Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

Strings and Languages

Lecture 1
Tuesday, August 27, 2024

ATEXed: August 29, 2024 10:14

1/50

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

1.1
Strings

2/50

Alphabet

An alphabet is a finite set of symbols.

3/50

Alphabet

An alphabet is a finite set of symbols.
Examples of alphabets:

» ¥ = {0,1},

» ¥ ={a,b,c,...,z},

» ASCIIL.

> UTFS.

» ¥ = {(moveforward), (moveback)}

3/50

String Definitions

Definition 1.1.

1. A string/word over X is a finite sequence of symbols over . For example,
‘0101001', ‘string’, ' (moveback) (rotate90)’

2. € is the empty string.

3. The length of a string w (denoted by |w/|) is the number of symbols in w. For
example, [101] =3, |[¢| =0

4. For integer n > 0, X" is set of all strings over X of length n. X* is the set of all
strings over X.

4/50

Inductive/recursive definition of strings

Formal definition of a string:

» ¢ is a string of length 0
» ax is a string if a € X and x is a string. The length of ax is 1 + |x]|
The above definition helps prove statements rigorously via induction.

» Alternative recursive definition useful in some proofs: xa is a string if a € X and x
is a string. The length of xa is 1 + |x|

5/50

Convention

» a,b,c,...denote elements of
» w,Xx,y,Zz,...denote strings
> A, B, C,... denote sets of strings

6/50

Much ado about nothing

» € is a string containing no symbols. It is not a set
» {e} is a set containing one string: the empty string. It is a set, not a string.
» () is the empty set. It contains no strings.

> {0} is a set containing one element, which itself is a set that contains no elements.

7/50

Concatenation and properties

» If x and y are strings then xy denotes their concatenation.
» concatenation defined recursively :

> xy=yifx=c¢€
> xy=xify=c¢€
> xy = a(wy) if x = aw

8/50

Concatenation and properties

» If x and y are strings then xy denotes their concatenation.
» concatenation defined recursively :

> xy=yifx=c¢€
> xy=xify=c¢€
> xy = a(wy) if x = aw
P> xy sometimes written as xey.

» concatenation is associative:

8/50

Concatenation and properties

» If x and y are strings then xy denotes their concatenation.
» concatenation defined recursively :

> xy=yifx=c¢€
> xy=xify=c¢€
> xy = a(wy) if x = aw
P> xy sometimes written as xey.

> concatenation is associative: (uv)w = u(vw)
hence write uvw = (uv)w = u(vw)

8/50

Concatenation and properties

» If x and y are strings then xy denotes their concatenation.
» concatenation defined recursively :

> xy=yifx=c¢€
> xy=xify=c¢€
> xy = a(wy) if x = aw
P> xy sometimes written as xey.

> concatenation is associative: (uv)w = u(vw)
hence write uvw = (uv)w = u(vw)

» not commutative: uv not necessarily equal to vu

8/50

Concatenation and properties

v

If x and y are strings then xy denotes their concatenation.
concatenation defined recursively :

> xy=yifx=c¢€

> xy=xify=c¢€

> xy = a(wy) if x = aw
Xy sometimes written as xey.

concatenation is associative: (uv)w = u(vw)
hence write uvw = (uv)w = u(vw)

not commutative: uv not necessarily equal to vu

The identity element is the empty string €:

€EU = uUe = u.

8/50

Substrings, prefix, suffix

Definition 1.2.
v is substring of w <= there exist strings x, y such that w = xvy.
» If x = € then v is a prefix of w

» If y = € then v is a suffix of w

9/50

String exponents

Definition 1.3.

If w is a string then w" is defined inductively as follows:
w'=€eifn=0
w'=ww"1lifn>0

Example: (blah)* = blahblahblahblah.

10/50

Set Concatenation

Definition 1.4.

Given two sets X and Y of strings (over some common alphabet X) the
concatenation of X and Y is

XY ={xy[xeX,ycY}

11/50

Set Concatenation

Definition 1.4.

Given two sets X and Y of strings (over some common alphabet X) the
concatenation of X and Y is

XY ={xy[xeX,ycY}

Example 1.5.
X = {fido, rover, spot},
Y = {fluffy, tabby}

-
XY = {fidofluffy, fidotabby, roverfluffy, . ..}.

