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1 You are given a set of T of m toys, and there are n children. The ith child has a set of toys Ti ⊆ T that
they are willing to play with. Decide if there is a way of giving a toy to each child, so that they are all
happy (i.e., playing with a toy they like). Assuming the input size is O(nm) (why?), what is the running
time of your algorithm solving this problem?

Solution:
Build the natural bipartite graph, and compute the maximum matching. The natural graph has nm
edges, and the maximum bipartite matching algorithm seen in class requires O(n · nm) = O(n4) time
in this case.

2 Prove Hall’s theorem:

Theorem 0.1 (Hall’s theorem). For a bipartite graph G = (L ∪ R,E), has an L-matching M ⇐⇒
for all L ⊆ L, we have |L| ≤ |N(L)|.

Solution:
Maybe do only the first part of the proof in the discussion section, and sketch the second part.

Proof: L-matching =⇒ Hall’s condition. One direction is easy, if there is an L-matching M in
G, then for any set L, we have that M contains |L| edges in the matching M that covers the vertices of
L. The endpoints of these edges are distinct, and they are all contained in R. To this end, let

R = R(M,L) = {r ∈ R | ℓr ∈ M and ℓ ∈ L} ,

and observe that |R| = |L|. Clearly, R ⊆ N(L). Implying that |L| = |R| ≤ |N(L)|.

L-matching =⇒ Hall’s condition. Assume there is no L-matching M in G. Then, consider a
maximum matching M in G. there must be a free vertex ℓ ∈ L that is not in M . Let L be all the
vertices on L reachable by an alternating path in G starting in L. Similarly, let R be the set of all
vertices in R reachable by an alternating path starting at ℓ. Observe that:

(I) R can not contain any free vertex, as then there would be an alternating path π from a free vertex
to a free vertex, which implies that M⊕π is a bigger matching. A contradiction to the assumption
that M is maximum matching.

(II) L contains ℓ (duh).
(III) L contains no other free vertex. Indeed, all the vertices in L alternatingly reachable from ℓ,

have a matching edge as their last edge (duh2 [but really, all of math is a sequence of obvious
observations]).

(IV) |L| = |R|+ 1. Indeed, any vertex in R is attached to a unique vertex in L− ℓ by the matching M
— otherwise it would be free, and that is not legal, because of ((I)).

(V) N(L) = R. Clearly, R ⊆ N(L). As for the other direction, Consider any vertex v ∈ L. There is an
alternating path from ℓ to v, denote it by π. The last edge vu in this path is a matching edge, and
u ∈ R. All other edges vx, that are not in the matching, can be used to define a longer alternating
path π | vx, implying that x ∈ R. Namely, N(v) ⊆ R, and thus N(L) ⊆ R.

We are done, as |L| = |R|+ 1 = |N(L)|+ 1. Namely, Hall’s condition fails for L, as |L| > |N(L)|.

1



3 Partition a deck.

Consider a standard deck of cards – there are 13 ranks (1, . . . , 10, Princess, Queen and King. There are 4
suits: ♥,♦,♧,♤ (thus 52 cards overall). Consider dividing the cards into piles of 4 cards, where no pile
contains the same number twice. Show, that one can select exactly one card from each pile, such that
overall we get all 13 possible values.

Solution:
Build the natural graph – there are 13 piles on the left, and 13 values no the right. Since this graph is
4-regular, it has a perfect matching (by Hall’s theorem), and this matching is the desired way of picking
the cards.

4 Consider a bipartite graph G = (L ∪R,E) that is k-regular (i.e., all vertices have the same degree k):

4.A. Prove that |L| = |R|.

Solution:
Observe that |E| = k|L|, and |E| = k|R|. We conclude that |L| = |R|.

4.B. Prove that there is a perfect matching in G.

Solution:
Indeed, for any set L ⊆ L, consider its set of neighbors on the right side R = N(L) ⊆ R. Let U
be the set of edges between L and R in the graph. Observe that |U | = k|L|, and |U | ≤ k|R|. We
conclude that |L| ≤ |R|, which is Hall’s theorem condition. We conclude that this graph contains
a perfect matching.

5 Given a k-regular bipartite graph, describe an algorithm that color the edges with k colors, such that no
two edges with the same color share a vertex.

Solution:
In the ith iteration, the algorithm computes a maximum matching, Mi, removes its edges from G and
repeats. Since the graph is (k − i + 1)-regular and bipartite, by the above, it has a perfect matching.
This implies that Mi, for all i, covers all the vertices of G. Coloring all the edges of Mi by the ith color
then implies the result.

6 Let R and B be two sets of n points in the plane. Consider the natural bipartite graph G = (R ∪ B,E),
where the length of an edge is the distance between the two points connected by this edge. Describe a
polynomial time algorithm that computes a prefect matching M between R and B, that minimizes the
longest edge in M .

Solution:
Let Z = {|pq| | p ∈ R, q ∈ B} be the set of distances between the point. Using binary search, find
the minimum distance r, such that the bipartite graph (R ∪ L,E≤r) contains a perfect matching (by
computing a maximum matching in this graph. Here

E≤r = {pq | p ∈ R, q ∈ B, ∥p− q∥ ≤ r} .

Computing the set Z, and this set takes O(n2) time. Computing the maximum matching in such a
graph takes O(n3) time. Overall, the running time of the algorithm is thus O(n3 log n).
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