
HW 8: Extra problems Instructors: Har-Peled

CS/ECE 374A: Intro. Algorithms & Models of Computation, Fall 2024 Version: 1.0

1 Consider a directed graph G, where each edge is colored either red, white, or blue. A walk in G
is called a French flag walk if its sequence of edge colors is red, white, blue, red, white, blue, and
so on. More formally, a walk v0 → v1 → . . . → vk is a French flag walk if, for every integer i, the
edge vi → vi+1 is red if i mod 3 = 0, white if i mod 3 = 1, and blue if i mod 3 = 2. Describe an
efficient algorithm to find all vertices in a given edge-colored directed graph G that can be reached
from a given vertex v through a French flag walk.

2 Describe a linear time algorithm that given a directed graph G = (V,E) and a node s ∈ V decides
whether there is a cycle containing s. Do the same when G is undirected.

3 Let G = (V,E) be directed graph. A subset of edges are colored red and a subset are colored blue
and the rest are not colored. Let R ⊂ E be the set of red edges and B ⊂ E be the set of blue
edges. Describe an efficient algorithm that given G and two nodes s, t ∈ V checks whether there
is an s-t path in G that contains at most one red edge and at most one blue edge. Ideally your
algorithm should run in O(n+m) time where n = |V | and m = |E|.

4 The police department in the city of Shampoo-Banana has made all streets one-way. The mayor
contends that there is still a way to drive legally from any intersection in the city to any other
intersection, but the opposition is not convinced. The city needs an algorithm to check whether
the mayor’s contention is indeed true.

• Formulate this problem graph-theoretically, and describe an efficent algorithm for it.

• Suppose it turns out that the mayor’s original claim is false. Call an intersection u good if
any intersection v that you can reach from u has the property that u can be reached from
v. Now the mayor claims that over 95% of the intersections are good. Describe an efficient
algorithm to verify her claim. Your algorithm should basically be able to find all the good
intersections.

Ideally your algorithms for both parts should run in linear time. You will receive partial credit for
a polynomial-time algorithm.

5 Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds a
positive integer number of gallons; the capacities of the three jars may or may not be different.
The professor then demands that you put exactly k gallons of water into one of the jars (which
one doesn’t matter), for some integer k, using only the following operations:

1. Fill a jar with water from the lake until the jar is full.

2. Empty a jar of water by pouring water into the lake.

3. Pour water from one jar to another, until either the first jar is empty or the second jar is full,
whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of water
into the third jar in six steps:
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• Fill the third jar from the lake.
• Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)
• Empty the first jar into the lake.
• Fill the second jar from the lake.
• Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
• Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number of operations
that leave exactly k gallons in any jar, or reports correctly that obtaining exactly k gallons of
water is impossible. Your input consists of the capacities of the three jars and the positive integer
k. For example, given the four numbers 6, 10, 15 and 13 as input, your algorithm should return
the number 6 (for the sequence of operations listed above).

Solution:
Let A,B,C denote the capacities of the three jars. We reduce the problem to breadth-first
search in the following directed graph:

• V =
{
(a, b, c)

∣∣ 0 ≤ a ≤ p and 0 ≤ b ≤ B and 0 ≤ c ≤ C
}
. Each vertex corresponds to a

possible configuration of water in the three jars. There are (A + 1)(B + 1)(C + 1) =
O(ABC) vertices altogether.

• The graph has a directed edge (a, b, c)�(a′, b′c′) whenever it is possible to move from the
first configuration to the second in one step. Specifically, there is an edge from (a, b, c) to
each of the following vertices (except those already equal to (a, b, c)):

– (0, b, c) and (a, 0, c) and (a, b, 0) – dumping a jar into the lake
– (A, b, c) and (a,B, c) and (a, b, C) – filling a jar from the lake

