
HW 7: Extra problems Instructors: Har-Peled

CS/ECE 374A: Intro. Algorithms & Models of Computation, Fall 2024 Version: 1.0

1 (100 pts.) Trees have needs, but then who doesn’t?

We are given a tree T = (V,E) with n vertices. Assume that the degree of all the vertices in T
is at most 3. You are given a function f : V → {0, 1, 2, 3}. The task is to compute a subset X of
edges, such that for every node v ∈ V , there are at least f(v) distinct edges in X that are adjacent
to v.

Describe an algorithm, as fast as possible, that computes the minimum size set X ⊆ E that meets
the needs of all the nodes in the tree. The algorithm should output both |X| and X itself.

2 (100 pts.) Trust but shadow.

A classical tactic in war, is for a small force to “shadow” a bigger force of the enemy. So, assume we
have a main army moving along a sequence p1, . . . , pn of locations. Initially, the army start at p1,
and every day it moves forward to the next location, spending the night there. The shadow army,
similarly, knowing their enemy path, has a sequence of locations q1, q2, . . . , qm that it is planning
to travel through.

The shadow army, being much smaller, can move much faster than the main army. In particular,
it can move through as many locations as it wants in one day.

The important thing with shadowing, is that the shadow army should not be too close to the main
army when they both camp at night (because that would trigger a battle, which would be bad).
Similarly, the shadow army should not be too far from the main army, as then it can not keep
track of it.

The task at hand is to come up with a schedule for the shadow army. In the beginning of ith day,
the main army is at location pi, and the shadow army is at location qπ(i) (π is what you have to
compute). We require that π(1) = 1, π(i+1) ≥ π(i), and π(n) = m. The locations p1, . . . , pn and
q1, . . . , qm are points in the plane (and are the input to the algorithm), and the distance between
two locations is the Euclidean distance between them.

2.A. (40 pts.) An interval [x, y] ⊆ R is feasible if there exists a valid schedule π, such that, for
all i, we have ∥pi − qπ(i)∥ ∈ [x, y]. Given such an interval [x, y], describe a dynamic program
algorithm, as fast as possible, that uses as little space as possible, that decides if [x, y] is
feasible (no need to output the schedule).

2.B. (30 pts.) Describe an algorithm, as fast as possible, that computes the maximal x, such that
the interval [x,∞] is feasible.

2.C. (30 pts.) The instability of an interval [x, y], with 0 < x < y, is the ratio y/x. Describe an
algorithm, as fast as possible, that computes the interval with minimum instability, among
all feasible intervals.

3 (100 pts.) Superstring theory.

You are given a DFA M = (Q,Σ, δ, s, A) with n states, where |Σ| = O(1).

1

For two strings x, y ∈ Σ∗, the string x is a superstring of y, if one can delete characters from x
and get y.

Let w be a given input string with m characters.

3.A. (25 pts.) Let q, q′ ∈ Q be two states of M . Prove, that the shortest string w′′, such that
δ∗(q, w′′) = q′ is of length at most n− 1.

3.B. (25 pts.) Prove, that if there is a superstring x of w, such that x is accepted by M , then the
shortest such superstring is of length at most (n+ 1)(m+ 1), where n = |Q| and m = |w|.

3.C. (50 pts.) Describe an algorithm, as efficient as possible, that computes the shortest super-
string z of w, such that z is accepted by M . (One can solve this problem using dynamic
programming, but this is definitely not the only way.)

4 (100 pts.) Stars in a tree.

A star, in a tree, is a vertex together with all the edges adjacent to it. A collection of stars is
independent if no two stars shares a vertex. The mass of an independent set of stars S is the
total number of edges in the stars of S.

Describe an algorithm, as efficient as possible, that computes the maximum mass of any set of
independent stars in the given tree T . Here the input tree T has n vertices.

5 (100 pts.) Exploring Narnia.

Three travelers had decided to travel to Narnia. Since they are all anti-social, they do not want to
travel together. Instead, the first traveler would move from location p1 to location p2, and so on till
arriving to location pn (here, P = p1, . . . , pn). A location is just a point in the plane (i.e., pi ∈ R2).
Similarly, the second traveler is going to move along Q = q1, . . . , qn, and the third traveler is going
to move along R = r1, . . . , rn. Every day, a traveler might decide to stay in its current location, or
move to the next location (the traveling between two consecutive locations takes less than a day).

