . . , xk where xi ∈ Σ ∪ {ε},
for each i , such that:

▶ r0 = q,
▶ for each i , ri+1 ∈ δ∗(ri , xi+1),

▶ rk = p, and
▶ w = x1x2x3 · · · xk .

The sequence r0
x1−→ r1

x2−→ · · · xk−→ rk is a trace of N on w .

Definition 4.9.

δ∗
N(q,w) =

{
p ∈ Q

∣∣∣ q w−→N p
}
.

23 / 46

Why non-determinism?

▶ Non-determinism adds power to the model; richer programming language and
hence (much) easier to “design” programs

▶ Fundamental in theory to prove many theorems

▶ Very important in practice directly and indirectly

▶ Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used
to it and then you will appreciate it slowly.

24 / 46

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

4.2
Constructing NFAs
FLNAME:4.2.0.0 ZZZ:4.2.0.0 Constructing NFAs

25 / 46

DFAs and NFAs

▶ Every DFA is a NFA so NFAs are at least as powerful as DFAs.

▶ NFAs prove ability to “guess and verify” which simplifies design and reduces
number of states

▶ Easy proofs of some closure properties

26 / 46

Example

Strings that represent decimal numbers.

0 21
.ε, –

53

4

.

0 0,1,2,...,9

1,2,...,9

0,1,2,...,9

0,1,2,...,9

27 / 46

Example

▶ {strings that contain CS374 as a substring}
▶ {strings that contain CS374 or CS473 as a substring}
▶ {strings that contain CS374 and CS473 as substrings}

28 / 46

Example

▶ {strings that contain CS374 as a substring}
▶ {strings that contain CS374 or CS473 as a substring}
▶ {strings that contain CS374 and CS473 as substrings}

28 / 46

Example

▶ {strings that contain CS374 as a substring}
▶ {strings that contain CS374 or CS473 as a substring}
▶ {strings that contain CS374 and CS473 as substrings}

28 / 46

Example

Lk = {bitstrings that have a 1 k positions from the end}

29 / 46

DFA for same task is much bigger...

L4 = {bitstrings that have a 1 in fourth position from the end}

q
q1000

 0

q0001

 1

q1001
q0010 0

q0011

 1

q1100

 0 1

q1101

q1010 0

q1011 1

q0100 0

q0101 1

q0110 0
q0111

 1

q1110

 0

 1

q1111
 0

 1

 0

 1

 0

 1

 0

 1
 0

 1

 0

 1
 0

 1

 0

 1

 0

 1

30 / 46

A simple transformation

Theorem 4.1.
For every NFA N there is another NFA N ′ such that L(N) = L(N ′) and such that
N ′ has the following two properties:

▶ N ′ has single final state f that has no outgoing transitions

▶ The start state s of N is different from f

31 / 46

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

4.3
Closure Properties of NFAs
FLNAME:4.3.0.0 ZZZ:4.3.0.0 Closure Properties of NFAs

32 / 46

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

▶ union

▶ intersection

▶ concatenation

▶ Kleene star

▶ complement

33 / 46

Closure under union

Theorem 4.1.
For any two NFAs N1 and N2 there is a NFA N such that L(N) = L(N1) ∪ L(N2).

q1 f1N1

q2 f2N2

34 / 46

Closure under union

Theorem 4.1.
For any two NFAs N1 and N2 there is a NFA N such that L(N) = L(N1) ∪ L(N2).

q1 f1N1

q2 f2N2

34 / 46

Closure under concatenation

Theorem 4.2.
For any two NFAs N1 and N2 there is a NFA N such that L(N) = L(N1)·L(N2).

q1 f1N1 q2 f2N2

35 / 46

Closure under concatenation

Theorem 4.2.
For any two NFAs N1 and N2 there is a NFA N such that L(N) = L(N1)·L(N2).

q1 f1N1 q2 f2N2

35 / 46

Closure under Kleene star

Theorem 4.3.
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

36 / 46

Closure under Kleene star

Theorem 4.4.
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

ε

Does not work! Why?

37 / 46

Closure under Kleene star

Theorem 4.4.
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

ε

Does not work! Why?