11/50

2* and languages

Definition 1.6.
1. X" is the set of all strings of length n. Defined inductively:
Y"={e}ifn=0
>"=33"1ifn>0
2. ¥ = Up>oX" is the set of all finite length strings
3. Tt = Up>1X" is the set of non-empty strings.

12/50

2* and languages

Definition 1.6.
1. X" is the set of all strings of length n. Defined inductively:
Y"={e}ifn=0
>"=33"1ifn>0
2. ¥ = Up>oX" is the set of all finite length strings
3. Tt = Up>1X" is the set of non-empty strings.

Definition 1.7.

A language L is a set of strings over X. In other words L C X*.

12/50

Exercise

Answer the following questions taking X = {0,1}.
1. What is X7
How many elements are there in X37?
How many elements are there in "7
What is the length of the longest string in X7
Does X* have strings of infinite length?
If |u| = 2 and |v| = 3 then what is |uev|?
Let u be an arbitrary string in £*. What is eu? What is ue?

Is uv = vu for every u,v € *7

© 0N ok W

Is (uv)w = u(vw) for every u, v, w € T*?

13/50

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

1.1.1

Exercise solved in detail

14 /50

Exercise

Answer the following questions taking X = {0,1}.
1. What is X97?

15 /50

Exercise

Answer the following questions taking X = {0,1}.
1. What is X97?

2. How many elements are there in £37?

15 /50

Exercise

Answer the following questions taking X = {0,1}.
1. What is X97?
2. How many elements are there in £37?

3. How many elements are there in X"7?

15 /50

Exercise
Answer the following questions taking X = {0,1}.
1. What is X7
2. How many elements are there in £37?
3. How many elements are there in X"7?
4. What is the length of the longest string in X7

15 /50

Exercise

Answer the following questions taking X = {0,1}.
1. What is X7

How many elements are there in X37?

How many elements are there in X"7

What is the length of the longest string in X7

os W

Does X* have strings of infinite length?

15 /50

Exercise

Answer the following questions taking X = {0,1}.

1. What is X9?

A

How many elements are there in X37?

How many elements are there in X"7

What is the length of the longest string in X7
Does X* have strings of infinite length?

If [u| = 2 and |v| = 3 then what is |uev|?

15 /50

Exercise

Answer the following questions taking X = {0,1}.
1. What is X7
How many elements are there in X37?
How many elements are there in X"7
What is the length of the longest string in X7
Does X* have strings of infinite length?
If [u| = 2 and |v| = 3 then what is |uev|?
Let u be an arbitrary string in £*. What is eu? What is ue?

No ok wN

15 /50

Exercise

Answer the following questions taking X = {0,1}.
1. What is X7
How many elements are there in X37?
How many elements are there in X"7
What is the length of the longest string in X7
Does X* have strings of infinite length?
If [u| = 2 and |v| = 3 then what is |uev|?
Let u be an arbitrary string in £*. What is eu? What is ue?

N o RN

Is uv = vu for every u,v € *7

15 /50

Exercise

Answer the following questions taking X = {0,1}.
1. What is X7
How many elements are there in X37?
How many elements are there in X"7
What is the length of the longest string in X7
Does X* have strings of infinite length?
If [u| = 2 and |v| = 3 then what is |uev|?
Let u be an arbitrary string in £*. What is eu? What is ue?

Is uv = vu for every u,v € *7

© 0N ok W

Is (uv)w = u(vw) for every u, v, w € X*?

15 /50

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

1.2

Countable sets, countably infinite sets, and
languages

16 /50

Countable sets

Definition 1.1.

A set X is countable, if its elements can be counted.
There exists an injective mapping from X to natural numbers N = {1,2,3,...}.

17/50

Countable sets

Definition 1.1.

A set X is countable, if its elements can be counted.
There exists an injective mapping from X to natural numbers N = {1,2,3,...}.

Example 1.2.

All finite sets are countable: {aba, ima, saba, safta, uma, upa}.

17 /50

Countable sets

Definition 1.1.

