
HW 10: Extra problems Instructors: Har-Peled

CS/ECE 374A: Intro. Algorithms & Models of Computation, Fall 2024 Version: 1.0

1 (100 pts.) Easy peasy MST question. Or not.

Let G = (JnK ,E) be an undirected graph with n vertices and m ≥ n edges, and with distinct real
weights on the edges. You are also given two vertices s and t in G. The bottleneck of a path π
in G is b(π) = maxe∈π w(e). The bottleneck distance between s and t, denoted by b(s, t) is the
minimum bottleneck of any path connecting s to t. The bridge β between s and t is the unique
edge with the weight that realizes the bottleneck distance between s and t.

In addition, assume that for any vertex v ∈ JnK, you are provided (in the input), the sorted list
L(v) of its adjacent edges in increasing order by weight (and you can access this list in constant
time). Furthermore, let us assume that the bridge edge β has exactly T edges cheaper than it in
G.

Describe an algorithm, as fast as possible, that computes the bottleneck shortest path from s to
t, where the running time is only a function of T (and not of n or m). In particular, if T might
be much smaller than n and m, and your algorithm should be faster than, say, O(n).

(Hint: Verify that computing the bottleneck shortest path can be done by computing the MST,
and then modify Prim’s algorithm to get the desired algorithm. Do not worry about logarithmic
factors in your running time. You can not use hashing in your solution.)

2 (100 pts.) The best path (Fall 22).

Let G = (V,E) be a directed graph with n vertices and m ≥ n edges, and distinct positive real
weights on the edges (here w(e) denotes the weight of an edge e ∈ E). For two sets X, Y let
X ⊕ Y = (X \ Y ) ∪ (Y \X) be their symmetric difference. For two paths π, σ in G, let e be the
most expensive edge in E(π) ⊕ E(σ). If e ∈ π, then we write π ≻ σ (i.e., π is worse then σ).
Clearly, this defines a natural ordering on the paths in G. The best path between s and t in G,
is the unique path, such that all other paths (from s to t) are worse than it. Informally, the best
path between s and t is the path minimizing the maximum weight edge on the path, and this
property holds recursively on the two subpaths after we remove this edge.

Given vertices s and t, describe an algorithm, as fast as possible, that computes the best path
from s to t.

Prove formally that the path your algorithm output is indeed the best path.

Partial credit would be given to efficient suboptimal algorithms.

(Hint: Think about the algorithm for the problem for the undirected case.)

3 (100 pts.) Downwind from minus infinity (Fall 22).

Let G be a directed graph with n vertices and m edges, with distinct real weights (denoted by
w(·)) on the edges. A vertex v ∈ V(G) is sad if for any real number β < 0, there exists a walk
π in G that ends in v, and w(π) =

∑
e∈π w(e) < β. Describe an algorithm (using or modifying

algorithms seen in class), as fast as possible, that computes all the sad vertices of G.

1



4 Let R1, R2, . . . , Rn be a set of red intervals each of which is specified by its two end points. Let
B1, B2, . . . , Bm be a set of blue intervals each of which is also specified by its two end points. You
wish to find the smallest number of blue intervals that cover the red intervals. A blue interval
Bj covers a red interval Ri if they contain the same point p on the line. All intervals are close in
the sense that the end points are contained in the interval. Describe a greedy algorithm for this
problem and prove its correctness.

5 We saw in lecture that Borouvka’s algorithm for MST can be implemented in O(m log n) time
where m is the number of edges and n is the number of nodes. We also saw that Prim’s algorithm
can be implemented in O(m + n log n) time. Obtain an algorithm for MST with running time
O(m log log n) by running Borouvka’s algorithm for some number of steps and then switching
to Prim’s algorithm. This algorithm is better than either of the algorithms when m = Θ(n).
Formalize the algorithm, specify the parameters and argue carefully about the implementation
and running time details. Briefly justify the correctness of the algorithm assuming that the edge
weights are unique.

6 Red street in the city Shampoo-Banana can be modeled as a straight line starting at 0. The street
has n houses at locations x1, x2, . . . , xn on the line. The local cable company wants to install
some new fiber optic equipment at several locations such that every house is within distance r
from one of the equipment locations. The city has granted permits to install the equipment, but
only at some m locations on the street given y locations y1, y2, . . . , ym. For simplicity assume
that all the x and y values are distinct. You can also assume that x1 < x2 < . . . < xn and that
y1 < y2 < . . . < ym.

• Describe a greedy algorithm that finds the minimum number of equipment locations that the
cable company can build to satisfy the desired constraint that every house is within distance
r from one of them. Your algorithm has to detect if a feasible solution does not exist. Prove
the correctness of the algorithm. One way to do this by arguing that there is an optimum
solution that agrees with the first choice of your greedy algorithm.

• Not to submit: The cable company has realized subsequently that not all locations are
equal in terms of the cost of installing equipment. Asssume that cj is the cost at location
yj. Describe a dynamic programming algorithm that minimizes the total cost of installing
equipment under the same constraint as before. Do you see why a greedy algorithm may not
work for this cost version?

