Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

For each statement below, check "True" if the statement is *always* true and "False" otherwise. Each correct answer is worth +1 point; each incorrect answer is worth −½ point; checking "I don't know" is worth +¼ point; and flipping a coin is (on average) worth +¼ point. You do *not* need to prove your answer is correct.

Read each statement very carefully. Some of these are deliberately subtle.

- (a) If 100 is a prime number, then Jeff is the Queen of England.
- (b) The language $\{0^m 0^{n+m} 0^n \mid m, n \ge 0\}$ is regular.
- (c) For all languages L, the language L^* is regular.
- (d) For all languages $L \subset \Sigma^*$, if L can be recognized by a DFA, then $\Sigma^* \setminus L$ cannot be represented by a regular expression.
- (e) For all languages L and L', if $L \subseteq L'$ and L' is regular, then L is regular.
- (f) For all languages L, if L has a finite fooling set, then L is not regular.
- (g) Let $M = (\Sigma, Q, s, A, \delta)$ and $M' = (\Sigma, Q, s, Q \setminus A, \delta)$ be arbitrary **NFA**s with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then $L(M) \cup L(M') = \Sigma^*$.
- (h) Let $M = (\Sigma, Q, s, A, \delta)$ and $M' = (\Sigma, Q, s, Q \setminus A, \delta)$ be arbitrary **NFA**s with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then $L(M) \cap L(M') = \emptyset$.
- (i) For all context-free languages L and L', the language $L \cdot L'$ is also context-free.
- (j) Every regular language is context-free.
- 2. For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either *prove* that the language is regular or *prove* that the language is not regular. *Exactly one of these two languages is regular*.
 - (a) $\{w \circ^n w \mid w \in \Sigma^+ \text{ and } n > 0\}$
 - (b) $\left\{ \mathbf{0}^n w \mathbf{0}^n \mid w \in \Sigma^+ \text{ and } n > 0 \right\}$

For example, both of these languages contain the string 00110100000110100.

3. Let $L = \{1^m 0^n \mid n \le m \le 2n\}$ and let *G* be the following context free-grammar:

$$S \rightarrow 1S0 \mid 11S0 \mid \varepsilon$$

- (a) **Prove** that $L(G) \subseteq L$.
- (b) **Prove** that $L \subseteq L(G)$.
- 4. For any language L, let $PREFIXES(L) := \{x \mid xy \in L \text{ for some } y \in \Sigma^*\}$ be the language containing all prefixes of all strings in L. For example, if $L = \{000, 100, 110, 111\}$, then $PREFIXES(L) = \{\varepsilon, 0, 1, 00, 10, 11, 000, 100, 110, 111\}$.

Prove that for any regular language L, the language PREFIXES(L) is also regular.

- 5. For each of the following languages *L*, give a regular expression that represents *L* and describe a DFA that recognizes *L*.
 - (a) The set of all strings in $\{0,1\}^*$ that contain either both or neither of the substrings 01 and 10.
 - (b) The set of all strings in $\{0,1\}^*$ that do not contain the substring 1010.

You do *not* need to prove that your answers are correct.