By the evening of each day, the travelers arrive to their desired locations for the day, which can
be thought of as a configuration (p, q, r) ∈ P ×Q×R.

A configuration (p, q, r) is ℓ-legal if

∆(p, q, r) = max
(
∥p− q∥, ∥p− r∥, ∥q − r∥

)
≤ ℓ,

2

where ∥p−q∥ is the Euclidean distance between the points p and q (this distance can be computed
in constant time). (Intuitively, the travelers do not want to be too far from each other, so that if
one of them is hurt, the others can quickly come over and help.)

5.A. (50 pts.) Given the point sequences P,Q,R, and a parameter ℓ > 0, describe an algorithm,
as fast as possible, that decides if there is a motion planning schedule from (p1, q1, r1) to
(pn, qn, rn) such that all the configurations used are ℓ-legal. Such a schedule is an ℓ-feasible
schedule.
Here, it is legal for several travelers to move in the same day, but they are not allowed to
move back to a previous location they already used. Furthermore, a traveler can move, in
one day, only one location forward in their sequence.

5.B. (50 pts.) Given P,Q,R, as above, describe an algorithm, as fast as possible, that computes
the minimum ℓ for which there is an ℓ-feasible schedule.

6 Suppose you are given a DFA M = (Q,Σ, δ, s, F) and a binary string w ∈ Σ∗ where Σ = {0, 1}.
Describe and analyze an algorithm that computes the longest subsequence of w that is accepted
by M , or correctly reports that M does not accept any subsequence of w.

7 Problem 6.21 in Dasgupta etal on finding the minimum sized vertex cover in a tree.

8 The McKing chain wants to open several restaurants along Red street in Shampoo-Banana. The
possible locations are at L1, L2, . . . , Ln where Li is at distance mi meters from the start of Red
street. Assume that the street is a straight line and the locations are in increasing order of distance
from the starting point (thus 0 ≤ m1 < m2 < . . . < mn). McKing has collected some data
indicating that opening a restaurant at location Li will yield a profit of pi independent of where
the other restaurants are located. However, the city of Shampoo-Banana has a zoning law which
requires that any two McKing locations should be D or more meters apart. In addition McKing
does not want to open more than k restaurants due to budget constraints. Describe an algorithm
that McKing can use to figure out the maximum profit it can obtain by opening restaurants while
satisfying the city’s zoning law and the constraint of opening at most k restaurants. Your algorithm
should use only O(n) space.

9 Let X = x1, x2, . . . , xr, Y = y1, y2, . . . , ys and Z = z1, z2, . . . , zt be three sequences. A common
supersequence of X, Y and Z is another sequence W such that X, Y and Z are subsequences of
W . Suppose X = a, b, d, c and Y = b, a, b, e, d and Z = b, e, d, c. A simple common supersequence
of X, Y and Z is the concatenation of X, Y and Z which is a, b, d, c, b, a, b, e, d, b, e, d, c and has
length 13. A shorter one is b, a, b, e, d, c which has length 6. Describe an efficient algorithm to
compute the length of the shortest common supersequence of three given sequences X, Y and Z.

10 Suppose we need to distribute a message to all the nodes in a rooted tree. Initially, only the root
node knows the message. In a single round, any node that knows the message can forward it
to at most one of its children. Design an algorithm to compute the minimum number of rounds
required for the message to be delivered to all nodes in a given tree. See figure below for an
example. Assume that the tree is binary (number of children is at most 2).

3

�. D������ P����������

indicates that the employee and their supervisor actually like each other. Your goal is
to choose a subset of exactly k employees to invite, so that the total awkwardness
of the resulting party is as small as possible. For example, if the guest list does not
include both an employee and their immediate supervisor, the total awkwardness is
zero. The input to your algorithm is the tree T , the integer k, and the awkwardness
of each node in T .
(a) Describe an algorithm that computes the total awkwardness of the least awkwardExam

subset of k employees, assuming the company hierarchy is described by a binary
tree. That is, assume that each employee directly supervises at most two others.

(b) Describe an algorithm that computes the total awkwardness of the least awkwardHomework

subset of k employees, with no restrictions on the company hierarchy.

��. Suppose we need to distribute a message to all the nodes in a rooted tree. Initially,Exam

only the root node knows the message. In a single round, any node that knows the
message can forward it to at most one of its children. Design an algorithm to compute
the minimum number of rounds required for the message to be delivered to all nodes
in a given tree.