–

{
(0, a+ b, c) if a+ b ≤ B

(a+ b−B,B, c) if a+ b ≥ B

}
– pouring from the first jar into the second

–

{
(0, b, a+ c) if a+ c ≤ C

(a+ c− C, b, C) if a+ c ≥ C

}
– pouring from the first jar into the third

–

{
(a+ b, 0, c) if a+ b ≤ A

(A, a+ b− A, c) if a+ b ≥ A

}
– pouring from the second jar into the first

–

{
(a, 0, b+ c) if b+ c ≤ C

(a, b+ c− C,C) if b+ c ≥ C

}
– pouring from the second jar into the third

–

{
(a+ c, b, 0) if a+ c ≤ A

(A, b, a+ c− A) if a+ c ≥ A

}
– pouring from the third jar into the first

–

{
(a, b+ c, 0) if b+ c ≤ B

(a,B, b+ c−B) if b+ c ≥ B

}
– pouring from the third jar into the second

Since each vertex has at most 12 outgoing edges, there are at most 12(A+1)(B+1)(C+1) =
O(ABC) edges altogether.
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To solve the jars problem, we need to find the shortest path in G from the start vertex (0, 0, 0)
to any target vertex of the form (k, ·, ·) or (·, k, ·) or (·, ·, k). We can compute this shortest path
by calling breadth-first search starting at (0, 0, 0), and then examining every target vertex by
brute force. If BFS does not visit any target vertex, we report that no legal sequence of moves
exists. Otherwise, we find the target vertex closest to (0, 0, 0) and trace its parent pointers
back to (0, 0, 0) to determine the shortest sequence of moves. The resulting algorithm runs in
O(V + E) = O(ABC) time .

We can make this algorithm faster by observing that every move either leaves at least one jar
empty or leaves at least one jar full. Thus, we only need vertices (a, b, c) where either a = 0 or
b = 0 or c = 0 or a = A or b = B or c = C; no other vertices are reachable from (0, 0, 0). The
number of non-redundant vertices and edges is O(AB +BC +AC). Thus, if we only construct
and search the relevant portion of G, the algorithm runs in O(AB + BC + AC) time .

Rubric:[for graph reduction problems] 10 points:

• 2 for correct vertices

• 2 for correct edges

– 1/2 for forgetting “directed”

• 2 for stating the correct problem (shortest paths)

– “Breadth-first search” is not a problem; it’s an algorithm.

• 2 points for correctly applying the correct algorithm (breadth-first search)

– 1 for using Dijkstra instead of BFS

• 2 points for time analysis in terms of the input parameters.

• Max 8 points for O(ABC) time; scale partial credit

6 You’ve been hired to store a sequence of n books on shelves in a library. The order of the books is
fixed by the cataloging system and cannot be changed; each shelf must store a contiguous interval
of the given sequence of books. You are given two arrays H[1 . . n] and T [1 . . n], where H[i] and
T [i] are respectively the height and thickness of the ith book in the sequence. All shelves in this
library have the same length L; the total thickness of all books on any single shelf cannot exceed
L.

1. Suppose all the books have the same height h (that is, H[i] = h for all i) and the shelves
have height larger than h, so each book fits on every shelf. Describe and analyze a greedy
algorithm to store the books in as few shelves as possible.

(
Hint: The algorithm is obvious,

but why is it correct?
)

2. That was a nice warmup, but now here’s the real problem. In fact the books have different
heights, but you can adjust the height of each shelf to match the tallest book on that shelf.
(In particular, you can change the height of any empty shelf to zero.) Now your task is to
store the books so that the sum of the heights of the shelves is as small as possible. Show that
your greedy algorithm from part (a) does not always give the best solution to this problem.

3. Describe and analyze an algorithm to find the best assignment of books to shelves as described
in part (b).
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7 Consider a directed graph G, where each edge is colored either red, white, or blue. A walk1 in G
is called a French flag walk if its sequence of edge colors is red, white, blue, red, white, blue, and
so on. More formally, a walk v0�v1� · · ·�vk is a French flag walk if, for every integer i, the edge
vi�vi+1 is red if i mod 3 = 0, white if i mod 3 = 1, and blue if i mod 3 = 2.

Describe an efficient algorithm to find all vertices in a given edge-colored directed graph G that
can be reached from a given vertex v through a French flag walk.

