Models of Computation Lecture 4: Nondeterministic Automata [F23]

The art of art, the glory of expression

and the sunshine of the light of letters is simplicity.

Nothing is better than simplicity . . . .

nothing can make up for excess or for the lack of definiteness.

— Walt Whitman, Preface to Leaves of Grass (1855)

Freedom of choice

Is what you got.
Freedom from choice
Is what you want.

— Devo, “Freedom of Choice”, Freedom of Choice (1980)

4 Nondeterminism

4.1 Nondeterministic State Machines

The following diagram shows something that looks like a finite-state machine over the alphabet
{0, 1}, but on closer inspection, it is not consistent with our earlier definitions. On one hand,
there are two transitions out of s for each input symbol. On the other hand, states a and b are
each missing an outgoing transition.

A nondeterministic finite-state automaton

This object is an example of a nondeterministic finite-state automaton, or NFA, so named
because its behavior is not uniquely determined by the input string. Formally, every NFA has five
components:

* An arbitrary finite set X, called the input alphabet.

* Another arbitrary finite set Q, whose elements are called states.

* An arbitrary transition function 6: Q x ¥ — 2%,

* A start state s € Q.

* A subset A C Q of accepting states.

The only difference from the formal definition of deterministic finite-state automata is the domain
of the transition function. In a DFA, the transition function always returns a single state; in an

NFA, the transition function returns always a set of states, which could be empty, or all of Q, or
anything in between.!

142Q” js mnemonic notation for the power set of Q, which is the set of all subsets of Q.
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Just like DFAs, the behavior of an NFA is governed by an input string w € ©*, which the
machine reads one symbol at a time, from left to right. Unlike DFAs, however, an NFA does not
maintain a single current state, but rather a set of current states. Whenever the NFA reads a
symbol a, its set of current states changes from C to §(C,a) := | J qec 6(q,a). After all symbols
have been read, the NFA accepts w if its current state set contains at least one accepting state
and rejects w otherwise. In particular, if the set of current states ever becomes empty, it will stay
empty forever, and the NFA will reject.

For example, given the input string @1101001, our example NFA’s set of current states evolves
as follows.

{s} 2, {s,a} . {s, b} 1, {s, b,c} LN {s,a,c} LR {s,b,c} LN {s,a,c} 2, {s,a,c} 1 {s,b,c}

This sequence of transitions is drawn more explicitly in the figure below. (Notice the explosions
whenever the NFA reads a 1 in state a, or reads a 0 in state b.) Because the final set of states
{a, b, c} contains the accept state c, our NFA accepts this input strung.

el wuC wewlwul w®
N
|

Running our example NFA on the input string 21101001.

More formally, for any NFA (X, Q, s, A, &), we recursively define an extended transition function
5%: Q x ©* — 22 that takes a state and a string as input, and returns a set of states as output:

{q} ifw=e,
* P
6°(q,w) = U 6*(r,x) ifw=ax.
reé(q,a)

For example, in our example NFA, we have 6*(s,01101001) = {s, b,c} and 6*(s,01010) = {s, a}.
Finally, the NFA accepts a string w € ¥* if and only if 6*(s,w) NA # @.

We can equivalently define an NFA as any directed graph whose vertices are the states Q, and
whose edges are labeled with symbols from X. Unlike DFAs, we do not require that every vertex
has exactly one outgoing edge with each label; it may have several such edges or none. An NFA
accepts a string w if the graph contains at least one walk from the start state to an accepting state
whose label is the string w.

4.2 Intuition

There are at least three useful ways to think about non-determinism.

Clairvoyance. Whenever an NFA reads symbol a in state g, it chooses the next state from the
set 6(q,a), always magically choosing a state that leads to the NFA accepting the input string,

unless no such choice is possible. Even if there is only one sequence of choices out of 14,000,605
that leads the machine to an accepting state, the NFA magically makes that choice.2 As the BSD

2Yes, even if it means Black Widow and Iron Man have to die.
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fortune file put it, “Nondeterminism means never having to say you are wrong.”? Of course real
machines can’t actually look into the future; that’s why I used the word “magic”.