A message being distributed through a tree in �ve rounds.

��. One day, Alex got tired of climbing in a gym and decided to take a very large groupHomework

of climber friends outside to climb. The climbing area where they went, had a huge
wide boulder, not very tall, with various marked hand and foot holds. Alex quickly
determined an “allowed” set of moves that her group of friends can perform to get
from one hold to another.

The overall system of holds can be described by a rooted tree T with n vertices,
where each vertex corresponds to a hold and each edge corresponds to an allowed
move between holds. The climbing paths converge as they go up the boulder, leading
to a unique hold at the summit, represented by the root of T .¹⁷

Alex and her friends (who are all excellent climbers) decided to play a game,
where as many climbers as possible are simultaneously on the boulder and each
climber needs to perform a sequence of exactly k moves. Each climber can choose an
arbitrary hold to start from, and all moves must move away from the ground. Thus,
each climber traces out a path of k edges in the tree T , all directed toward the root.
��Q: Why do computer science professors think trees have their roots at the top?
A: Because they’ve never been outside!

��

Solved Problems

11 A string w of parentheses ((and)) and brackets [[and]] is balanced if it is generated by the following
context-free grammar:

S → ε | ((S)) | [[S]] | SS

For example, the string w = (([[(())]][[]](())))[[(())(())]](()) is balanced, because w = xy, where

x = (([[(())]] [[]] (()))) and y = [[(()) (())]] (()).

Describe and analyze an algorithm to compute the length of a longest balanced subsequence of a
given string of parentheses and brackets. Your input is an array A[1 . . n], where A[i] ∈ {((,)), [[,]]}
for every index i.

4

Solution: Suppose A[1 .. n] is the input string. For all indices i and j, we write A[i] ∼ A[j]
to indicate that A[i] and A[j] are matching delimiters: Either A[i] = ((and A[j] =)) or A[i] = [[
and A[j] =]].
For all indices i and j, let LBS(i, j) denote the length of the longest balanced subsequence
of the substring A[i .. j]. We need to compute LBS(1, n). This function obeys the following
recurrence:

LBS(i, j) =



0 if i ≥ j

max

{
2 + LBS(i+ 1, j − 1)

maxj−1
k=1

(
LBS(i, k) + LBS(k + 1, j)

)} if A[i] ∼ A[j]

maxj−1
k=1

(
LBS(i, k) + LBS(k + 1, j)

)
otherwise

We can memoize this function into a two-dimensional array LBS[1 .. n, 1 .. n]. Since every entry
LBS[i, j] depends only on entries in later rows or earlier columns (or both), we can evaluate
this array row-by-row from bottom up in the outer loop, scanning each row from left to right
in the inner loop. The resulting algorithm runs in O(n3) time .

LongestBalancedSubsequence(A[1 .. n]):
for i← n down to 1

LBS[i, i]← 0
for j ← i+ 1 to n

if A[i] ∼ A[j]
LBS[i, j]← LBS[i+ 1, j − 1] + 2

else
LBS[i, j]← 0

for k ← i to j − 1
LBS[i, j]← max {LBS[i, j], LBS[i, k] + LBS[k + 1, j]}

return LBS[1, n]

Rubric:

10 points, standard dynamic programming rubric

12 Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree with
the company president at the root. The all-knowing oracles in Human Resources have assigned a
real number to each employee measuring how “fun” the employee is. In order to keep things social,
there is one restriction on the guest list: An employee cannot attend the party if their immediate
supervisor is also present. On the other hand, the president of the company must attend the party,
even though she has a negative fun rating; it’s her company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of the “fun”
ratings of the guests. The input to your algorithm is a rooted tree T describing the company hier-
archy, where each node v has a field v.fun storing the “fun” rating of the corresponding employee.

5

Solution: [two functions] We define two functions over the nodes of T .

• MaxFunYes(v) is the maximum total “fun” of a legal party among the descendants of v,
where v is definitely invited.

• MaxFunNo(v) is the maximum total “fun” of a legal party among the descendants of v,
where v is definitely not invited.