8 Racetrack (also known as Graph Racers and Vector Rally) is a two-player paper-and-pencil racing
game that Jeff played on the bus in 5th grade.2 The game is played with a track drawn on a sheet
of graph paper. The players alternately choose a sequence of grid points that represent the motion
of a car around the track, subject to certain constraints explained below.

Each car has a position and a velocity, both with integer x- and y-coordinates. A subset of grid
squares is marked as the starting area, and another subset is marked as the finishing area. The
initial position of each car is chosen by the player somewhere in the starting area; the initial
velocity of each car is always (0, 0). At each step, the player optionally increments or decrements
either or both coordinates of the car’s velocity; in other words, each component of the velocity
can change by at most 1 in a single step. The car’s new position is then determined by adding the
new velocity to the car’s previous position. The new position must be inside the track; otherwise,
the car crashes and that player loses the race.3 The race ends when the first car reaches a position
inside the finishing area.

Suppose the racetrack is represented by an n× n array of bits, where each 0 bit represents a grid
point inside the track, each 1 bit represents a grid point outside the track, the “starting area” is
the first column, and the “finishing area” is the last column.

Describe and analyze an algorithm to find the minimum number of steps required to move a car
from the starting line to the finish line of a given racetrack.

(
Hint: Build a graph. No, not that

graph, a different one. What are the vertices? What are the edges? What problem is this?
)

velocity position
(0, 0) (1, 5)

(1, 0) (2, 5)

(2,−1) (4, 4)

(3, 0) (7, 4)

(2, 1) (9, 5)

(1, 2) (10, 7)

(0, 3) (10, 10)

(−1, 4) (9, 14)

(0, 3) (9, 17)

(1, 2) (10, 19)

(2, 2) (12, 21)

(2, 1) (14, 22)

(2, 0) (16, 22)

(1,−1) (17, 21)

(2,−1) (19, 20)

(3, 0) (22, 20)

(3, 1) (25, 21)
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A 16-step Racetrack run, on a 25 × 25 track. This is not the shortest run on this track.

1Recall that a walk in a directed graph G is a sequence of vertices v0�v1� · · ·�vk, such that vi−1�vi is an edge in G
for every index i. A path is a walk in which no vertex appears more than once.

2The actual game is a bit more complicated than the version described here. See http://harmmade.com/vectorracer/
for an excellent online version.

3However, it is not necessary for the line between the old position and the new position to lie entirely within the track.
Sometimes Speed Racer has to push the A button.
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9 (100 pts.) Bane studies graph theory.

In the Dark Knight Rises, Bane traps the world’s dumbest police force in Gotham’s underground
tunnel system by waiting for every officer to march into the tunnels, and then sealing the exits.
The tunnel system consists of the straight tunnels (represented by edges) and the connection points
where multiple tunnels intersect and are connected together (represented by vertices).

However, a deleted scene shows Bane’s true genius. Bane couldn’t just seal the entrances because
then if Batman digs through a single entrance, all the cops will get out. He could just blow up
every single tunnel but that’s too expensive. After all he’s not Batman!

Bane realizes he can save some money and selectively destroy tunnels(e)/intersections(v) resulting
in two or more disjoint tunnel sub-systems. Therefore, if the entrance to one subsystem is breached,
only the cops in that sub-system will get out. We call these tunnels/intersections critical.

9.A. (30 pts.) Design a linear time algorithm to check if a tunnel is critical. In other words check
if the removal of this tunnel results in two disjoint sub-systems.

9.B. (50 pts.) Design a linear-time algorithm which identifies every critical tunnel.

9.C. (20 pts.) Bane theorizes it might be more cost effective to destroy intersection points rather
than entire tunnels (this would fragment the system more effectively as well). Develop a
linear time algorithm that will identify every critical intersection.

10 (100 pts.) Poke-vertices: Gotta visit them all

Let G be a directed acyclic graph with a unique source s and unique sink t.

10.A. (20 pts.) A Hamiltonian path in G is a directed path that contains every vertex in G.
Describe an algorithm to determine whether G has a Hamiltonian path.

