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Algorithms for Regular and CFG Languages

In the following, let M = (Q, 3,0, s, A) be a DFA with n states, over an alphabet ¥ of constant size.

1

Describe an algorithm for deciding if L(M) = (.

Solution:

if there is no path in the directed graph of M from the vertex s to a state in A, then the language is
empty. In graph languages, this is doing a BF'S in the directed graph from s.

Describe an algorithm for deciding if L(M) = ¥*.

Solution:

Complement the automata M: M = (Q,%,d,s,Q \ A), and check if its language is empty using the
previous algorithm.

Describe an algorithm for deciding if L(M) is finite.

Solution:

A state ¢ € @ is loopy if there is a string w € ¥* such that §*(¢,w) = ¢. One can check if a state
is loopy, by computing all the states that are reachable from ¢, and all the states that can reach ¢
(again, this is doing two BFSs in the graph and the reverse graph) — if the two sets have a non-empty
intersection then the state is loopy. Now, compute for all the states of M if they are loopy or not. Let
G5 be set of states that are loopy and reachable from s. Now check if any of the states in G4 can reach
an accepting state. If so, the language of M is infinite. Otherwise, it is finite.

Given two DFAs M, M’ decide if L(M) C L(M").

Solution:

Using the production construction build an automata for the language L(M)\ L(M’), and check if it is
empty. If it is empty, then the containment holds.

Given two DFAs M, M’ decide if L(M) = L(M’) = £* \ L(M").

Solution:

Using the production construction check if L(M)U L(M') = ¥*. Similarly, check if L(M)NL(M') = 0.
If both things holds, then the answer is yes.

Given a CFG G = (V,T, P, S), decide if L(G) contains any string.



Solution:

A variable X € V is final if there is a production X — «a, an o € T™* (i.e., only terminals). Scan the
productions and mark all the variables that have such a final production.

Generalizing, a variable is final if their is a production X — «, an o € (V UT)*, and all the variables
appearing in « are final. So, scan all the productions repeatedly, and mark all variables that have such
a production as final. Repeatedly do this till an iteration does not mark any new variables as final. If
S is final, then L(G) is not empty. Otherwise, it is.

Two sets ¢, ¢ € @, are distinguishable, if there exists a string w € X*, such that §(q, w) € A and 6(¢’, w) ¢
A (or vice versa). Show how to compute the set Dy of all the pairs of states that are distinguishable with
strings of length 0.

Solution:

Clearly, two state are distinguishable with a string of length 0 if one is accepting, and the other one is
rejecting. As such, we have:

Doz{{p,q}‘pGA,qEQ\A}-

Let D; be all the set of pairs of states of M that are distinguishable with strings of length at most i. Show
how to compute D; 1 from D;. (Think about i = 0 first, and then i = 1, etc.)

Solution:

Consider the case i = 0. Two states ¢, ¢ are distinguishable by a string of length one (i.e., a single
character ¢ € X), if §(q,c) € A and (¢, ¢) ¢ A (or vice versa). Namely, the states d(g,c) and 6(¢, ¢)
are distinguishable by strings of length 0.

More generally, if ¢ and ¢’ are distinguishable with a string w = wjws - - - w;, then ¢ = §*(q,wy) is
distinguishable from ¢ = 6*(¢/,w1), with the string wows---w;. Thus, ¢ and ¢’ are distinguishable
from a string of length i if there is a character ¢ € X, such that {6(q,¢),0(q’,¢)} € D;—1. Formally, we

have
Di = Di*l U {{Qa q/} ’ q, q/ € Q7 and Jc € X such that {5(Qa C)’(s(qlvc)} € Di*l} .

One can show that if D; = D;y1, then D; is the set of all distinguishable pairs of states of M. Since
|D;| < (5), it follows that this happens after at most O(n?) iterations of the algorithm using the above
steps. Let D* be the set of pairs the first iteration this happens — this is the set of all distinguishable pairs
of states of M. Given M and D*, show how to compute a minimal automata equivalent to M.

Solution:

We need the following two claims:

Claim 0.1. The set D; contains all the pairs of states that can be distinguished by strings of length at
most 1.

Proof: Boring induction. Omitted. [ |

Claim 0.2. If D; = D;11 then all the distinguishable pairs of states of M are in D;.



Proof: The set D; contains all the pairs that are distinguishable by strings of length at most . If the
claim is false, then there are two states ¢, ¢’ that are distinguishable, and their shortest distinguishing
string, say w = wyws - - - wy, has length > i. (If it was shorter, than the pair would already be in D;.)

Let ¢t = 0*(q, w1 ---wy) and ¢, = §*(¢', w1 - - -wy), and observe that their shortest distinguishing string
is Wy Wit - - - wy (if there is a shorter distinguishing string then there is a shortest distinguishing string
for ¢ and ¢’). In particular, gx—;—; and ¢,_, ; are distinguishable, and their shortest distinguishable
string is of length ¢ + 1. But this implies that {gr—i—1,q)_, 1} € Di+1 \ D;, which is a contradiction. m

The algorithm to create the minimal automata is now straightforward — assume the states of ) =
{01,92,---,qn}. For q; € Q, let f(q;) be the first state in @ that is NOT distinguishable from g¢;.
Formally, f(¢;) = gj, if q1,...¢j—1 are distinguishable from g; (we can test this, since this happens if
{a1, 4}, {gj—1, 4} € D* but {g;,q;} ¢ D*. Te new automata now has the state space

Q' ={fg)|¢€Q},

the start state s’ = f(s), the transition function

§(q,c) = f(é(q, c))

And the set of accepting states is A" = {f(q) | ¢ € A}.

It is straightforward to prove that M’ = (@', 3, s', 4, A’) has the same language is M. The proof that is
minimal follows from the Myhill-Nerode theorem (or the homework problem proving it), and is omitted
here.



