
HW 11: Extra problems Instructors: Har-Peled

CS/ECE 374A: Intro. Algorithms & Models of Computation, Fall 2024 Version: 1.0

1 (100 pts.) Walk with me

1.A. (50 pts.) We are given a directed graph G with n vertices and m edges (m ≥ n), where each
vertex v has a height h(v). The cost of traversing an edge (u, v) is c(u, v) = |h(v) − h(u)|.
The cost of a walk in G is the sum of the costs of edges in the walk. Prove that finding the
minimum cost walk that visits all the vertices om G is NP-Hard. (In a walk, vertices and
edges may be repeated, and the start and end vertices may be different.)

1.B. (50 pts.) We are given a directed graph G with n vertices and m edges (m ≥ n), where
each edge e has a set of colors C(e) ⊆ {1, ..., k}. Prove that deciding whether there exists a
walk that uses all k colors (i.e. the union of the sets of colors of the edges of walk covers all
colors.) is NP-Hard. (Hint: Reduce from Set Cover.)

2 (100 pts.) Things are hard.

2.A. (20 pts.) Suppose we have n prisoners P1, . . . , Pn that we want to place in some disconnected
blocks of a prison. Each prisoner is assigned to one block, and he/she will not be able to
access other blocks. However, some prisoners are bitter enemies (going all the way back to
kindergarten) and cannot be placed in the same block. Given integers n and k and a list of
enemies for each of the n prisoners, we want to determine whether k blocks are sufficient to
house all the prisoners? Prove that this problem is NP-Hard. You can safely assume that
every block has unbounded capacity.

2.B. (40 pts.) Let G be an arbitrary directed weighted graph with n vertices and m edges such
that no edge weight is zero (weights can be positive or negative). Prove that finding a
zero-length (i.e., zero weight) Hamiltonian cycle in G is NP-Complete.

2.C. (40 pts.) Consider the following XO puzzle. You are given an n×m grid of squares where
each square has an X, an O or is empty. Your goal is to erase some of the Xs and Os so that

(i) every row contains at least one X or one O, and
(ii) no column contains both X and O.

For some input grids, it is impossible to solve the puzzle. The figure below shows two
examples: a grid that is solvable and a grid that is impossible to solve. Prove that, given a
grid, it is NP-Hard to determine whether the puzzle is solvable. (Hint: Reduce from 3SAT.)

X X X

X O O

O X X

X O O

X X X

X O O

O X X

X O O

O O

X O

O X

X X

Impossible

1

3 (100 pts.) Fan, fan, fan.

An undirected graph a 3-blade-fan if it consists of three cycles C1, C2, and C3 of k nodes each
and they all share exactly one node. Hence, the graph has 3k − 2 nodes. The figure below shows
a 3-blade-fan of 16 nodes.

Given an undirected graph G with n vertices and m edges and an integer k, the FAN problem
asks whether or not there exists a subgraph of G which is a 3-blade-fan . Prove that FAN is
NP-Complete.

4 A subset S of vertices in an undirected graph G is called almost independent if at most 374
edges in G have both endpoints in S. Prove that finding the size of the largest almost-independent
set of vertices in a given undirected graph is NP-hard.

5 A subset S of vertices in an undirected graph G is called triangle-free if, for every triple of
vertices u, v, w ∈ S, at least one of the three edges uv, uw, vw is absent from G. Prove that finding
the size of the largest triangle-free subset of vertices in a given undirected graph is NP-hard.

6 Charon needs to ferry n recently deceased people across the river Acheron into Hades. Certain
pairs of these people are sworn enemies, who cannot be together on either side of the river unless
Charon is also present. (If two enemies are left alone, one will steal the obol from the other’s
mouth, leaving them to wander the banks of the Acheron as a ghost for all eternity. Let’s just say
this is a Very Bad Thing.) The ferry can hold at most k passengers at a time, including Charon,
and only Charon can pilot the ferry.

Prove that it is NP-hard to decide whether Charon can ferry all n people across the Acheron
unharmed.1 The input for Charon’s problem consists of the integers k and n and an n-vertex
graph G describing the pairs of enemies. The output is either True or False.

