Solutions for Discussion 4a: Wednesday, September 18, 2024
Version: 1.01 CS/ECE 374A: Intro. Algorithms & Models of Computation, Fall 2024

Give context-free grammars for each of the following languages.

1

{0?"1™ | n > 0}

|l Solution: S —¢|00S1.

{0™1™ | m # 2n}

(Hint: If m # 2n, then either m < 2n or m > 2n.)

Solution:

To simplify notation, let A(w) = #(0,w) — 2#(1,w). Our solution follows the following logic. Let w
be an arbitrary string in this language.

e Because A(w) # 0, then either A(w) > 0 or A(w) < 0.

e If A(w) > 0, then w = 0’z for some integer i > 0 and some suffix z with A(z) = 0.

o If A(w) < 0, then w = x1/ for some integer j > 0 and some prefix x with either A(z) = 0 or
Az) = 1.

e Substrings with A = 0 is generated by the previous grammar; we need only a small tweak to
generate substrings with A = 1.

Here is one way to encode this case analysis as a CFG. The nonterminals M and L generate all strings
where the number of Os is More or Less than twice the number of 1s, respectively. The last nonterminal
generates strings with A =0 or A = 1.

S—M|L {0™1"™ | m # 2n}
M — 0M |OFE {0™1™ | m > 2n}
L— L1|El (0™ | m < 2n}
E —¢|0]|00E1 {0™1™ | m =2n or 2n + 1}

Here is a different correct solution using the same logic. We either identify a non-empty prefix of Os or
a non-empty prefix of 1s, so that the rest of the string is as “balanced” as possible. We also generate
strings with A = 1 using a separate non-terminal.

S— AF | EB|FB {01 | m # 2n}
A—0]0A 0t ={0"]i>1}
B—1|1B 1T ={V|j>1}
E — | 00E1 {01 | m = 2n}
F—0E {0™1" | m = 2n + 1}

Alternatively, we can separately generate all strings of the form 0°d41*, so that we don’t have to worry
about the case A = 1 separately.

S—D|M|L {0™1™ | m # 2n}
D — 000D | D1 {0™1" | m is odd}
M — 0M | OE {0™1" | m > 2n}
L—L1|E1 {0™1" | m < 2n and m is even}
E — e | 00E1 {0™1" | m = 2n}

Solution:
Intuitively, we can parse any string w € L as follows. First, remove the first 2k Os and the last & 1s, for
the largest possible value of k. The remaining string cannot be empty, and it must consist entirely of
Os, entirely of 1s, or a single 0 followed by 1s.

S —00S1|A|B|C {0™1™ | m # 2n}
A—0]04 ot
B—1|1B 1t
C—-0]0B 01"

Lets elaborate on the above, since k is maximal, w = 0?*w/1*. If w’ starts with 00, and ends with a 1,
then we can increase k by one. As such, w’ is either in 0% or 1*. If w’ contains both Os and 1s, then it
can contain only a single 0, followed potentially by 17. We conclude that w’ € 07 4+ 1% 4+ 01+,

3 {0,1}"\ {0*"1" | n >0}

Solution:
This language is the union of the previous language and the complement of 0*1*, which is (0+1)*10(0+
1)*.
S—T|X {0,1}*\ {0*"1" | n > 0}
T—00T1|A|B|C {0™1™ | m # 2n}
A—0]|0A 0t
B—1|1B 1t
C—0|0B 01t
X — Z10Z (0+ 1)*10(0 + 1)*
Z —e|0Z]|1Z (04 1)

Work on these later:

4 {w e {0,1}" ‘ #(0,w) =2 - #(1, w)} — Binary strings where the number of 0s is exactly twice the number
of 1s.

Solution:
S —¢e]8S5]00S1 05150 | 1500.
Here is a sketch of a correctness proof; a more detailed proof appears in the homework.
For any string w, let A(w) = #(0,w) — 2 - #(1,w). Suppose w is a binary string such that A(w) = 0.
Suppose w is nonempty and has no non-empty proper prefix = such that A(x) = 0. There are three
possibilities to consider:

e Suppose A(zx) > 0 for every proper prefix x of w. In this case, w must start with 00 and end with
1. Thus, w = 00x1 for some string = € L.

e Suppose A(x) < 0 for every proper prefix x of w. In this case, w must start with 1 and end with
00. Let x be the shortest non-empty prefix with A(z) = 1. Thus, w = 1X00 for some string x € L.

e Finally, suppose A(z) > 0 for some prefix z and A(z') < 0 for some longer proper prefix z’. Let
2’ be the shortest non-empty proper prefix of w with A < 0. Then 2’ = Oyl for some substring y
with A(y) = 0, and thus w = 0y1z0 for some strings y, z € L.

9 {0,1}*\ {ww | we {0,1}*}.

Solution:
All strings of odd length are in L.

Let w be any even-length string in L, and let m = ‘w‘ /2. For some index i < m, we have w; # wp4i.
Thus, w can be written as either x1y0z or z0Oylz for some substrings x,y, z such that |:L" =1 —1,
‘y} =m — 1, and ‘z‘ = m — i. We can further decompose y into a prefix of length 7 — 1 and a suffix of
length m — i. So we can write any even-length string w € L as either x12'2’0z or 02’2’1z, for some
strings x, 2/, z, 2/ with x‘ = |x" =i—1and ‘z‘ = ‘z" = m — 1. Said more simply, we can divide w into
two odd-length strings, one with a 0 at its center, and the other with a 1 at its center.

S—AB|BA|A|B strings not of the form ww
A—0]|XAY odd-length strings with 0 at center
B —1|YX¥BY odd-length strings with 1 at center
Y—=0]1 single character