A set X is countable, if its elements can be counted.
There exists an injective mapping from X to natural numbers N = {1,2,3,...}.

Example 1.2.

All finite sets are countable: {aba, ima, saba, safta, uma, upa}.

Example 1.3.
N x N = {(i,j) | i,j € N} is countable.

17 /50

Countable sets

Definition 1.1.

A set X is countable, if its elements can be counted.
There exists an injective mapping from X to natural numbers N = {1,2,3,...}.

Example 1.2.

All finite sets are countable: {aba, ima, saba, safta, uma, upa}.

Example 1.3.
N x N = {(i,j) | i,j € N} is countable.

: Proof: f(i,j) = 2'3.

17 /50

N X N is countable

18 /50

N X N is countable

18 /50

Canonical order and countability of strings

Definition 1.4.
A set X is countably infinite (countable and infinite) if there is a bijection f between

the natural numbers and X.

Alternatively: X is countably infinite if X is an infinite set and there enumeration of

elements of X.

19/50

The set of all strings is countable

2 * js countable for any finite X.

Theorem 1.5. J

20 /50

The set of all strings is countable

Theorem 1.5.
X * s countable for any finite X. J

Enumerate strings in order of increasing length and for each given length enumerate
strings in dictionary order (based on some fixed ordering of X).

20 /50

The set of all strings is countable

2 * js countable for any finite X.

Theorem 1.5. J

Enumerate strings in order of increasing length and for each given length enumerate
strings in dictionary order (based on some fixed ordering of X).

Example: {0,1}* = {e, 0, 1, 00, 01, 10, 11, 000, 001, 010, .. .}.

20 /50

The set of all strings is countable

2 * js countable for any finite X.

Theorem 1.5. J

Enumerate strings in order of increasing length and for each given length enumerate
strings in dictionary order (based on some fixed ordering of X).

Example: {0,1}* = {e, 0,1, 00, 01,10,11, 000,001, 010,...}.
{a, b, c}* = {e,a, b, c, aa, ab, ac, ba, bb, bc, . . .}

20 /50

Exercise |
Question: Is X* X * = {(x,y) | x,y € X*} countable?

21/50

Exercise |
Question: Is X* X * = {(x,y) | x,y € X*} countable?

Question: Is ©* X X* x * = {(x,y,z) | x,y¥,x € £*} countable?

21/50

Exercise Il

Answer the following questions taking X = {0,1}.

1. Is a finite set countable?

No ok wN

X is countable, and the set Y C X, then is the set Y countable?

If X and Y are countable, is X \ Y countable?

Are all infinite sets countably infinite?

If X; is a countable infinite set, for i = 1,...,700, is U; X; countable infinite?
If X; is a countable infinite set, for i = 1,...,, is U;X; countable infinite?

Let X be a countable infinite set, and consider its power set
2X ={Y | Y C x}.

The statement “the set 2% is countable” is correct?

22/50

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

1.3

Inductive proofs on strings

23/50

Inductive proofs on strings
Inductive proofs on strings and related problems follow inductive definitions.

Definition 1.1.
The reverse wR of a string w is defined as follows:
> wR=cifw=c¢

» wf = xRaif w = ax for some a € X and string x

(dog e cat)R = (cat)Re(dog)R = tacgod.

24 /50

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition 1.1.
The reverse wR of a string w is defined as follows:
> wR=cifw=c¢

» wf = xRaif w = ax for some a € X and string x

Theorem 1.2.

Prove that for any strings u,v € X*, (uv)R = vRuR.

Example: (dogecat)R = (cat)Re(dog)R = tacgod.

24 /50

Principle of mathematical induction

Induction is a way to prove statements of the form Vn > 0, P(n) where P(n) is a
statement that holds for integer n.

Example: Prove that Y . i = n(n+ 1)/2 for all n.

Induction template:
> Base case: Prove P(0)

» Induction hypothesis: Let k > 0 be an arbitrary integer. Assume that P(n)
holds for any n < k.

» Induction Step: Prove that P(n) holds, for n = k + 1.

25/50

Structured induction

1. Unlike simple cases we are working with...

2. ...induction proofs also work for more complicated “structures”.
3. Such as strings, tuples of strings, graphs etc.
4

. See class notes on induction for details.