This problem is a generalization of the following extremely well-known puzzle, whose first known
appearance is in the treatise Propositiones ad Acuendos Juvenes [Problems to Sharpen the Young]
by the 8th-century English scholar Alcuin of York.2

XVIII. Propositio De Homine et Capra et Lvpo.
Homo quidam debebat ultra fluuium transferre lupum, capram, et fasciculum cauli. Et non

potuit aliam nauem inuenire, nisi quae duos tantum ex ipsis ferre ualebat. Praeceptum itaque
ei fuerat, ut omnia haec ultra illaesa omnino transferret. Dicat, qui potest, quomodo eis illaesis
transire potuit?

1Aside from being, you know, dead.
2At least, we think that’s who wrote it; the evidence for his authorship is rather circumstantial, although we do know

from his correspondence with Charlemagne that he sent the emperor some “simple arithmetical problems for fun”. Most
scholars believe that even if Alcuin is the actual author of the Propositiones, he didn’t come up with the problems himself,
but just collected his problems from other sources. Some things never change.

2

Solutio. Simili namque tenore ducerem prius capram et dimitterem foris lupum et caulum.
Tum deinde uenirem, lupumque transferrem: lupoque foris misso capram naui receptam ultra
reducerem; capramque foris missam caulum transueherem ultra; atque iterum remigassem,
capramque assumptam ultra duxissem. Sicque faciendo facta erit remigatio salubris, absque
uoragine lacerationis.

In case your classical Latin is rusty, here is an English translation:

XVIII. The Problem of the Man, the Goat, and the Wolf.
A man needed to transfer a wolf, a goat, and a bundle of cabbage across a river. However,

he found that his boat could only bear the weight of two [objects at a time, including the man].
And he had to get everything across unharmed. Tell me if you can: How they were able to
cross unharmed?

Solution. In a similar fashion [as an earlier problem], I would first take the goat across and
leave the wolf and cabbage on the opposite bank. Then I would take the wolf across; leaving
the wolf on shore, I would retrieve the goat and bring it back again. Then I would leave the
goat and take the cabbage across. And then I would row across again and get the goat. In this
way the crossing would go well, without any threat of slaughter.

Please do not write your solution to problem 3 in classical Latin.

7 Consider an instance of the Satisfiability Problem, specified by clauses C1, . . . , Ck over a set of
Boolean variables x1, . . . , xn. We say that the instance is monotone if each term in each clause
consists of a nonnegated variable; that is each term is equal to xi, for some i, rather than x̄i.
Monotone instance of Satisfiability are very easy to solve: They are always satisfiable, by setting
each variable equal to 1.

For example, suppose we have the three clauses

(x1 ∨ x2), (x1 ∨ x3), (x2 ∨ x3)

This is monotone, and indeed the assignment that sets all three variables to 1 satisfies all the
clauses. But we can observe that this is not the only satisfying assignment; we could also have
set x1 and x2 to 1 and x3 to 0. Indeed, for any monotone instance, it is natural to ask how few
variables we need to set to 1 in order to satisfy it.

Given a monotone instance of Satisfiability, together with a number k, the problem of Monotone
Satisfiability with Few True Variables asks: Is there a satisfying assignment for the instance in
which at most k variables are set to 1? Prove that this problem is NP-Complete. Hint: Reduce
from Vertex Cover.

8 Given an undirected graph G = (V,E), a partition of V into V1, V2, . . . , Vk is said to be a clique
cover of size k if each Vi is a clique in G. Prove that the problem of deciding whether G has a
clique cover of size at most k is NP-Complete. Hint: Consider the complement of G.

9 Given an undirected graph G = (V,E) a matching in G is a set of edges M ⊆ E such that no two
edges in M share a node. A matching M is perfect if 2|M | = |V |, in other words if every node
is incident to some edge of M . PerfectMatching is the following decision problem: does a given
graph G have a perfect matching? Describe a polynomial-time reduction from PerfectMatching to
SAT. Does this problem that PerfectMatching is a difficult problem?

3

10 A balloon is a directed graph on an even number of nodes, say 2n, in which n of the nodes form
a directed cycle and the remaining n vertices are connected in a “tail” that consists of a directed
path joined to one of the nodes in the cycle. See figure below for a balloon with 8 nodes.

Given a directed graph G and an integer k, the BALLOON problem asks whether or not there exists
a subgraph which is a baloon that contains 2k nodes. Prove that BALLOON is NP-Complete.

