
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

Strings and Languages
Lecture 1
Tuesday, August 27, 2024

LATEXed: August 29, 2024 10:14

1 / 50

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

1.1
Strings
FLNAME:1.1.0.0 ZZZ:1.1.0.0 Strings

2 / 50

Alphabet

An alphabet is a finite set of symbols.
Examples of alphabets:

▶ Σ = {0, 1},

▶ Σ = {a, b, c, . . . , z},

▶ ASCII.

▶ UTF8.

▶ Σ = {⟨moveforward⟩, ⟨moveback⟩}

3 / 50

Alphabet

An alphabet is a finite set of symbols.
Examples of alphabets:

▶ Σ = {0, 1},

▶ Σ = {a, b, c, . . . , z},

▶ ASCII.

▶ UTF8.

▶ Σ = {⟨moveforward⟩, ⟨moveback⟩}

3 / 50

String Definitions

Definition 1.1.
1. A string/word over Σ is a finite sequence of symbols over Σ. For example,

‘0101001’, ‘string ’, ‘⟨moveback⟩⟨rotate90⟩’
2. ϵ is the empty string.

3. The length of a string w (denoted by |w |) is the number of symbols in w . For
example, |101| = 3, |ϵ| = 0

4. For integer n ≥ 0, Σn is set of all strings over Σ of length n. Σ∗ is the set of all
strings over Σ.

4 / 50

Inductive/recursive definition of strings

Formal definition of a string:

▶ ϵ is a string of length 0

▶ ax is a string if a ∈ Σ and x is a string. The length of ax is 1 + |x|
The above definition helps prove statements rigorously via induction.

▶ Alternative recursive definition useful in some proofs: xa is a string if a ∈ Σ and x
is a string. The length of xa is 1 + |x|

5 / 50

Convention

▶ a, b, c, . . . denote elements of Σ

▶ w , x, y , z, . . . denote strings

▶ A,B,C , . . . denote sets of strings

6 / 50

Much ado about nothing

▶ ϵ is a string containing no symbols. It is not a set

▶ {ϵ} is a set containing one string: the empty string. It is a set, not a string.

▶ ∅ is the empty set. It contains no strings.

▶ {∅} is a set containing one element, which itself is a set that contains no elements.

7 / 50

Concatenation and properties

▶ If x and y are strings then xy denotes their concatenation.

▶ concatenation defined recursively :
▶ xy = y if x = ϵ
▶ xy = x if y = ϵ
▶ xy = a(wy) if x = aw

▶ xy sometimes written as x·y .
▶ concatenation is associative: (uv)w = u(vw)

hence write uvw ≡ (uv)w = u(vw)

▶ not commutative: uv not necessarily equal to vu
▶ The identity element is the empty string ϵ:

ϵu = uϵ = u.

8 / 50

Concatenation and properties

▶ If x and y are strings then xy denotes their concatenation.

▶ concatenation defined recursively :
▶ xy = y if x = ϵ
▶ xy = x if y = ϵ
▶ xy = a(wy) if x = aw

▶ xy sometimes written as x·y .
▶ concatenation is associative: (uv)w = u(vw)

hence write uvw ≡ (uv)w = u(vw)

▶ not commutative: uv not necessarily equal to vu
▶ The identity element is the empty string ϵ:

ϵu = uϵ = u.

8 / 50

Concatenation and properties

▶ If x and y are strings then xy denotes their concatenation.

▶ concatenation defined recursively :
▶ xy = y if x = ϵ
▶ xy = x if y = ϵ
▶ xy = a(wy) if x = aw

▶ xy sometimes written as x·y .
▶ concatenation is associative: (uv)w = u(vw)

hence write uvw ≡ (uv)w = u(vw)

▶ not commutative: uv not necessarily equal to vu
▶ The identity element is the empty string ϵ:

ϵu = uϵ = u.

8 / 50

Concatenation and properties

▶ If x and y are strings then xy denotes their concatenation.

▶ concatenation defined recursively :
▶ xy = y if x = ϵ
▶ xy = x if y = ϵ
▶ xy = a(wy) if x = aw

▶ xy sometimes written as x·y .
▶ concatenation is associative: (uv)w = u(vw)

hence write uvw ≡ (uv)w = u(vw)

▶ not commutative: uv not necessarily equal to vu
▶ The identity element is the empty string ϵ:

ϵu = uϵ = u.

8 / 50

Concatenation and properties

▶ If x and y are strings then xy denotes their concatenation.