Parallel threads. An arguably more “realistic” view is that when an NFA reads symbol a in
state g, it spawns an independent execution thread for each state in 6(q,a). In particular, if
6(q, a) is empty, the current thread simply dies. The NFA accepts if at least one thread is in an
accepting state after it reads the last input symbol. This is the intuition illustrated in the figure
on the previous page.

Equivalently, we can imagine that when an NFA reads symbol a in state g, it branches into
several parallel universes, one for each state in 6(q, a). If 6(q, a) is empty, the NFA destroys the
universe (including itself) to protect the Sacred Timeline. Similarly, if the NFA finds itself in a
non-accepting state when the input ends, the NFA destroys the universe to protect the Sacred
Timeline. Thus, when the input is gone, only universes in which the NFA somehow chose a path
to an accept state still exist. One slight disadvantage of this metaphor is that if an NFA reads a
string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at ¢, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product . x 2 of an input alphabet = and an oracle alphabet Q.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string w. In either formulation, the transition function
has the form 6: Q x (X x 2) — Q. As usual, this DFA accepts the pair (w, w) € (X x Q)* if and
only if 6*(s, (w, w)) € A. Finally, M nondeterministically accepts the string w € %" if there is an
oracle string w € Q* such that |w| = |w| and (w, w) € L(M).

4.3 Multiple Start States

It is arguably more natural (but a bit non-standard) to allow NFAs to have a set S of start states
instead of a single start state s. Such an NFA would non-deterministically choose its actual start
state before reading any input symbols. Thus, an NFA with multiple start states accepts a string w
if and only if there is a sequence of transitions consistent with w from some start state to some
accepting state, or more formally if 6*(S,q) NA # @.

For example, consider the following NFA (yes, just one) with multiple start states, each
indicated with its own incoming arrow.

3This sentence is a riff on a horrible aphorism that was (sadly) popular in the US in the 70s and 8os. Fortunately,
everyone seems to have forgotten the original saying, except maybe for that one time it was mocked on The Simpsons.
Ah, who am I kidding? Nobody remembers The Simpsons either.
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An NFA with two start states.

This NFA accepts the string 01101 by nondeterministically choosing the start state s’ and then
nondeterministically choose the following sequence of transitions:

0 1 1 0 1
s$—s —b —d—d—d

Alternatively, we can can track the current set of states as follows:
n 0 n ! /gy ] VAN oy ] VA
{S)S }—>{S,b,s }—>{S,S )b }_){S:S)b:a }_>{5)b;s:a }—>{535;b)a }

The NFA accepts the string 91101 because the final set of states contains the accepting state a’.
Given any NFA with multiple start states S, we can construct an equivalent NFA with only
one start state § as follows:

* Add a new state s.
* Copy all outgoing transitions from every start state in S to $.
* Declare § to be an accepting state if and only if S contains an accepting state.

* Declare § to be the only start state.

An equivalent NFA with only one start state.

More formally, given any multiple-start NFA M = (%, Q, S, A, §), we can construct an equivalent
single-start NFA M = (%, Q,$,A, §) by defining

Q=Qu {3}
- JA ifSNA=0Q
B AU {5} otherwise
5(§,a)=U6(s,a) forallae X
seS
5(q,a) =6(q,a) forallgeQandaeX

Straightforward definition-chasing now implies that M and M accept exactly the same language.
Thus, whenever we reason about or design NFAs, we are free to either allow or forbid multiple
start states, whichever is more convenient for the task at hand.
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4.4 e-Transitions

It is also fairly common for NFAs to include so-called e-transitions, which allow the machine
to change state without reading an input symbol. An NFA with - transmons accepts a string w
if and only if there is a sequence of transitions s = a1 =, qs RN qg where the final
state g, is accepting, each a; is either ¢ or a symbol in X, and a;a,---a;, =

For example, consider the following NFA with e-transitions. (For this example, we indicate
the e-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has

more g-transitions than necessary.

