
HW 5: Extra problems Instructors: Har-Peled

CS/ECE 374A: Intro. Algorithms & Models of Computation, Fall 2024 Version: 1.1

1 Problem 9 in Jeff’s note on counting inversions. This is also a solved problem in Kleinberg-Tardos
book. This is the simpler version of the solved problem at the end of this home work.

2 We saw a linear time selection algorithm in class which is based on splitting the array into arrays
of 5 elements each. Suppose we split the array into arrays of 7 elements each. Derive a recurrence
for the running time.

3 Suppose we are given n points (x1, y1), (x2, y2), . . . , (xn, yn) in the plane. We say that a point
(xi, yi) in the input is dominated if there is another point (xj, yj) such that xj > xi and yj > yi.
Describe an O(n log n) time algorithm to find all the undominated points in the given set of n
points.

4 Solve some recurrences in Jeff’s notes.

5 Suppose we have a stack of n pancakes of different sizes. We want to sort the pancakes so that the
smaller pancakes are on top of the larger pancakes. The only operation we can perform is a flip -
insert a spatula under the top k pancakes, for some k between 1 and n, and flip them all over.

5.A. Describe an algorithm to sort an arbitrary stack of n pancakes and give a bound on the
number of flips that the algorithm makes. Assume that the pancake information is given to
you in the form of an n element array A. A[i] is a number between 1 and n and A[i] = j
means that the j’th smallest pancake is in position i from the bottom; in other words A[1]
is the size of the bottom most pancake (relative to the others) and A[n] is the size of the top
pancake. Assume you have the operation Flip(k) which will flip the top k pancakes. Note
that you are only interested in minimizing the number of flips.

5.B. Suppose one side of each pancake is burned. Describe an algorithm that sorts the pancakes
with the additional condition that the burned side of each pancake is on the bottom. Again,
give a bound on the number of flips. In addition to A, assume that you have an array B that
gives information on which side of the pancakes are burned; B[i] = 0 means that the bottom
side of the pancake at the i’th position is burned and B[i] = 1 means the top side is burned.
For simplicity, assume that whenever Flip(k) is done on A, the array B is automatically
updated to reflect the information on the current pancakes in A.

No proof of correctness necessary.

6 Suppose you are given k sorted arrays A1, A2, . . . , Ak each of which has n numbers. Assume that
all numbers in the arrays are distinct. You would like to merge them into single sorted array A of

1



kn elements. Recall that you can merge two sorted arrays of sizes n1 and n2 into a sorted array
in O(n1 + n2) time.

6.A. Use a divide and conquer strategy to merge the sorted arrays in O(n log k) time. To prove
the correctnes of the algorithm you can assume a routine to merge two sorted arrays.

6.B. In MergeSort we split the array of size N into two arrays each of size N/2, recursively sort
them and merge the two sorted arrays. Suppose we instead split the array of size N into
k arrays of size N/k each and use the merging algorithm in the preceding step to combine
them into a sorted array. Describe the algorithm formally and analyze its running time via a
recurrence.

7 7.A. Describe an algorithm to determine in O(n) time whether an arbitrary array A[1..n] contains
more than n/4 copies of any value.

7.B. Describe and analyze an algorithm to determine, given an arbitrary array A[1..n] and an
integer k, whether A contains more than k copies of any value. Express the running time of
your algorithm as a function of both n and k.

Do not use hashing, or radix sort, or any other method that depends on the precise
input values.

8 Suppose we are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0 and the other
set {q1, q2, . . . , qn} on the line y = 1. Consider the n line segments connecting each point pi to the
corresponding point qi. Describe and analyze a divide-and-conquer algorithm to determine how
many pairs of these line segments intersect, in O(n log n) time. See the example below.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6
Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P [1 .. n] and Q[1 .. n] of x-coordinates; you may assume that all
2n of these numbers are distinct. No proof of correctness is necessary, but you should justify the
running time.