7 Let G = (V,E) be an edge-weighted undirected graph. We are interested in computing a minimum
spanning tree T of G to find a cheapest subgraph that ensures connectivity. However, some of
the nodes in G are unrealiable and may fail. If a node fails it can disconnect the tree T unless it
is a leaf. Thus, you want to find a cheapest spanning tree in G in which all the unreliable nodes
(which is a given subset U ⊂ V ) are leaves. Describe an efficient for this problem. Note that your
algorithm should also check wither a feasible spanning tree satisfying the given constraint exists
in G.

8 Consider the language LOH = {⟨M⟩ | M halts on at least one input string}. Note that for ⟨M⟩ ∈
LOH, it is not necessary for M to accept any string; it is sufficient for it to halt on (and possibly
rejects) some string. Prove that LOH is undecidable.

9 Consider the following problem, called BoxDepth: Given a set of n axis-aligned rectangles in the
plane, how big is the largest subset of these rectangles that contain a common point?

2



1. Describe a polynomial-time reduction from BoxDepth to MaxClique, and prove that your
reduction is correct.

2. Describe and analyze a polynomial-time algorithm for BoxDepth.
(
Hint: Don’t try to

optimize the running time; O(n3) is good enough.
)

3. Why don’t these two results imply that P=NP?

10 This problem asks you to describe polynomial-time reductions between two closely related prob-
lems:

• SubsetSum: Given a set S of positive integers and a target integer T , is there a subset of S
whose sum is T?

• Partition: Given a set S of positive integers, is there a way to partition S into two subsets
S1 and S2 that have the same sum?

1. Describe a polynomial-time reduction from SubsetSum to Partition.

2. Describe a polynomial-time reduction from Partition to SubsetSum.

Don’t forget to to prove that your reductions are correct.

11 Suppose you are given a graph G = (V,E) where V represents a collection of people and an
edge between two people indicates that they are friends. You wish to partition V into at most k
non-overlapping groups V1, V2, . . . , Vk such that each group is very cohesive. One way to model
cohesiveness is to insist that each pair of people in the same group should be friends; in other
words, they should form a clique.

Prove that the following problem is NP-hard: Given an undirected graph G and an integer k,
decide whether the vertices of G can be partitioned into k cliques.

12 Consider the following solitaire game. The puzzle consists of an n × m grid of squares, where
each square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the
puzzle is to remove some of the given stones so that the remaining stones satisfy two conditions:
(1) every row contains at least one stone, and (2) no column contains stones of both colors. For
some initial configurations of stones, reaching this goal is impossible.

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones, whether
this puzzle can be solved.

3



Solution: We show that this puzzle is NP-hard by describing a reduction from 3SAT.
Let Φ be a 3CNF boolean formula with m variables and n clauses. We transform this formula
into a puzzle configuration in polynomial time as follows. The size of the board is n×m. The
stones are placed as follows, for all indices i and j:

• If the variable xj appears in the ith clause of Φ, we place a blue stone at (i, j).

• If the negated variable xj appears in the ith clause of Φ, we place a red stone at (i, j).

• Otherwise, we leave cell (i, j) blank.

We claim that this puzzle has a solution if and only if Φ is satisfiable. This claim
immediately implies that solving the puzzle is NP-hard. We prove our claim as follows:

=⇒ First, suppose Φ is satisfiable; consider an arbitrary satisfying assignment. For each
index j, remove stones from column j according to the value assigned to xj:

– If xj = True, remove all red stones from column j.

– If xj = False, remove all blue stones from column j.

In other words, remove precisely the stones that correspond to False literals. Because
every variable appears in at least one clause, each column now contains stones of only
one color (if any). On the other hand, each clause of Φ must contain at least one True
literal, and thus each row still contains at least one stone. We conclude that the puzzle
is satisfiable.

⇐= On the other hand, suppose the puzzle is solvable; consider an arbitrary solution. For
each index j, assign a value to xj depending on the colors of stones left in column j:

– If column j contains blue stones, set xj = True.

– If column j contains red stones, set xj = False.

– If column j is empty, set xj arbitrarily.

In other words, assign values to the variables so that the literals corresponding to the
remaining stones are all True. Each row still has at least one stone, so each clause of
Φ contains at least one True literal, so this assignment makes Φ = True. We conclude
that Φ is satisfiable.

This reduction clearly requires only polynomial time.
Rubric:[for all polynomial-time reductions] 10 points =

+ 3 points for the reduction itself
– For an NP-hardness proof, the reduction must be from a known NP-hard problem. You

can use any of the NP-hard problems listed in the lecture notes (except the one you are
trying to prove NP-hard, of course).

+ 3 points for the “if” proof of correctness
+ 3 points for the “only if” proof of correctness
+ 1 point for writing “polynomial time”

4



• An incorrect polynomial-time reduction that still satisfies half of the correctness proof is
worth at most 4/10.

• A reduction in the wrong direction is worth 0/10.

5