▶ concatenation defined recursively :
▶ xy = y if x = ϵ
▶ xy = x if y = ϵ
▶ xy = a(wy) if x = aw

▶ xy sometimes written as x·y .
▶ concatenation is associative: (uv)w = u(vw)

hence write uvw ≡ (uv)w = u(vw)

▶ not commutative: uv not necessarily equal to vu
▶ The identity element is the empty string ϵ:

ϵu = uϵ = u.

8 / 50

Substrings, prefix, suffix

Definition 1.2.
v is substring of w ⇐⇒ there exist strings x, y such that w = xvy .
▶ If x = ϵ then v is a prefix of w
▶ If y = ϵ then v is a suffix of w

9 / 50

String exponents

Definition 1.3.
If w is a string then wn is defined inductively as follows:
wn = ϵ if n = 0
wn = wwn−1 if n > 0

Example: (blah)4 = blahblahblahblah.

10 / 50

Set Concatenation

Definition 1.4.
Given two sets X and Y of strings (over some common alphabet Σ) the
concatenation of X and Y is

XY = {xy | x ∈ X , y ∈ Y }

11 / 50

Set Concatenation

Definition 1.4.
Given two sets X and Y of strings (over some common alphabet Σ) the
concatenation of X and Y is

XY = {xy | x ∈ X , y ∈ Y }

Example 1.5.
X = {fido, rover , spot},
Y = {fluffy , tabby}
=⇒
XY = {fidofluffy , fidotabby , roverfluffy , . . .}.

11 / 50

Σ∗ and languages

Definition 1.6.
1. Σn is the set of all strings of length n. Defined inductively:

Σn = {ϵ} if n = 0
Σn = ΣΣn−1 if n > 0

2. Σ∗ = ∪n≥0Σn is the set of all finite length strings

3. Σ+ = ∪n≥1Σn is the set of non-empty strings.

Definition 1.7.
A language L is a set of strings over Σ. In other words L ⊆ Σ∗.

12 / 50

Σ∗ and languages

Definition 1.6.
1. Σn is the set of all strings of length n. Defined inductively:

Σn = {ϵ} if n = 0
Σn = ΣΣn−1 if n > 0

2. Σ∗ = ∪n≥0Σn is the set of all finite length strings

3. Σ+ = ∪n≥1Σn is the set of non-empty strings.

Definition 1.7.
A language L is a set of strings over Σ. In other words L ⊆ Σ∗.

12 / 50

Exercise

Answer the following questions taking Σ = {0, 1}.
1. What is Σ0?

2. How many elements are there in Σ3?

3. How many elements are there in Σn?

4. What is the length of the longest string in Σ?

5. Does Σ∗ have strings of infinite length?

6. If |u| = 2 and |v | = 3 then what is |u·v |?
7. Let u be an arbitrary string in Σ∗. What is ϵu? What is uϵ?
8. Is uv = vu for every u, v ∈ Σ∗?

9. Is (uv)w = u(vw) for every u, v ,w ∈ Σ∗?

13 / 50

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

1.1.1
Exercise solved in detail
FLNAME:1.1.1.0 ZZZ:1.1.1.0 Exercise solved in detail

14 / 50

Exercise

Answer the following questions taking Σ = {0, 1}.
1. What is Σ0?

2. How many elements are there in Σ3?

3. How many elements are there in Σn?

4. What is the length of the longest string in Σ?

5. Does Σ∗ have strings of infinite length?

6. If |u| = 2 and |v | = 3 then what is |u·v |?
7. Let u be an arbitrary string in Σ∗. What is ϵu? What is uϵ?
8. Is uv = vu for every u, v ∈ Σ∗?

9. Is (uv)w = u(vw) for every u, v ,w ∈ Σ∗?

15 / 50

Exercise

Answer the following questions taking Σ = {0, 1}.
1. What is Σ0?

2. How many elements are there in Σ3?

3. How many elements are there in Σn?

4. What is the length of the longest string in Σ?

5. Does Σ∗ have strings of infinite length?

6. If |u| = 2 and |v | = 3 then what is |u·v |?
7. Let u be an arbitrary string in Σ∗. What is ϵu? What is uϵ?
8. Is uv = vu for every u, v ∈ Σ∗?

9. Is (uv)w = u(vw) for every u, v ,w ∈ Σ∗?

15 / 50

Exercise

Answer the following questions taking Σ = {0, 1}.
1. What is Σ0?

2. How many elements are there in Σ3?

3. How many elements are there in Σn?

4. What is the length of the longest string in Σ?

5. Does Σ∗ have strings of infinite length?

6. If |u| = 2 and |v | = 3 then what is |u·v |?
7. Let u be an arbitrary string in Σ∗. What is ϵu? What is uϵ?
8. Is uv = vu for every u, v ∈ Σ∗?