2



Solution: We begin by sorting the array P [1 .. n] and permuting the array Q[1 .. n] to
maintain correspondence between endpoints, in O(n log n) time. Then for any indices i < j,
segments i and j intersect if and only if Q[i] > Q[j]. Thus, our goal is to compute the number
of pairs of indices i < j such that Q[i] > Q[j]. Such a pair is called an inversion .
We count the number of inversions in Q using the following extension of mergesort; as a side
effect, this algorithm also sorts Q. If n < 100, we use brute force in O(1) time. Otherwise:

• Recursively count inversions in (and sort) Q[1 .. ⌊n/2⌋].
• Recursively count inversions in (and sort) Q[⌊n/2⌋+ 1 .. n].

• Count inversions Q[i] > Q[j] where i ≤ ⌊n/2⌋ and j > ⌊n/2⌋ as follows:

– Color the elements in the Left half Q[1 .. n/2] bLue.

– Color the elements in the Right half Q[n/2 + 1 .. n] Red.

– Merge Q[1 .. n/2] and Q[n/2 + 1 .. n], maintaining their colors.

– For each blue element Q[i], count the number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

CountRedBlue(A[1 .. n]):
count← 0
total← 0

for i← 1 to n
if A[i] is red

count← count + 1
else

total← total + count
return total

In fact, we can execute the third merge-and-count step directly by modifying the Merge
algorithm, without any need for “colors”. Here changes to the standard Merge algorithm are
indicated in red.

MergeAndCount(A[1 .. n],m):
i← 1; j ← m+ 1; count← 0; total← 0

for k ← 1 to n
if j > n

B[k]← A[i]; i← i+ 1; total← total + count
else if i > m

B[k]← A[j]; j ← j + 1; count← count + 1
else if A[i] < A[j]

B[k]← A[i]; i← i+ 1; total← total + count
else

B[k]← A[j]; j ← j + 1; count← count + 1

for k ← 1 to n
A[k]← B[k]

return total

We can further optimize this algorithm by observing that count is always equal to j −m− 1.
(Proof: Initially, j = m+ 1 and count = 0, and we always increment j and count together.)

MergeAndCount2(A[1 .. n],m):
i← 1; j ← m+ 1; total← 0

for k ← 1 to n
if j > n

B[k]← A[i]; i← i+ 1; total← total + j − m − 1
else if i > m

B[k]← A[j]; j ← j + 1
else if A[i] < A[j]

B[k]← A[i]; i← i+ 1; total← total + j − m − 1
else

B[k]← A[j]; j ← j + 1

for k ← 1 to n
A[k]← B[k]

return total

The modified Merge algorithm still runs in O(n) time, so the running time of the resulting
modified mergesort still obeys the recurrence T (n) = 2T (n/2) + O(n). We conclude that the
overall running time is O(n log n), as required.

3



Rubric: 10 points = 2 for base case + 3 for divide (split and recurse) + 3 for conquer (merge and
count) + 2 for time analysis. Max 3 points for a correct O(n2)-time algorithm. This is neither the
only way to correctly describe this algorithm nor the only correct O(n log n)-time algorithm. No
proof of correctness is required.

9 Consider the following restricted variant of the Tower of Hanoi puzzle. The pegs are numbered
0, 1, and 2, and your task is to move a stack of n disks from peg 1 to peg 2. However, you are
forbidden to move any disk directly between peg 1 and peg 2; every move must involve peg 0.

Describe an algorithm to solve this version of the puzzle in as few moves as possible. Exactly how
many moves does your algorithm make?

10 Consider the following cruel and unusual sorting algorithm.

Cruel(A[1 .. n]):
if n > 1

Cruel(A[1 .. n/2])
Cruel(A[n/2 + 1 .. n])
Unusual(A[1 .. n])

Unusual(A[1 .. n]):
if n = 2

if A[1] > A[2] the only comparison!
swap A[1]↔ A[2]

else
for i← 1 to n/4 swap 2nd and 3rd quarters

swap A[i+ n/4]↔ A[i+ n/2]

Unusual(A[1 .. n/2]) // recurse on left half
Unusual(A[n/2 + 1 .. n]) // recurse on right half
Unusual(A[n/4 + 1 .. 3n/4]) // recurse on middle half

Notice that the comparisons performed by the algorithm do not depend at all on the values in the
input array; such a sorting algorithm is called oblivious . Assume for this problem that the input
size n is always a power of 2.