11 Consider the following problem. You are managing a communication network, modeled by a
directed graph G = (V,E). There are c users who are interested in making use of this network.
User i (for each i = 1, 2, . . . , c) issues a request to reserve a specific path Pi in G on which to
transmit data.

You are interested in accepting as many of these path requests as possible, subject to the following
restriction: if you accept both Pi and Pj, then Pi and Pj can not share any modes.

Thus the Path Selection Problem asks: Given a directed graph G = (V,E), a set of requests
P1, . . . , Pc-each of which must be a path in G- and a number k, is it possible to select at least k of
the paths so that no two of the selected paths share any nodes?

Prove that the Path Selection is NP-Complete.

12 A double-Hamiltonian tour in an undirected graph G is a closed walk that visits every vertex
in G exactly twice. Prove that it is NP-hard to decide whether a given graph G has a double-
Hamiltonian tour.

b
d

c

f
g

a

e

This graph contains the double-Hamiltonian tour a�b�d�g�e�b�d�c�f�a�c�f�g�e�a.

4

Solution: We prove the problem is NP-hard with a reduction from the standard Hamiltonian
cycle problem. Let G be an arbitrary undirected graph. We construct a new graph H by
attaching a small gadget to every vertex of G. Specifically, for each vertex v, we add two
vertices v♯ and v♭, along with three edges vv♭, vv♯, and v♭v♯.

A vertex in G, and the corresponding vertex gadget in H.

I claim that G has a Hamiltonian cycle if and only if H has a double-Hamiltonian tour.

=⇒ Suppose G has a Hamiltonian cycle v1 → v2 → · · · → vn → v1. We can construct a
double-Hamiltonian tour of H by replacing each vertex vi with the following walk:

· · · → vi → v♭i → v♯i → v♭i → v♯i → vi → · · ·

⇐= Conversely, suppose H has a double-Hamiltonian tour D. Consider any vertex v in the
original graph G; the tour D must visit v exactly twice. Those two visits split D into
two closed walks, each of which visits v exactly once. Any walk from v♭ or v♯ to any
other vertex in H must pass through v. Thus, one of the two closed walks visits only the
vertices v, v♭, and v♯. Thus, if we simply remove the vertices in H \G from D, we obtain
a closed walk in G that visits every vertex in G once.

Given any graph G, we can clearly construct the corresponding graph H in polynomial time.

With more effort, we can construct a graph H that contains a double-Hamiltonian tour that
traverses each edge of H at most once if and only if G contains a Hamiltonian cycle. For
each vertex v in G we attach a more complex gadget containing five vertices and eleven edges,
as shown on the next page.

A vertex in G, and the corresponding modified vertex gadget in H.

5

Solution: Bad and incorrect solution!!!
We attempt to prove the problem is NP-hard with a reduction from the Hamiltonian cycle
problem. Let G be an arbitrary undirected graph. We construct a new graph H by attaching
a self-loop every vertex of G. Given any graph G, we can clearly construct the corresponding
graph H in polynomial time.

An incorrect vertex gadget.

Suppose G has a Hamiltonian cycle v1 → v2 → · · · → vn → v1. We can construct a double-
Hamiltonian tour of H by alternating between edges of the Hamiltonian cycle and self-loops:

v1�v1�v2�v2�v3� · · ·�vn�vn�v1.

On the other hand, if H has a double-Hamiltonian tour, we cannot conclude that G has a
Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour in H uses
any self-loops. The graph G shown below is a counterexample; it has a double-Hamiltonian
tour (even before adding self-loops) but no Hamiltonian cycle.

This graph has a double-Hamiltonian tour.

Rubric:[for all polynomial-time reductions] 10 points =

+ 3 points for the reduction itself

– For an NP-hardness proof, the reduction must be from a known NP-hard problem. You
can use any of the NP-hard problems listed in the lecture notes (except the one you are
trying to prove NP-hard, of course).

+ 3 points for the “if” proof of correctness

+ 3 points for the “only if” proof of correctness

+ 1 point for writing “polynomial time”

• An incorrect polynomial-time reduction that still satisfies half of the correctness proof is
worth at most 4/10.

• A reduction in the wrong direction is worth 0/10.

13 (100 pts.) My friend, departing time is pending (Fall 2022).