9. Is (uv)w = u(vw) for every u, v ,w ∈ Σ∗?

15 / 50

Exercise

Answer the following questions taking Σ = {0, 1}.
1. What is Σ0?

2. How many elements are there in Σ3?

3. How many elements are there in Σn?

4. What is the length of the longest string in Σ?

5. Does Σ∗ have strings of infinite length?

6. If |u| = 2 and |v | = 3 then what is |u·v |?
7. Let u be an arbitrary string in Σ∗. What is ϵu? What is uϵ?
8. Is uv = vu for every u, v ∈ Σ∗?

9. Is (uv)w = u(vw) for every u, v ,w ∈ Σ∗?

15 / 50

Exercise

Answer the following questions taking Σ = {0, 1}.
1. What is Σ0?

2. How many elements are there in Σ3?

3. How many elements are there in Σn?

4. What is the length of the longest string in Σ?

5. Does Σ∗ have strings of infinite length?

6. If |u| = 2 and |v | = 3 then what is |u·v |?
7. Let u be an arbitrary string in Σ∗. What is ϵu? What is uϵ?
8. Is uv = vu for every u, v ∈ Σ∗?

9. Is (uv)w = u(vw) for every u, v ,w ∈ Σ∗?

15 / 50

Exercise

Answer the following questions taking Σ = {0, 1}.
1. What is Σ0?

2. How many elements are there in Σ3?

3. How many elements are there in Σn?

4. What is the length of the longest string in Σ?

5. Does Σ∗ have strings of infinite length?

6. If |u| = 2 and |v | = 3 then what is |u·v |?
7. Let u be an arbitrary string in Σ∗. What is ϵu? What is uϵ?
8. Is uv = vu for every u, v ∈ Σ∗?

9. Is (uv)w = u(vw) for every u, v ,w ∈ Σ∗?

15 / 50

Exercise

Answer the following questions taking Σ = {0, 1}.
1. What is Σ0?

2. How many elements are there in Σ3?

3. How many elements are there in Σn?

4. What is the length of the longest string in Σ?

5. Does Σ∗ have strings of infinite length?

6. If |u| = 2 and |v | = 3 then what is |u·v |?
7. Let u be an arbitrary string in Σ∗. What is ϵu? What is uϵ?
8. Is uv = vu for every u, v ∈ Σ∗?

9. Is (uv)w = u(vw) for every u, v ,w ∈ Σ∗?

15 / 50

Exercise

Answer the following questions taking Σ = {0, 1}.
1. What is Σ0?

2. How many elements are there in Σ3?

3. How many elements are there in Σn?

4. What is the length of the longest string in Σ?

5. Does Σ∗ have strings of infinite length?

6. If |u| = 2 and |v | = 3 then what is |u·v |?
7. Let u be an arbitrary string in Σ∗. What is ϵu? What is uϵ?
8. Is uv = vu for every u, v ∈ Σ∗?

9. Is (uv)w = u(vw) for every u, v ,w ∈ Σ∗?

15 / 50

Exercise

Answer the following questions taking Σ = {0, 1}.
1. What is Σ0?

2. How many elements are there in Σ3?

3. How many elements are there in Σn?

4. What is the length of the longest string in Σ?

5. Does Σ∗ have strings of infinite length?

6. If |u| = 2 and |v | = 3 then what is |u·v |?
7. Let u be an arbitrary string in Σ∗. What is ϵu? What is uϵ?
8. Is uv = vu for every u, v ∈ Σ∗?

9. Is (uv)w = u(vw) for every u, v ,w ∈ Σ∗?

15 / 50

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

1.2
Countable sets, countably infinite sets, and
languages
FLNAME:1.2.0.0 ZZZ:1.2.0.0 Countable sets, countably infinite sets, and languages

16 / 50

Countable sets

Definition 1.1.
A set X is countable, if its elements can be counted.
There exists an injective mapping from X to natural numbers N = {1, 2, 3, . . .}.

Example 1.2.
All finite sets are countable: {aba, ima, saba, safta, uma, upa}.

Example 1.3.
N × N = {(i , j) | i , j ∈ N} is countable.

: Proof: f (i , j) = 2i3j .

17 / 50

Countable sets

Definition 1.1.
A set X is countable, if its elements can be counted.
There exists an injective mapping from X to natural numbers N = {1, 2, 3, . . .}.

Example 1.2.
All finite sets are countable: {aba, ima, saba, safta, uma, upa}.