10.A. Prove by induction that Cruel correctly sorts any input array.
(
Hint: Consider an array

that contains n/4 1s, n/4 2s, n/4 3s, and n/4 4s. Why is this special case enough? What
does Unusual actually do?

)
10.B. Prove that Cruel would not correctly sort if we removed the for-loop from Unusual.

10.C. Prove that Cruel would not correctly sort if we swapped the last two lines of Unusual.

10.D. What is the running time of Unusual? Justify your answer.

10.E. What is the running time of Cruel? Justify your answer.

4



11 You are a visitor at a political convention (or perhaps a faculty meeting) with n delegates. Each
delegate is a member of exactly one political party. It is impossible to tell which political party
any delegate belongs to. In particular, you will be summarily ejected from the convention if you
ask. However, you can determine whether any pair of delegates belong to the same party or not
simply by introducing them to each other. Members of the same party always greet each other
with smiles and friendly handshakes; members of different parties always greet each other with
angry stares and insults.

11.A. Suppose more than half of the delegates belong to the same political party. Describe and
analyze an efficient algorithm that identifies every member of this majority party.

11.B. Now suppose precisely p political parties are present and one party has a plurality: more
delegates belong to that party than to any other party. Please present a procedure to pick
out the people from the plurality party as parsimoniously as possible.1 Do not assume that
p = O(1).

12 (100 pts.) That’s so Hanoi-ing. (Fall 2020)

Consider the following variants of the Towers of Hanoi. For each of variant, describe an algorithm
to solve it in as few moves as possible. Prove that your algorithm is correct. Initially, all the n
disks are on peg 1, and you need to move the disks to peg 2. In all the following variants, you are
not allowed to put a bigger disk on top of a smaller disk.

12.A. (30 pts.) Hanoi 0: Suppose you are forbidden to move any disk directly between peg 1 and
peg 2, and every move must involve (the third peg) 0. Exactly (i.e., not asymptotically) how
many moves does your algorithm make as a function of n?

12.B. (30 pts.) Hanoi 2: Suppose you are only allowed to move disks from peg 0 to peg 1, from
peg 1 to peg 2, or from peg 2 to peg 0.
Provide an upper bound, as tight as possible, on the number of moves that your algorithm
uses.
(One can derive the exact upper bound by solving the recurrence, but this is too tedious and
not required here.)

12.C. (40 pts.) Hanoi Bye Bye: Finally consider the disappearing Tower of Hanoi puzzle where the
largest remaining disk will disappear if there is nothing on top of it. The goal here is to get
all the disks to disappear and be left with three empty pegs (in as few moves as possible).
Provide an upper bound, as tight as possible, on the number of moves your algorithm uses.

13 (100 pts.) Divide and Merger (Fall 2020)

Suppose you are given k sorted arrays A1, A2, . . . , Ak (potentially of different sizes). Let ni > 0 be
the size of the ith array Ai, for i = 1, . . . , k, with

∑k
i=1 ni = n. Assume that all the numbers in all

the arrays are distinct. You would like to merge them into a single sorted array A of n elements.

13.A. (30 pts.) Use a divide and conquer strategy to derive an algorithm that sorts the given
sorted arrays in O(n log k) time, into one big happy sorted array.

1Describe and analyze an efficient algorithm that identifies every member of the plurality party.

5



13.B. (30 pts.) In MergeSort we split the array of size N into two arrays each of size N/2,
recursively sort them and merge the two sorted arrays. Suppose we instead split the array of
size N into k arrays of size N/k each and use the merging algorithm in the preceding step to
combine them into a sorted array. Describe the algorithm formally and analyze its running
time via a recurrence. You do not need to prove the correctness of the recursive algorithm.