A (rather silly) NFA with e-transitions

This NFA has a single start state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

€ 1 € € 0 Q € 1 1 € 1 € €
s—s—s—d—a—b—c—d—e—f—e—f—c—g
More formally, the transition function in an NFA with e-transitions has a slightly larger
domain 6: Q x (XU {e}) — 22. The e-reach of a state q € Q consists of all states r that satisfy
one of the following recursive conditions:

* either r =g,
» orr €8(q,¢) for some state q’ in the e-reach of q.

In other words, r is in the e-reach of q if there is a (possibly empty) sequence of e-transitions
leading from q to r. For instance, in the example NFA above, the e-reach of state f is the set
{a,c,d,e, f, g}, but the g-reach of state a is just {a}.

Now we redefine the extended transition function §*: Q x &* — 22, which transitions on
arbitrary strings, as follows:

e-reach(p) ifw=cg,

U 6"(q,x) ifw=ax.

ree-reach(p) q€é(r,a)

6" (p,w) :=

If we abuse notation by writing 6(S,a) = qus 6(g,a) and 6*(S,w) = qus 5*(g,w) and
e-reach(S) = qes e-reach(q) for any subset of states S C Q, this definition simplifies as follows:

5 (p.w) g-reach(p) ifw=e,
,W) =
P 6*(6(e-reach(p),a),x) if w=ax.

Intuitively, the modified 6* function tries all possible ways of interspersing e-transitions before,
after, and between regular symbol transitions. For instance, for our example NFA at the top of
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this page, we can compute 6*(s,11) = {s,a,c,d,e, f, g} as follows:

_reach 1 -reach ! reach
s T8 {s,a,d} — {s,e} —> {s,a,d,e} — {s,e,f} —> {s,a,c,d,e,f,g}.

Finally, as usual, an NFA with e-transitions accepts a string w if and only if 6*(s, w) contains
at least one accepting state. Thus, our example NFA accepts the string 11, because 6*(s,11) =
{s,a,c,d,e, f, g} contains the accepting state g.

4.5 Removing e-Transitions

Although it may appear at first that e-transitions give us a more powerful set of machines, NFAs
with and without e-transitions are actually equivalent. Given an NFA M = (%,Q,s,A, §) with
e-transitions, we can construct an equivalent without e-transitions but with multiple start states
as follows:

* First, declare every state in the e-reach of s to be a start state. This modification does not
change the accepted language.

.. . a € . .. a . ..
* For every transition pair p — g — r, add a direct transition p — r. This addition does
not change the accepted language.

* When no more of the previous modifications are possible, delete all e-transitions. This
modification does not change the accepted language.

More formally, the new NFA M’ = (%,Q’,S’,A’, 5") is defined as follows:

Q:=Q
S’ := g-reach(s)
A=A

6'(q,a) := e-reach(5(q, a))

(If necessary, we can further modify M’ to have a single start state.) Tedious inductive definition-
chasing now implies that M and M’ accept exactly the same language. Thus, whenever we
reason about or design NFAs, we are free to either allow or forbid e-transitions, whichever is
more convenient for the task at hand.

For example, our previous NFA with e-transitions can be transformed into an equivalent NFA
without e-transitions, as shown in the figure below. The transitions added by the transformation
are drawn in blue. For example, the chain of transitions

e N f -5 d-Sa
. . .. 1 . .
in the NFA on the left becomes a single transition e — a in the NFA on the right. The output

NFA on the right has three start states, as well as two states ¢ and f that are clearly redundant,
but whatever.
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A (rather silly) NFA with e-transitions, and an equivalent NFA without e-transitions.

4.6 Kleene’s Theorem

We are now finally in a position to prove the following fundamental fact, first observed by Stephen
Kleene in 1951:

Theorem 4.1. A language L can be described by a regular expression if and only if L is the
language accepted by a DFA.

We will prove Kleene’s fundamental theorem in four stages:

* Every DFA can be transformed into an equivalent NFA.
* Every NFA can be transformed into an equivalent DFA.
* Every regular expression can be transformed into an equivalent NFA.

* Every NFA can be transformed into an equivalent regular expression.

The first of these four transformations is completely trivial; a DFA is just a special type of NFA
where the transition function always returns a single state. Unfortunately, the other three
transformations require a bit more work.