Example 1.3.
N × N = {(i , j) | i , j ∈ N} is countable.

: Proof: f (i , j) = 2i3j .

17 / 50

Countable sets

Definition 1.1.
A set X is countable, if its elements can be counted.
There exists an injective mapping from X to natural numbers N = {1, 2, 3, . . .}.

Example 1.2.
All finite sets are countable: {aba, ima, saba, safta, uma, upa}.

Example 1.3.
N × N = {(i , j) | i , j ∈ N} is countable.

: Proof: f (i , j) = 2i3j .

17 / 50

Countable sets

Definition 1.1.
A set X is countable, if its elements can be counted.
There exists an injective mapping from X to natural numbers N = {1, 2, 3, . . .}.

Example 1.2.
All finite sets are countable: {aba, ima, saba, safta, uma, upa}.

Example 1.3.
N × N = {(i , j) | i , j ∈ N} is countable.

: Proof: f (i , j) = 2i3j .

17 / 50

N × N is countable

18 / 50

N × N is countable

18 / 50

Canonical order and countability of strings

Definition 1.4.
A set X is countably infinite (countable and infinite) if there is a bijection f between
the natural numbers and X .

Alternatively: X is countably infinite if X is an infinite set and there enumeration of
elements of X .

19 / 50

The set of all strings is countable

Theorem 1.5.
Σ∗ is countable for any finite Σ.

Enumerate strings in order of increasing length and for each given length enumerate
strings in dictionary order (based on some fixed ordering of Σ).

Example: {0, 1}∗ = {ϵ, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . .}.
{a, b, c}∗ = {ϵ, a, b, c, aa, ab, ac, ba, bb, bc, . . .}

20 / 50

The set of all strings is countable

Theorem 1.5.
Σ∗ is countable for any finite Σ.

Enumerate strings in order of increasing length and for each given length enumerate
strings in dictionary order (based on some fixed ordering of Σ).

Example: {0, 1}∗ = {ϵ, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . .}.
{a, b, c}∗ = {ϵ, a, b, c, aa, ab, ac, ba, bb, bc, . . .}

20 / 50

The set of all strings is countable

Theorem 1.5.
Σ∗ is countable for any finite Σ.

Enumerate strings in order of increasing length and for each given length enumerate
strings in dictionary order (based on some fixed ordering of Σ).

Example: {0, 1}∗ = {ϵ, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . .}.
{a, b, c}∗ = {ϵ, a, b, c, aa, ab, ac, ba, bb, bc, . . .}

20 / 50

The set of all strings is countable

Theorem 1.5.
Σ∗ is countable for any finite Σ.

Enumerate strings in order of increasing length and for each given length enumerate
strings in dictionary order (based on some fixed ordering of Σ).

Example: {0, 1}∗ = {ϵ, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . .}.
{a, b, c}∗ = {ϵ, a, b, c, aa, ab, ac, ba, bb, bc, . . .}

20 / 50

Exercise I

Question: Is Σ∗ × Σ∗ = {(x, y) | x, y ∈ Σ∗} countable?

Question: Is Σ∗ × Σ∗ × Σ∗ = {(x, y , z) | x, y , x ∈ Σ∗} countable?

21 / 50

Exercise I

Question: Is Σ∗ × Σ∗ = {(x, y) | x, y ∈ Σ∗} countable?

Question: Is Σ∗ × Σ∗ × Σ∗ = {(x, y , z) | x, y , x ∈ Σ∗} countable?

21 / 50

Exercise II

Answer the following questions taking Σ = {0, 1}.
1. Is a finite set countable?

2. X is countable, and the set Y ⊆ X , then is the set Y countable?

3. If X and Y are countable, is X \ Y countable?

4. Are all infinite sets countably infinite?

5. If Xi is a countable infinite set, for i = 1, . . . , 700, is ∪iXi countable infinite?

6. If Xi is a countable infinite set, for i = 1, . . . ,, is ∪iXi countable infinite?

7. Let X be a countable infinite set, and consider its power set

2X = {Y | Y ⊆ x} .

The statement “the set 2X is countable” is correct?

22 / 50

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

1.3
Inductive proofs on strings
FLNAME:1.3.0.0 ZZZ:1.3.0.0 Inductive proofs on strings

23 / 50

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition 1.1.
The reverse wR of a string w is defined as follows:

▶ wR = ϵ if w = ϵ

▶ wR = xRa if w = ax for some a ∈ Σ and string x

Theorem 1.2.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Example: (dog·cat)R = (cat)R·(dog)R = tacgod .