26 /50

Proving the theorem

Theorem 1.3.

Prove that for any strings u,v € X*, (uv)R = vRuR.

Proof: by induction.

On what?? |uv| = |u| + |v|?
|ul?

lv|?

What does it mean “induction on |ul|"?

27 /50

].3]. Three proofs by induction

28/50

1.3.1.1:induction on |u|

29/50

By induction on |ul|
Theorem 1.4.

Prove that for any strings u,v € £*, (uv)R = vRuR.

Proof by induction on |u| means that we are proving the following.

Base case: Let u be an arbitrary string of length 0. u = € since there is only one such
string. Then

(uv)R = (ev)R = vR = vRe = vReR = vRuR

30/50

By induction on |ul|

Theorem 1.4.

Prove that for any strings u,v € £*, (uv)R = vRuR.

Proof by induction on |u| means that we are proving the following.

Base case: Let u be an arbitrary string of length 0. u = € since there is only one such
string. Then

(uv)R = (ev)R = vR = vRe = vReR = vRUR

Induction hypothesis: Vn > 0, for any string u of length n:
For all strings v € X*, (uv)® = vRuR.

30/50

By induction on |ul|

Theorem 1.4.

Prove that for any strings u,v € £*, (uv)R = vRuR.

Proof by induction on |u| means that we are proving the following.
Base case: Let u be an arbitrary string of length 0. u = € since there is only one such
string. Then
(uv)R = (ev)R = vR = vRe = vReR = vRUR
Induction hypothesis: Vn > 0, for any string u of length n:
For all strings v € X*, (uv)® = vRuR.
No assumption about v, hence statement holds for all v € X*.

30/50

Inductive step

» Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.
» Since |u| = n > 0 we have u = ay for some string y with |y| < nand a € X.

» Then

31/50

Inductive step

» Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.
» Since |u| = n > 0 we have u = ay for some string y with |y| < nand a € X.

» Then

(uv)® =

31/50

Inductive step

» Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.

» Since |u| = n > 0 we have u = ay for some string y with |y| < nand a € X.
» Then

(uv)? ((ay)v)®
(a(yv))F
(yv)Ra®
(vRyR)aR
v(y"a")
VZ (iy)R

31/50

1.3.1.2:A failed attempt: Induction on |v|

32/50

Induction on |v|

Prove that for any strings u,v € X*, (uv)R = vRuR.

Theorem 1.5. J

Proof by induction on |v| means that we are proving the following.

33/50

Induction on |v|

Theorem 1.5.

Prove that for any strings u,v € £*, (uv)R = vRuR.

Proof by induction on |v| means that we are proving the following.
Induction hypothesis: Vn > 0, for any string v of length n:
For all strings u € £*, (uv)® = vRuR.

33/50

Induction on |v|

Theorem 1.5.

Prove that for any strings u,v € £*, (uv)R = vRuR.

Proof by induction on |v| means that we are proving the following.
Induction hypothesis: Vn > 0, for any string v of length n:
For all strings u € £*, (uv)® = vRuR.

Base case: Let v be an arbitrary string of length 0. v = € since there is only one such
string. Then

(uv)R = (ue)R = u® = eu® = ®uf = vRU®

33/50

Inductive step

» Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.

» Since |v| = n > 0 we have v = ay for some string y with |y| < nand a € X.
» Then

(uv)® = (u(ay))®
= ((ua)y)?
= y®(ua)®
= 7

34/50

Inductive step

» Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.

» Since |v| = n > 0 we have v = ay for some string y with |y| < nand a € X.
» Then

(uv)® = (u(ay))®
= ((ua)y)?
= y®(ua)®
=

Cannot simplify (ua)® using inductive hypothesis. Can simplify if we extend base case
to include n = 0 and n = 1. However, n = 1 itself requires induction on |ul|!

34/50

1.3.1.3:induction on |u| + |v|

35/50

Induction on |u| + |v|

Prove that for any strings u,v € X*, (uv)R = vRuR.

Theorem 1.6. J

Proof by induction on |u| 4+ |v| means that we are proving the following.

36 /50

Induction on |u| + |v|
Theorem 1.6.