13.C. (40 pts.) Describe an algorithm (not necessarily divide and conquer) for the settings of
(??) that works in O(n+

∑k
i=1 ni log

n
ni
) time. Prove the correctness of your algorithm, Note

that this is potentially an improved algorithm if the nis are non-uniform. For example, if
ni = n/2i, for i = 1, . . . , k, then the overall running time is linear. One can verify (but you
do not need to do it – it is not immediate) that O(

∑k
i=1 ni log

n
ni
) = O(n log k). This implies

that this algorithm is a strict improvement over (??).

14 (100 pts.) Fowl business. (Fall 2020)

You were given a kettle of n birds, which look all the same to you. To decide if two birds are of the
same species, you perform the following experiment – you put the two of them in a cage together.
If they are friendly to each other, then they are of the same species. Otherwise, you separate them
quickly before survival of the fittest kicks in.

14.A. (60 pts.) Suppose that strictly more than half of the birds belong to the same species.
Describe and analyze an efficient algorithm that identifies every bird among the n birds that
belong to this dominant species.

14.B. (40 pts.) Now suppose that there are exactly p species present in your kettle of n birds.
and one species has a plurality: more birds belong to that species than to any other species.
Present a procedure to pick out the birds from the plurality species as efficiently as possible
(i.e., minimize the number of experiments you have to do as a function of n and p). Do not
assume that p = O(1).

15 (100 pts.) Incomparable, that’s what you are. (Fall 2022)

Two points p = (x, y) and p′ = (x′, y′) are incomparable if x < x′ and y′ < y, or alternatively,
x′ < x and y < y′. Thus, in the following example, the only incomparable pair is {b, c}:

b

c

d

e

15.A. (50 pts.) You are given as input two sequences of points in the plane: S = s1, s2, . . . , sn
and T = t1, t2, . . . , tn, such that x(si) < α < x(tj), for all i, j, where α is some real number.
Furthermore, assume that the points of S are sorted in increasing y value, and so are the
points of T .
Let I(S, T ) denote the number of incomparable pairs {s, t} with s ∈ S and t ∈ T . Describe
an algorithm, as fast as possible, that computes and outputs I(S, T ).

15.B. (50 pts.) Given a set P of n points in the plane, let I(P ) denote the number of incomparable
pairs of points of P . Describe a divide-and-conquer algorithm, using the algorithm in the
first part, that computes and outputs I(P ). (The input P is not sorted in any way.) Your
algorithm needs to be as fast as possible.

6



You can assume that all input points have unique x and y coordinates.

(Hint: Merge sort.)

16 (100 pts.) Sort in bulk. (Fall 2022)

You are given n distinct items in an array A. You are also a given a procedure BulkSort(B) that
sorts any array B with at most k such items. Note, that you can not compare two items directly
(but you can sort them, by calling BulkSort on an array containing only these two items).

16.A. (50 pts.) Describe a divide and conquer algorithm that sorts A using calls to BulkSort.
Your algorithm should perform (asymptotically) as few calls to BulkSort as possible. What
is the worst case number of calls to BulkSort that your algorithm performs as a function of
n and k? (We ignore the cost of other operations - such as copying or moving things around.
We also assume that given two items, or copies of two items, we can decide if they are the
same item.)
(Getting the optimal algorithm for this part is difficult – an answer that is optimal up to a
polylog factor is acceptable here.)

16.B. (50 pts.) Describe a recursive algorithm that performs a minimum number of calls to
BulkSort and outputs the median item in A. Specifically, given A[1 . . . n] and a parameter
t, it outputs the item of rank t in the sorted order of the items of A. What is the number of
calls your algorithm performs to BulkSort as a function of n and k?
(Stating a recurrence on the number of calls to BulkSort, together with a solution of this
recurrence is enough – a formal proof of the correctness of the solution to the recurrence is
not required since it is very painful.)
For sanity check purposes, think about how many calls your algorithm performs to BulkSort
(for both parts) if k = n/2 or k =

√
n.

7


