- 1 You are given a set of T of m toys, and there are n children. The *i*th child has a set of toys $T_i \subseteq T$ that they are willing to play with. Decide if there is a way of giving a toy to each child, so that they are all happy (i.e., playing with a toy they like). Assuming the input size is O(nm) (why?), what is the running time of your algorithm solving this problem?
- **2** Prove Hall's theorem:

Theorem 0.1 (Hall's theorem). For a bipartite graph $G = (\mathcal{L} \cup \mathcal{R}, E)$, has an \mathcal{L} -matching $M \iff$ for all $L \subseteq \mathcal{L}$, we have $|L| \le |N(L)|$.

3 PARTITION A DECK.

Consider a standard deck of cards – there are 13 ranks $(1, \ldots, 10, \text{Princess}, \text{Queen and King}$. There are 4 suits: $\checkmark, \diamondsuit, \diamondsuit, \diamondsuit, \diamondsuit$ (thus 52 cards overall). Consider dividing the cards into piles of 4 cards, where no pile contains the same number twice. Show, that can select exactly one card from each pile, such that overall we get all 13 possible values.

4 Consider a bipartite graph $G = (\mathcal{L} \cup \mathcal{R}, \mathsf{E})$ that is k-regular (i.e., all vertices have the same degree k):

4.A. Prove that $|\mathcal{L}| = |\mathcal{R}|$.

- 4.B. Prove that there is a perfect matching in G.
- 5 Given a k-regular bipartite graph, describe an algorithm that color the edges with k colors, such that no two edges with the same color share a vertex.
- **6** Let *R* and *B* be two sets of *n* points in the plane. Consider the natural bipartite graph $G = (R \cup B, E)$, where the length of an edge is the distance between the two points connected by this edge. Describe a polynomial time algorithm that computes a prefect matching *M* between *R* and *B*, that minimizes the longest edge in *M*.