24 / 50

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition 1.1.
The reverse wR of a string w is defined as follows:

▶ wR = ϵ if w = ϵ

▶ wR = xRa if w = ax for some a ∈ Σ and string x

Theorem 1.2.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Example: (dog·cat)R = (cat)R·(dog)R = tacgod .

24 / 50

Principle of mathematical induction

Induction is a way to prove statements of the form ∀n ≥ 0,P(n) where P(n) is a
statement that holds for integer n.

Example: Prove that
∑n

i=0 i = n(n + 1)/2 for all n.

Induction template:

▶ Base case: Prove P(0)

▶ Induction hypothesis: Let k > 0 be an arbitrary integer. Assume that P(n)
holds for any n ≤ k .

▶ Induction Step: Prove that P(n) holds, for n = k + 1.

25 / 50

Structured induction

1. Unlike simple cases we are working with...

2. ...induction proofs also work for more complicated “structures”.

3. Such as strings, tuples of strings, graphs etc.

4. See class notes on induction for details.

26 / 50

Proving the theorem

Theorem 1.3.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof: by induction.
On what?? |uv | = |u| + |v |?
|u|?
|v |?

What does it mean “induction on |u|”?

27 / 50

1.3.1: Three proofs by induction

28 / 50

1.3.1.1:Induction on |u|

29 / 50

By induction on |u|
Theorem 1.4.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |u| means that we are proving the following.
Base case: Let u be an arbitrary string of length 0. u = ϵ since there is only one such
string. Then
(uv)R = (ϵv)R = vR = vRϵ = vRϵR = vRuR

Induction hypothesis: ∀n ≥ 0, for any string u of length n:
For all strings v ∈ Σ∗, (uv)R = vRuR .

No assumption about v , hence statement holds for all v ∈ Σ∗.

30 / 50

By induction on |u|
Theorem 1.4.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |u| means that we are proving the following.
Base case: Let u be an arbitrary string of length 0. u = ϵ since there is only one such
string. Then
(uv)R = (ϵv)R = vR = vRϵ = vRϵR = vRuR

Induction hypothesis: ∀n ≥ 0, for any string u of length n:
For all strings v ∈ Σ∗, (uv)R = vRuR .

No assumption about v , hence statement holds for all v ∈ Σ∗.

30 / 50

By induction on |u|
Theorem 1.4.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |u| means that we are proving the following.
Base case: Let u be an arbitrary string of length 0. u = ϵ since there is only one such
string. Then
(uv)R = (ϵv)R = vR = vRϵ = vRϵR = vRuR

Induction hypothesis: ∀n ≥ 0, for any string u of length n:
For all strings v ∈ Σ∗, (uv)R = vRuR .

No assumption about v , hence statement holds for all v ∈ Σ∗.

30 / 50

Inductive step

▶ Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.

▶ Since |u| = n > 0 we have u = ay for some string y with |y | < n and a ∈ Σ.

▶ Then

(uv)R = ((ay)v)R

= (a(yv))R

= (yv)RaR

= (vRyR)aR

= vR(yRaR)

= vR(ay)R

= vRuR

31 / 50

Inductive step

▶ Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.

▶ Since |u| = n > 0 we have u = ay for some string y with |y | < n and a ∈ Σ.

▶ Then

(uv)R = ((ay)v)R

= (a(yv))R

= (yv)RaR

= (vRyR)aR

= vR(yRaR)

= vR(ay)R

= vRuR

31 / 50

Inductive step

▶ Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.

▶ Since |u| = n > 0 we have u = ay for some string y with |y | < n and a ∈ Σ.

▶ Then

(uv)R = ((ay)v)R

= (a(yv))R

= (yv)RaR

= (vRyR)aR

= vR(yRaR)

= vR(ay)R

= vRuR

31 / 50

1.3.1.2:A failed attempt: Induction on |v |

32 / 50

Induction on |v|
Theorem 1.5.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any string v of length n:

For all strings u ∈ Σ∗, (uv)R = vRuR .

Base case: Let v be an arbitrary string of length 0. v = ϵ since there is only one such
string. Then

(uv)R = (uϵ)R = uR = ϵuR = ϵRuR = vRuR

33 / 50

Induction on |v|
Theorem 1.5.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any string v of length n:

For all strings u ∈ Σ∗, (uv)R = vRuR .

Base case: Let v be an arbitrary string of length 0. v = ϵ since there is only one such
string. Then

(uv)R = (uϵ)R = uR = ϵuR = ϵRuR = vRuR

33 / 50

Induction on |v|
Theorem 1.5.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any string v of length n:

For all strings u ∈ Σ∗, (uv)R = vRuR .

