
HW 8 Due on Wednesday, October 30, 2024 at 9am CST

CS/ECE 374A: Intro. Algorithms & Models of Computation, Fall 2024 Version: 1.3

Submission instructions as in previous homeworks.

Extra guidelines for no extra charge. As a reminder, describing an algorithm requires
not only describing the algorithm itself, but you also have to explain how and why your
algorithm works. You also need to provide an analysis of the running time of your algorithm.
Finally, you also need to explain the correctness of your algorithm, and provide a proof if
asked to provide one.
For information how the running time of your algorithm is graded, see the FAQ.

15 (100 pts.) Traveling in tolls.

You are given a directed graph G with n vertices and m ≥ n edges. You are also given a source
vertex s. Each edge e ∈ E(G) is labeled by an integer number ℓ(e) ∈ JkK = {1, . . . , k} (let i-edge
denote an edge with label i). Before traveling from s, you need to pay a toll – there are k ≤ n
different tolls you can buy, with the ith toll having price (say) i. If you bought the ith toll, then
you can travel on all edges with their label being at most i (and you can not travel on any of the
edges marked by i+ 1, . . . , k).

A vertex is i-reachable if the cheapest toll you need to buy to reach it (from s) is i. (Assume
for simplicity that all the vertices of G are reachable from s.) All the vertices that are i-reachable,
are in the ith zone, denoted by Zi ⊆ V(G).

15.A. (30 pts.) Describe shortly an algorithm that computes the zones Z1, . . . , Zk. For credit , the
overall running time of your algorithm should be O((n+m)k). (You do not need to provide
pseudo-code for this part.)

15.B. (70 pts.) A more sophisticated algorithm works in stages – first it computes Z1 by per-
forming BFS using only 1-edges. In the second stage, it resumes the BFS, and computes
all the vertices in Z2 (importantly, the algorithm might encounter new 1-edges that should
be explored during this stage). The algorithm continues in the same fashion – in the ith
stage is computes Zi (conceptually by “resuming” the BFS done in the (i− 1)th stage). De-
scribe in detail how to implement this variant of BFS. For credit , your algorithm must run
in O(n + m) time overall, and you need to provide detailed pseudo-code (in addition to a
detailed description in plain English how your algorithm works), and explain in detail why
your algorithm is correct. Also, provided a detailed explanation for the running time of the
algorithm.

16 (100 pts.) Musical plugs: The robots uprising.

You are given a directed graph G = (V,E) with n vertices and m edges. Each vertex v of G is
labeled ℓ(v) ∈ {C,D,E, F,G,A,B}, one of the seven notes in the C Major scale. Three robots are
placed on the vertices. In each round, a robot plays the note specified by the label of its current
location, and then moves to a neighboring vertex (it must move). Thus, the three robots play their
respective notes, and move in sync. The can potentially play up to 73 = 343 different combinations,
but among them, seven combinations are chords : C1 = (C,E,G), C2 = (D,F,A), C3 = (E,G,B),
C4 = (F,A,C), C5 = (G,B,D), C6 = (A,C,E), C7 = (B,D, F ). A configuration is a triple

1

https://courses.engr.illinois.edu/cs374al1/fa2024//hw/01/hw_01.pdf
https://courses.grainger.illinois.edu/cs374al1/fa2024/info/faq.html


(v1, v2, v3) ∈ V × V × V designating the locations of the three robots. A configuration is chordal
if (ℓ(v1), ℓ(v2), ℓ(v3)) ∈ {C1, . . . , C7}.

So, you have to place three robots at three vertices of G in the beginning of the process. At
each point in time they have to play a chord and move (if they get stuck, and can not play a chord,
the game is over). A symphony is a sequence of such valid configurations (configurations might
repeat). The quality of the symphony is the number of unique configurations in the symphony.
Describe an algorithm, as fast as possible, that computes the maximum quality symphony – your
algorithm should output the start configuration, and the quality of the symphony – it does not
need to output the symphony itself.

(Hint: SCC.)

2