10.B. (30 pts.) Suppose the edges of G have weights. Describe an efficient algorithm to find the
path from s to t with the maximum average weight. Here, for a path π with k edges, and
total weight of the edges being w, the average weight is w/k.

10.C. (20 pts.) Suppose some of the vertices of G are designated as special . A special vertex
v has a positive weight w(v) > 0 associated with it. A non-special vertex has weight zero.
Describe an algorithm, as fast as possible, that computes the maximum weight path from s
to t.

10.D. (30 pts.) Describe an algorithm that returns if the number of different paths from s to t
in G is odd or even. To earn any points, your algorithm should not compute the number of
such paths (because the number of such paths is potentially exponential, and working with
such big numbers is expensive).

11 (100 pts.) The revolution will not be televised, it will be a question on the homework.

There are n rebels that are currently planning, well, a “party”. A rebel v can send messages to
only one other rebel, designated as contact(v). Here, if a rebel is given a message, they will send
it to their contact, and it would be propagated in this fashion to everyone reachable.

11.A. (20 pts.) Describe an algorithm, as fast as possible, that computes a rebel v, such that if
you send a message to v, the message gets propagated to all the rebels. If there is not such
vertex v, the algorithm should output “no solution”.
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11.B. (20 pts.) Describe an algorithm, as fast as possible, that computes the minimal number of
rebels that needs to be sent directly a message, before the message can be propagated to all
the rebels.

11.C. (30 pts.) A more realistic situation is that a rebel v can contact a group of rebels R(v).
Describe an algorithm, as fast as possible, that decides if there is a rebel such that if you send
them a message, they can propagate it to everyone. Let m =

∑n
v=1 |R(v)| be the total size

of the input. You can safely assume in analyzing the input that m ≥ n. Provide a running
time in terms of m.

11.D. (30 pts.) (Hard.) We are back to the setting where each rebel can send only a single message
to their contact. Describe an algorithm, as fast as possible, that reassigns the minimal number
of contacts, so that a message can be sent to any single rebel, and it will be propagated to all
rebels. Here, a (single) reassignment is assigning a rebel a different contact person than their
current one. Prove the correctness of your algorithm. (Here, an algorithm without formal
proof of correctness is worth no points.)

12 (100 pts.) The invasion of the Shire (Fall 22).

In an act of sheer folly, Narnia had invaded the Shire. The Narnian military is now deployed on
the roads of the Shire. There are junctions where the roads meet (for simplicity, we assume that a
road might have junctions only in its two ends). Since its the rainy season the Narnian army can
not leave the roads, and even worst, the gates back to Narnia are closed. The hobbits (i.e., the
people living in the Shire), are trying to figure out which roads to destroy in their fight against
Narnia. A road is a bottleneck if destroying it disconnects the (initially connected) road network.
The road network has m roads and n junctions.

12.A. (50 pts.) Describe an algorithm, with running time O(n +m), that computes all the bot-
tleneck roads. (Hint: First think about an algorithm that decides for a single road if it is
a bottleneck, and then extend it so that it makes this decision for all roads. DFS is your
friend.)

12.B. (50 pts.) The high command of the Shire military conjectures that destroying junctions
might work better. Describe a linear time algorithm that will identify every vulnerable
junctions. Formally, a junction is vulnerable if removing it disconnects the road network.

13 (100 pts.) The package delivery problem (Fall 22).

13.A. (50 pts.) Let G be a directed acyclic graph with a unique source s and unique sink t. A
delivery truck starts at s and arrives at t, but it can travel on at most k edges. Every node v
has a profit p(v) > 0. Describe an algorithm, as fast as possible, that computes the maximum
profit path in G (using at most k edges).

13.B. (50 pts.) Let G be a directed graph with n vertices, and m edges. Describe an algorithm, as
fast as possible, that computes an edge u → v, that its addition to G would create the largest
(in number of vertices) strong connected component in the new graph (such an edge might
not be unique – you need to output only one such edge).
Let k be the number of strong connected components in G. What is the running time of your
algorithm as a function of n,m and k?
For full credit, your algorithm should run in linear time if k = o(n1/4).
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