We need to compute MaxFunYes(root). These two functions obey the following mutual recur-
rences:

MaxFunYes(v) = v.fun +
∑

children w of v

MaxFunNo(w)

MaxFunNo(v) =
∑

children w of v

max {MaxFunYes(w),MaxFunNo(w)}

(These recurrences do not require separate base cases, because
∑

∅ = 0.) We can memoize
these functions by adding two additional fields v.yes and v.no to each node v in the tree. The
values at each node depend only on the vales at its children, so we can compute all 2n values
using a post-order traversal of T .

BestParty(T):
ComputeMaxFun(T.root)
return T.root.yes

ComputeMaxFun(v):
v.yes← v.fun
v.no← 0
for all children w of v

ComputeMaxFun(w)
v.yes← v.yes + w.no
v.no← v.no +max {w.yes, w.no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because
that’s the most natural way to traverse trees!a) The algorithm spends O(1) time at each node,
and therefore runs in O(n) time altogether.

aA naive recursive implementation would run in O(ϕn) time in the worst case, where ϕ = (1+
√
5)/2 ≈ 1.618

is the golden ratio. The worst-case tree is a path-every non-leaf node has exactly one child.

6

Solution: [one function] For each node v in the input tree T , let MaxFun(v) denote the
maximum total “fun” of a legal party among the descendants of v, where v may or may not be
invited.
The president of the company must be invited, so none of the president’s “children” in T can
be invited. Thus, the value we need to compute is

root.fun +
∑

grandchildren w of root

MaxFun(w).

The function MaxFun obeys the following recurrence:

MaxFun(v) = max


v.fun +

∑
grandchildren x of v

MaxFun(x)∑
children w of v

MaxFun(w)


(This recurrence does not require a separate base case, because

∑
∅ = 0.) We can memoize

this function by adding an additional field v.maxFun to each node v in the tree. The value at
each node depends only on the values at its children and grandchildren, so we can compute all
values using a postorder traversal of T .

BestParty(T):
ComputeMaxFun(T.root)
party← T.root.fun
for all children w of T.root

for all children x of w
party← party + x.maxFun

return party

ComputeMaxFun(v):
yes← v.fun
no← 0
for all children w of v

ComputeMaxFun(w)
no← no + w.maxFun
for all children x of w

yes← yes + x.maxFun
v.maxFun← max {yes,no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because
that’s the most natural way to traverse trees!a)
The algorithm spends O(1) time at each node (because each node has exactly one parent and
one grandparent) and therefore runs in O(n) time altogether.
aLike the previous solution, a direct recursive implementation would run in O(ϕn) time in the worst case,

where ϕ = (1 +
√
5)/2 ≈ 1.618 is the golden ratio.

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solu-
tions.

7

13 (100 pts.) Break into intervals (Fall 2022).

The input is a sequence α1, . . . , αn of n real numbers, and a parameter k ≤ n. For integers
i ≤ j, their interval is the set Ji : jK = {i, i + 1, . . . , j}. The benefit of such an interval is
φ(i, j) =

∑j
t=i(αt + αi)

2. Describe an efficient dynamic programming algorithm that computes
the maximum price solution when one breaks the sequence into (exactly) k intervals I1, . . . , Ik.
Specifically, compute the intervals I1, . . . , Ik, such that:

(a) ∪iIi = J1 : nK,
(b) all the k intervals are disjoint,
(c) all the intervals I1, . . . , Ik are non-empty,
(d) and

∑
i φ(Ii) is maximized.

In addition, your algorithm also need to output the optimal solution itself (i.e., the k intervals
forming the optimal solution).

As usual, your algorithm should be as fast as possible, and try and minimize (within reason) the
space used.

(See top of previous homework to see exact instructions of what you have to provide – in particular,
you have to provide a recursive formulation of this problem, and a dynamic [non-recursive] program
to solve this problem.)

14 (100 pts.) Convert into graph problems (Fall 22)

14.A. (50 pts.) For problem 11 (from the previous homework), describe an efficient reduction
of the problem to a graph problem. Formally, describe an efficient algorithm that solves it
by constructing an appropriate DAG (i.e., directed acyclic graph) G, and then solving the
original problem by solving a standard graph problem on G. Assuming that this standard
problem can be solved in linear time in the size of the graph (i.e., number of vertices plus
the number of edges), what is the running time of your algorithm? (As usual your algorithm
should be as fast as possible, but we do not care about the space requirement here.)

14.B. (50 pts.) Same as previous part, but for problem 13 above (here, you just need to compute
the optimal solution value, there is no need to output the solution itself).

8