Prove that for any strings u,v € £*, (uv)R = vRuR.

Proof by induction on |u| 4+ |v| means that we are proving the following.
Induction hypothesis:

36 /50

Induction on |u| + |v|
Theorem 1.6.

Prove that for any strings u,v € £*, (uv)R = vRuR.

Proof by induction on |u| 4+ |v| means that we are proving the following.

Induction hypothesis: Vn > 0, for any u, v € * with |u| + |v| < n,
(uv)R = vRuR.

36 /50

Induction on |u| + |v|

Theorem 1.6.

Prove that for any strings u,v € £*, (uv)R = vRuR.

Proof by induction on |u| 4+ |v| means that we are proving the following.
Induction hypothesis: Vn > 0, for any u, v € * with |u| + |v| < n,
(uv)R = vRuR.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies
u,v =e.

36 /50

Induction on |u| + |v|

Theorem 1.6.

Prove that for any strings u,v € £*, (uv)R = vRuR.

Proof by induction on |u| 4+ |v| means that we are proving the following.
Induction hypothesis: Vn > 0, for any u, v € * with |u| + |v| < n,
(uv)R = vRuR.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies
u,v =e.

Inductive step: n > 0. Let u, v be arbitrary strings such that |u| + |v| = n.

36 /50

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

1.4
Languages

37/50

Languages

Definition 1.1.
A language L is a set of strings over 2. In other words L C X*. J

38/50

Languages

Definition 1.1.
A language L is a set of strings over X. In other words L C X*. J

Standard set operations apply to languages.
» For languages A, B the concatenation of A, Bis AB = {xy | x € A,y € B}.

» For languages A, B, their union is A U B, intersection is AN B, and difference is
A\ B (also written as A — B).

» For language A C X* the complement of Ais A = X* \ A.

38/50

Exponentiation, Kleene star etc

Definition 1.2.
For a language L C X* and n € N, define L" inductively as follows.

n_ | {€} ifn=0
L _{Lo(L"‘l) ifn>0

And define L* = U,>oL", and LT = U,>1L"

39/50

Exercise

Problem 1.3.
Answer the following questions taking A, B C {0,1}*.
1. Ise={e€}?Ish = {e}?
2. What is Qe A? What is Ae()?
3. Whatis {€}*A? And Ae{€}?
4. If|A| =2 and |B| = 3, what is |AeB|?

40 /50

Exercise

Problem 1.4.

Consider languages over X = {0,1}.
1.

ol > @

What is §° 7

If|L| = 2, then what is |L*|?
What is 0*, {e}*, €*?

For what L is L* finite?
What is 0F, {e}*, et ?

41/50

Languages and Computation

What are we interested in computing? Mostly functions.

Informal definition: An algorithm A computes a function f : £* — X* if for all

w € X* the algorithm A on input w terminates in a finite number of steps and
outputs f(w).

Examples of functions:
» Numerical functions: length, addition, multiplication, division etc
» Given graph G and s, t find shortest paths from s to t
» Given program M check if M halts on empty input
» Posts Correspondence problem

42/50

Languages and Computation

Definition 1.5.
A function f over * is a boolean if f : ¥* — {0,1}. J

43/50

Languages and Computation

Definition 1.5.
A function f over * is a boolean if f : ¥* — {0,1}. J

Observation: There is a bijection between boolean functions and languages.

» Given boolean function f : £* — {0, 1} define language
L={we x| f(w)=1}

43/50

Languages and Computation

Definition 1.5.
A function f over * is a boolean if f : ¥* — {0,1}.

Observation: There is a bijection between boolean functions and languages.
» Given boolean function f : £* — {0, 1} define language
L ={weXxX|f(w)=1}
» Given language L C X* define boolean function f : ¥* — {0, 1} as follows:
f(w) =1if w € L and f(w) = 0 otherwise.

43/50

Language recognition problem

Definition 1.6.

For a language L C X* the language recognition problem associate with L is the
following: given w € X* isw € L7

44 /50

Language recognition problem

Definition 1.6.

For a language L C X* the language recognition problem associate with L is the
following: given w € X* isw € L?