The following question is long, but not very hard, and is intended to make sure you understand
the following problems, and the basic concepts needed for proving NP-Completeness.

All graphs in the following have n vertices and m edges.

6

For each of the following problems, you are given an instance of the problem of size n. Imagine
that the answer to this given instance is “yes”, and that you need to convince somebody that indeed
the answer to the given instance is yes. To this end, describe:

(I) An algorithm for solving the given instance (not necessarily efficient). What is the running
time of your algorithm?

(II) The format of the proof that the instance is correct.
(III) A bound on the length of the proof (its have to be of polynomial length in the input size).
(IV) An efficient algorithm (as fast as possible [it has to be polynomial time]) for verifying,

given the instance and the proof, that indeed the given instance is indeed yes. What is
the running time of your algorithm?

(EXAMPLE)

Shortest Path
Instance: A weighted undirected graph G, vertices s and t and a threshold w.
Question: Is there a path between s and t in G of length at most w?

Solution:

(I) Algorithm: We seen in class the Dijkstra algorithm for solving the shortest path problem
in O(n log n+m) = O(n2) time. Given the shortest path, we can just compare its price to
w, and return yes/no accordingly.

(II) Certificate: A “proof” in this case would be a path π in G (i.e., a sequence of at most n
vertices) connecting s to t, such that its total weight is at most w.

(III) Certificate length: The proof here is a list of O(n) vertices, and can be encoded as a list
of O(n) integers. As such, its length is O(n).

(IV) Verification algorithm: The verification algorithm for the given solution/proof, would
verify that all the edges in the path are indeed in the graph, the path starts at s and ends
at t, and that the total weight of the edges of the path is at most w. The proof has length
O(n) in this case, and the verification algorithm runs in O(n2) time, if we assume the graph
is given to us using adjacency lists representation.

13.A. (20 pts.)

Friendly Set
Instance: An undirected graph G, integer k
Question: Is there a friendly set in G of size k?

A set X ⊆ V(G) is friendly if every vertex has at least two vertices in X that are its neighbors.
Formally, for a vertex u ∈ V(G), let Γ(u) = {v | uv ∈ E(G)} be its set of neighbors . The set
X is friendly if for all v ∈ V(G), we have that |Γ(v) ∩X| ≥ 2.

13.B. (20 pts.)

7

Max Triangle Free
Instance: An undirected graph G with n vertices and m edges, a parameter k.
Question: Is there a subset S of k edges in the graph, such that no three edges of
S form a triangle?

A triangle is a cycle of length 3.

13.C. (20 pts.)

Wiggle to target
Instance: S: Set of positive integers. t: An integer number (target).
Question: Are there disjoint subsets X, Y, Z ⊆ S such that

∑
x∈X x −

∑
y∈Y y +

2
∑

z∈Z z = t?

13.D. (20 pts.)

NotMuchOverlap
Instance: X a set of n elements, F = {fi ⊆ X | i = 1, . . . ,m}, and a parameter α.
Question: Is there a subset S ⊆ F of α sets, such that no pair of sets f, g ∈ S
share more than one element.

13.E. (20 pts.)

SET DISJOINT PACKING
Instance: (U,F , k):
U: A set of n elements
F : A family of m subsets of U, s.t.

⋃
X∈F X = U.

k: A positive integer.
Question: Are there k pairwise-disjoint sets S1, . . . , Sk ∈ F?

Formally, the sets S1, . . . , Sk are pairwise-disjoint if for all i ̸= j, we have that Si ∩Sj = ∅.

14 (100 pts.) Set picking (Fall 2022).

SET PICKING
Instance: A set U = {1, . . . ,m}, and sets F = {f1, . . . , fn, g1, . . . , gn ⊆ U}.
Question: Is there a good selection set X ⊆ F?

A good selection is a set X ⊆ F , such that |X ∩ {fi, gi}| = 1, for all i, and furthermore
∪X = ∪h∈Xh = U .

14.A. (20 pts.) Prove that SET PICKING is in NP.

14.B. (40 pts.) Show a polynomial time reduction from SET PICKING to SAT. (You need to prove
your reduction is correct.)

14.C. (40 pts.) Show a polynomial time reduction from SAT to SET PICKING. (You need to prove
your reduction is correct.)

8