37 / 46

Closure under Kleene star

Theorem 4.5.
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1q0
ε

ε

38 / 46

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

4.4
NFAs capture Regular Languages
FLNAME:4.4.0.0 ZZZ:4.4.0.0 NFAs capture Regular Languages

39 / 46

Regular Languages Recap

Regular Languages Regular Expressions

∅ regular ∅ denotes ∅
{ϵ} regular ϵ denotes {ϵ}
{a} regular for a ∈ Σ a denote {a}
R1 ∪ R2 regular if both are r1 + r2 denotes R1 ∪ R2

R1R2 regular if both are r1r2 denotes R1R2

R∗ is regular if R is r∗ denote R∗

Regular expressions denote regular languages — they explicitly show the operations that
were used to form the language

40 / 46

NFAs and Regular Language

Theorem 4.1.
For every regular language L there is an NFA N such that L = L(N).

Proof strategy:

▶ For every regular expression r show that there is a NFA N such that L(r) = L(N)

▶ Induction on length of r

41 / 46

NFAs and Regular Language

▶ For every regular expression r show that there is a NFA N such that L(r) = L(N)

▶ Induction on length of r
Base cases: ∅, {ε}, {a} for a ∈ Σ.

42 / 46

NFAs and Regular Language

▶ For every regular expression r show that there is a NFA N such that L(r) = L(N)

▶ Induction on length of r
Inductive cases:

▶ r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

▶ r = r1·r2. Use closure of NFA languages under concatenation

▶ r = (r1)∗. Use closure of NFA languages under Kleene star

43 / 46

NFAs and Regular Language

▶ For every regular expression r show that there is a NFA N such that L(r) = L(N)

▶ Induction on length of r
Inductive cases:

▶ r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

▶ r = r1·r2. Use closure of NFA languages under concatenation

▶ r = (r1)∗. Use closure of NFA languages under Kleene star

43 / 46

NFAs and Regular Language

▶ For every regular expression r show that there is a NFA N such that L(r) = L(N)

▶ Induction on length of r
Inductive cases:

▶ r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

▶ r = r1·r2. Use closure of NFA languages under concatenation

▶ r = (r1)∗. Use closure of NFA languages under Kleene star

43 / 46

NFAs and Regular Language

▶ For every regular expression r show that there is a NFA N such that L(r) = L(N)

▶ Induction on length of r
Inductive cases:

▶ r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

▶ r = r1·r2. Use closure of NFA languages under concatenation

▶ r = (r1)∗. Use closure of NFA languages under Kleene star

43 / 46

NFAs and Regular Language

▶ For every regular expression r show that there is a NFA N such that L(r) = L(N)

▶ Induction on length of r
Inductive cases:

▶ r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

▶ r = r1·r2. Use closure of NFA languages under concatenation

▶ r = (r1)∗. Use closure of NFA languages under Kleene star

43 / 46

NFAs and Regular Language

▶ For every regular expression r show that there is a NFA N such that L(r) = L(N)

▶ Induction on length of r
Inductive cases:

▶ r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

▶ r = r1·r2. Use closure of NFA languages under concatenation

▶ r = (r1)∗. Use closure of NFA languages under Kleene star

43 / 46

NFAs and Regular Language

▶ For every regular expression r show that there is a NFA N such that L(r) = L(N)

▶ Induction on length of r
Inductive cases:

▶ r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that there is NFA N
s.t L(N) = L(N1) ∪ L(N2), hence L(N) = L(r)

▶ r = r1·r2. Use closure of NFA languages under concatenation

▶ r = (r1)∗. Use closure of NFA languages under Kleene star

43 / 46

Example

(ε+0)(1+10)*

(ε+0) (1+10)*

ε

0
(1+10) *

44 / 46

Example

ε

0
(1+10) *

ε

0 1
*10

ε

0
1

*1	 0

45 / 46

Example
Final NFA simplified slightly to reduce states

ε

0
1

*1	 0

0 1

ε

0

ε 42

3

1

1 0

ε

46 / 46

	NFA Introduction
	Formal definition of NFA
	Extending the transition function to strings

	Constructing NFAs
	Closure Properties of NFAs
	NFAs capture Regular Languages