Base case: Let v be an arbitrary string of length 0. v = ϵ since there is only one such
string. Then

(uv)R = (uϵ)R = uR = ϵuR = ϵRuR = vRuR

33 / 50

Inductive step

▶ Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.

▶ Since |v | = n > 0 we have v = ay for some string y with |y | < n and a ∈ Σ.

▶ Then

(uv)R = (u(ay))R

= ((ua)y)R

= yR(ua)R

= ??

Cannot simplify (ua)R using inductive hypothesis. Can simplify if we extend base case
to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!

34 / 50

Inductive step

▶ Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.

▶ Since |v | = n > 0 we have v = ay for some string y with |y | < n and a ∈ Σ.

▶ Then

(uv)R = (u(ay))R

= ((ua)y)R

= yR(ua)R

= ??

Cannot simplify (ua)R using inductive hypothesis. Can simplify if we extend base case
to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!

34 / 50

1.3.1.3:Induction on |u| + |v |

35 / 50

Induction on |u| + |v|
Theorem 1.6.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |u| + |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any u, v ∈ Σ∗ with |u| + |v | ≤ n,
(uv)R = vRuR .

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v | = 0. Implies
u, v = ϵ.

Inductive step: n > 0. Let u, v be arbitrary strings such that |u| + |v | = n.

36 / 50

Induction on |u| + |v|
Theorem 1.6.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |u| + |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any u, v ∈ Σ∗ with |u| + |v | ≤ n,
(uv)R = vRuR .

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v | = 0. Implies
u, v = ϵ.

Inductive step: n > 0. Let u, v be arbitrary strings such that |u| + |v | = n.

36 / 50

Induction on |u| + |v|
Theorem 1.6.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |u| + |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any u, v ∈ Σ∗ with |u| + |v | ≤ n,
(uv)R = vRuR .

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v | = 0. Implies
u, v = ϵ.

Inductive step: n > 0. Let u, v be arbitrary strings such that |u| + |v | = n.

36 / 50

Induction on |u| + |v|
Theorem 1.6.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |u| + |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any u, v ∈ Σ∗ with |u| + |v | ≤ n,
(uv)R = vRuR .

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v | = 0. Implies
u, v = ϵ.

Inductive step: n > 0. Let u, v be arbitrary strings such that |u| + |v | = n.

36 / 50

Induction on |u| + |v|
Theorem 1.6.
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |u| + |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any u, v ∈ Σ∗ with |u| + |v | ≤ n,
(uv)R = vRuR .

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v | = 0. Implies
u, v = ϵ.

Inductive step: n > 0. Let u, v be arbitrary strings such that |u| + |v | = n.

36 / 50

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

1.4
Languages
FLNAME:1.4.0.0 ZZZ:1.4.0.0 Languages

37 / 50

Languages

Definition 1.1.
A language L is a set of strings over Σ. In other words L ⊆ Σ∗.

Standard set operations apply to languages.

▶ For languages A,B the concatenation of A,B is AB = {xy | x ∈ A, y ∈ B}.
▶ For languages A,B, their union is A ∪ B, intersection is A ∩ B, and difference is

A \ B (also written as A − B).

▶ For language A ⊆ Σ∗ the complement of A is Ā = Σ∗ \ A.

38 / 50

Languages

Definition 1.1.
A language L is a set of strings over Σ. In other words L ⊆ Σ∗.

Standard set operations apply to languages.

▶ For languages A,B the concatenation of A,B is AB = {xy | x ∈ A, y ∈ B}.
▶ For languages A,B, their union is A ∪ B, intersection is A ∩ B, and difference is

A \ B (also written as A − B).

▶ For language A ⊆ Σ∗ the complement of A is Ā = Σ∗ \ A.

38 / 50

Exponentiation, Kleene star etc

Definition 1.2.
For a language L ⊆ Σ∗ and n ∈ N, define Ln inductively as follows.

Ln =

{
{ϵ} if n = 0
L·(Ln−1) if n > 0

And define L∗ = ∪n≥0Ln, and L+ = ∪n≥1Ln

39 / 50

Exercise

Problem 1.3.
Answer the following questions taking A,B ⊆ {0, 1}∗.

1. Is ϵ = {ϵ}? Is ∅ = {ϵ}?
2. What is ∅·A? What is A·∅?
3. What is {ϵ}·A? And A·{ϵ}?
4. If |A| = 2 and |B| = 3, what is |A·B|?

40 / 50

Exercise

Problem 1.4.
Consider languages over Σ = {0, 1}.
1. What is ∅0?