» Equivalent to the problem of “computing” the function f;.
» Language recognition is same as boolean function computation

» How difficult is a function f to compute? How difficult is the recognizing L¢?

44 /50

Language recognition problem

Definition 1.6.
For a language L C X* the language recognition problem associate with L is the
following: given w € X* isw € L?

» Equivalent to the problem of “computing” the function f;.

» Language recognition is same as boolean function computation

» How difficult is a function f to compute? How difficult is the recognizing L¢?
Why two different views? Helpful in understanding different aspects?

44 /50

How many languages are there?

The answer my friend is blowing in the slides.
Recall:

Definition 1.7.

An set X is countable if there is a bijection f between the natural numbers and A.

Theorem 1.8.

2 * js countable for every finite X.

The set of all languages is P(X*) the power set of X*

45 /50

How many languages are there?

The answer my friend is blowing in the slides.
Recall:

Definition 1.7.

An set X is countable if there is a bijection f between the natural numbers and A.

Theorem 1.8.

2 * js countable for every finite X.

The set of all languages is P(X*) the power set of X*

Theorem 1.9 (Cantor).
P(X*) is not countable for any finite X, with |X| > 0.

45 /50

Cantor’s diagonalization argument

Theorem 1.10 (Cantor).
P(N) is not countable.

» Suppose P(N) is countable infinite. Let Sy, Sy, ..., be an enumeration of all
subsets of numbers.

» Let D be the following diagonal subset of numbers.

D={i|i¢S}

» Since D is a set of numbers, by assumption, D = §; for some j.
» Question: Is j € D?

46 /50

Consequences for Computation

» How many C programs are there? The set of C programs is countable since each
of them can be represented as a string over a finite alphabet.

» How many languages are there? Uncountably many!

» Hence some (in fact almost all!) languages/boolean functions do not have any C
program to recognize them.

Questions:

47 /50

Consequences for Computation

» How many C programs are there? The set of C programs is countable since each
of them can be represented as a string over a finite alphabet.

» How many languages are there? Uncountably many!
» Hence some (in fact almost all!) languages/boolean functions do not have any C
program to recognize them.
Questions:
» Maybe interesting languages/functions have C programs and hence computable.
Only uninteresting languors uncomputable?
» Why should C programs be the definition of computability?

» Ok, there are difficult problems/languages. what languages are computable and
which have efficient algorithms?

47 /50

Easy languages

Definition 1.11.
A language L C X* is finite if |L| = n for some integer n. J

Exercise: Prove the following.

The set of all finite languages is countable.

Theorem 1.12. J

48 /50

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

1.5

Overview of whats coming on finite
automata/complexity

49 /50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.

50 /50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.
2. Regular languages.

50 /50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.
2. Regular languages.
2.1 Regular expressions.

50 /50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.
2. Regular languages.

2.1 Regular expressions.
2.2 DFA: Deterministic finite automata.

50 /50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.
2. Regular languages.

2.1 Regular expressions.
2.2 DFA: Deterministic finite automata.
2.3 NFA: Non-deterministic finite automata.

50 /50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.
2. Regular languages.

2.1 Regular expressions.

2.2 DFA: Deterministic finite automata.

2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

50 /50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.
2. Regular languages.

2.1 Regular expressions.

2.2 DFA: Deterministic finite automata.

2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).

50 /50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.
2. Regular languages.

2.1 Regular expressions.

2.2 DFA: Deterministic finite automata.

2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).
4. Turing machines: Decidable languages.

50 /50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.
2. Regular languages.

2.1 Regular expressions.

2.2 DFA: Deterministic finite automata.

2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).
4. Turing machines: Decidable languages.
5. TM Undecidable languages (halting theorem).

50 /50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.
2. Regular languages.

2.1 Regular expressions.

2.2 DFA: Deterministic finite automata.

2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).

4. Turing machines: Decidable languages.

5. TM Undecidable languages (halting theorem).
6. TM Unrecognizable languages.

50 /50

	Strings
	Exercise solved in detail

	Countable sets, countably infinite sets, and languages
	Inductive proofs on strings
	Three proofs by induction

	Languages
	Overview of whats coming on finite automata/complexity