2. If |L| = 2, then what is |L4|?
3. What is ∅∗, {ϵ}∗, ϵ∗?

4. For what L is L∗ finite?

5. What is ∅+, {ϵ}+, ϵ+?

41 / 50

Languages and Computation

What are we interested in computing? Mostly functions.

Informal definition: An algorithm A computes a function f : Σ∗ → Σ∗ if for all
w ∈ Σ∗ the algorithm A on input w terminates in a finite number of steps and
outputs f (w).

Examples of functions:

▶ Numerical functions: length, addition, multiplication, division etc

▶ Given graph G and s, t find shortest paths from s to t
▶ Given program M check if M halts on empty input

▶ Posts Correspondence problem

42 / 50

Languages and Computation

Definition 1.5.
A function f over Σ∗ is a boolean if f : Σ∗ → {0, 1}.

Observation: There is a bijection between boolean functions and languages.

▶ Given boolean function f : Σ∗ → {0, 1} define language
Lf = {w ∈ Σ∗ | f (w) = 1}

▶ Given language L ⊆ Σ∗ define boolean function f : Σ∗ → {0, 1} as follows:
f (w) = 1 if w ∈ L and f (w) = 0 otherwise.

43 / 50

Languages and Computation

Definition 1.5.
A function f over Σ∗ is a boolean if f : Σ∗ → {0, 1}.

Observation: There is a bijection between boolean functions and languages.

▶ Given boolean function f : Σ∗ → {0, 1} define language
Lf = {w ∈ Σ∗ | f (w) = 1}

▶ Given language L ⊆ Σ∗ define boolean function f : Σ∗ → {0, 1} as follows:
f (w) = 1 if w ∈ L and f (w) = 0 otherwise.

43 / 50

Languages and Computation

Definition 1.5.
A function f over Σ∗ is a boolean if f : Σ∗ → {0, 1}.

Observation: There is a bijection between boolean functions and languages.

▶ Given boolean function f : Σ∗ → {0, 1} define language
Lf = {w ∈ Σ∗ | f (w) = 1}

▶ Given language L ⊆ Σ∗ define boolean function f : Σ∗ → {0, 1} as follows:
f (w) = 1 if w ∈ L and f (w) = 0 otherwise.

43 / 50

Language recognition problem

Definition 1.6.
For a language L ⊆ Σ∗ the language recognition problem associate with L is the
following: given w ∈ Σ∗, is w ∈ L?

▶ Equivalent to the problem of “computing” the function fL.
▶ Language recognition is same as boolean function computation

▶ How difficult is a function f to compute? How difficult is the recognizing Lf ?

Why two different views? Helpful in understanding different aspects?

44 / 50

Language recognition problem

Definition 1.6.
For a language L ⊆ Σ∗ the language recognition problem associate with L is the
following: given w ∈ Σ∗, is w ∈ L?

▶ Equivalent to the problem of “computing” the function fL.
▶ Language recognition is same as boolean function computation

▶ How difficult is a function f to compute? How difficult is the recognizing Lf ?

Why two different views? Helpful in understanding different aspects?

44 / 50

Language recognition problem

Definition 1.6.
For a language L ⊆ Σ∗ the language recognition problem associate with L is the
following: given w ∈ Σ∗, is w ∈ L?

▶ Equivalent to the problem of “computing” the function fL.
▶ Language recognition is same as boolean function computation

▶ How difficult is a function f to compute? How difficult is the recognizing Lf ?

Why two different views? Helpful in understanding different aspects?

44 / 50

How many languages are there?
The answer my friend is blowing in the slides.

Recall:

Definition 1.7.
An set X is countable if there is a bijection f between the natural numbers and A.

Theorem 1.8.
Σ∗ is countable for every finite Σ.

The set of all languages is P(Σ∗) the power set of Σ∗

Theorem 1.9 (Cantor).

P(Σ∗) is not countable for any finite Σ, with |Σ| > 0.

45 / 50

How many languages are there?
The answer my friend is blowing in the slides.

Recall:

Definition 1.7.
An set X is countable if there is a bijection f between the natural numbers and A.

Theorem 1.8.
Σ∗ is countable for every finite Σ.

The set of all languages is P(Σ∗) the power set of Σ∗

Theorem 1.9 (Cantor).

P(Σ∗) is not countable for any finite Σ, with |Σ| > 0.

45 / 50

Cantor’s diagonalization argument

Theorem 1.10 (Cantor).

P(N) is not countable.

▶ Suppose P(N) is countable infinite. Let S1, S2, . . . , be an enumeration of all
subsets of numbers.

▶ Let D be the following diagonal subset of numbers.

D = {i | i ̸∈ Si}

▶ Since D is a set of numbers, by assumption, D = Sj for some j .
▶ Question: Is j ∈ D?

46 / 50

Consequences for Computation

▶ How many C programs are there? The set of C programs is countable since each
of them can be represented as a string over a finite alphabet.

▶ How many languages are there? Uncountably many!

▶ Hence some (in fact almost all!) languages/boolean functions do not have any C
program to recognize them.

Questions:

▶ Maybe interesting languages/functions have C programs and hence computable.
Only uninteresting languors uncomputable?

▶ Why should C programs be the definition of computability?

▶ Ok, there are difficult problems/languages. what languages are computable and
which have efficient algorithms?

47 / 50

Consequences for Computation

▶ How many C programs are there? The set of C programs is countable since each
of them can be represented as a string over a finite alphabet.

▶ How many languages are there? Uncountably many!

▶ Hence some (in fact almost all!) languages/boolean functions do not have any C
program to recognize them.

Questions:

▶ Maybe interesting languages/functions have C programs and hence computable.
Only uninteresting languors uncomputable?

▶ Why should C programs be the definition of computability?

▶ Ok, there are difficult problems/languages. what languages are computable and
which have efficient algorithms?

47 / 50

Easy languages

Definition 1.11.
A language L ⊆ Σ∗ is finite if |L| = n for some integer n.

Exercise: Prove the following.

Theorem 1.12.
The set of all finite languages is countable.

48 / 50

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

1.5
Overview of whats coming on finite
automata/complexity
FLNAME:1.5.0.0 ZZZ:1.5.0.0 Overview of whats coming on finite automata/complexity

49 / 50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.

2. Regular languages.

2.1 Regular expressions.
2.2 DFA: Deterministic finite automata.
2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).

4. Turing machines: Decidable languages.

5. TM Undecidable languages (halting theorem).

6. TM Unrecognizable languages.

50 / 50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.

2. Regular languages.

2.1 Regular expressions.
2.2 DFA: Deterministic finite automata.
2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).

4. Turing machines: Decidable languages.

5. TM Undecidable languages (halting theorem).

6. TM Unrecognizable languages.

50 / 50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.

2. Regular languages.

2.1 Regular expressions.
2.2 DFA: Deterministic finite automata.
2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).

4. Turing machines: Decidable languages.

5. TM Undecidable languages (halting theorem).

6. TM Unrecognizable languages.

50 / 50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.

2. Regular languages.

2.1 Regular expressions.
2.2 DFA: Deterministic finite automata.
2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).

4. Turing machines: Decidable languages.

5. TM Undecidable languages (halting theorem).

6. TM Unrecognizable languages.

50 / 50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.

2. Regular languages.

2.1 Regular expressions.
2.2 DFA: Deterministic finite automata.
2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).

4. Turing machines: Decidable languages.

5. TM Undecidable languages (halting theorem).

6. TM Unrecognizable languages.

50 / 50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.

2. Regular languages.

2.1 Regular expressions.
2.2 DFA: Deterministic finite automata.
2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).

4. Turing machines: Decidable languages.

5. TM Undecidable languages (halting theorem).

6. TM Unrecognizable languages.

50 / 50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.

2. Regular languages.

2.1 Regular expressions.
2.2 DFA: Deterministic finite automata.
2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).

4. Turing machines: Decidable languages.

5. TM Undecidable languages (halting theorem).

6. TM Unrecognizable languages.

50 / 50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.

2. Regular languages.

2.1 Regular expressions.
2.2 DFA: Deterministic finite automata.
2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).

4. Turing machines: Decidable languages.

5. TM Undecidable languages (halting theorem).

6. TM Unrecognizable languages.

50 / 50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.

2. Regular languages.

2.1 Regular expressions.
2.2 DFA: Deterministic finite automata.
2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).

4. Turing machines: Decidable languages.

5. TM Undecidable languages (halting theorem).

6. TM Unrecognizable languages.

50 / 50

Languages: easiest, easy, hard, really hard, really really hard

1. Finite languages.

2. Regular languages.

2.1 Regular expressions.
2.2 DFA: Deterministic finite automata.
2.3 NFA: Non-deterministic finite automata.
2.4 Languages that are not regular.

3. Context free languages (stack).

4. Turing machines: Decidable languages.

5. TM Undecidable languages (halting theorem).

6. TM Unrecognizable languages.

50 / 50

	Strings
	Exercise solved in detail

	Countable sets, countably infinite sets, and languages
	Inductive proofs on strings
	Three proofs by induction

	Languages
	Overview of whats coming on finite automata/complexity