4.7 NFA to DFA: The Subset Construction

In the parallel-thread model of NFA execution, an NFA does not have a single current state, but
rather a set of current states. The evolution of this set of states is determined by a modified
transition function §’: 22 x & — 2%, defined by setting 6'(Ba) := Upep 5(p,a) for any set of
states P C Q and any symbol a € 3. When the NFA finishes reading its input string, it accepts if
and only if the current set of states intersects the set A of accepting states.

This formulation actually makes the NFA completely deterministic! We have just shown that
any NFA M = (%,Q, S, A, 6) with multiple start states, but without e-transitions, is equivalent to
the DFA M’ = (2,Q’,s’,A’,8") defined as follows:

Q :=2°
s':=8
A:={qdcQ|qdnA#a}

5'(q',a) == U 5(p,a) forallg’CQandacX.
peq’
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Similarly, any NFA with e-transitions is equivalent to a DFA defined as follows:
Q =22
s’ := g-reach(S)
A:={qdcQ|qnA#a}
6'(q',a) := U U e-reach(r) forallg’ CQandaeX.
peq’'res(p,a)

Or more concisely:
6'(q’,a) := e-reach(6(q’,a)) forallg’ CQandae€x.

This translation from NFA to DFA is usually called the subset construction (or the power-set
construction), but that name is somewhat misleading. It’s not a “construction” so much as a
change in perspective.

For example, the 4-state NFA on the first page of this note is equivalent to the following
16-state DFA. To simplify notation, I've named each DFA state using a simple string, omitting
the braces and commas from the corresponding subset of NFA states; for example, DFA state sbc
corresponds to the subset {s, b, c} of NFA states.

@O

A 4-state NFA and an equivalent 16-state DFA defined by the subset construction.
Only the five yellow states are reachable from the start state.

An obvious disadvantage of this “construction” is that it (usually) leads to DFAs with far more
states than necessary, in part because many states cannot even be reached from the start state.
In the example above, only five of the sixteen states of the DFA are reachable from s.

Incremental Subset Construction

Instead of building the entire powerset DFA and then discarding the unreachable states, we
can avoid the unreachable states from the beginning by constructing the DFA incrementally,
essentially by performing a breadth-first search of the implicitly-represented DFA graph.
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To execute this algorithm by hand, we prepare a table with 2|3| + 2 columns, with one row
for each DFA state we discover. In order, these columns record the following information:

e The DFA state (as a subset of NFA states)
* Whether the DFA state is accepting (that is, whether the e-reach intersects A)
* The output of the transition function & for each symbol in X.

* The e-reaches of the corresponding subsets of NFA states

We start the algorithm by writing the e-reach of the start state (or states) in the first row and
first column. Whenever we discover an unexplored DFA-state in one of the last || columns, we
copy it to the left column in a new row. To reduce notational clutter, we write all subsets of NFA
states without braces or commas.

For example, given our rather silly NFA with e-transitions from Section 4.4, a naive subset
construction would produce a DFA with 256 states,* but the incremental subset construction
produces a DFA with only seven states, described by the following table:

q q eA? | 5(q,0) e-reach(6’(q’,0)) | 8'(q’,1) e-reach(6’(q’, 1))

sad sb sabd se sade

sabd sbc sabcdg se sade

sade sb sabd sef : sacdefg
Csabedg | v | sbeg | sabcdg | seg i sadeg
sacdefg v sbg sabdg sefg sacdefg

sadeg v sbg sabdg sefg sacdefg
sabdg v sbcg sabcdg seg sadeg

An eight-state NFA with e-transitions, and the output of the incremental subset construction for that NFA.
The incremental construction algorithm fills in the top row of the table as follows:
* We have e-reach(s) = {s,a,d}, so we write sad in the first column.

* None of the NFA states {s,a,d} is an accepting state, so {s,a,d} is not an accepting state
of the DFA, so we do not check the second column.

e Next, 6'({s,a,d},0) =68(s,0)Ub(a,0)us(d,0)={s}u{b}u@ = {s, b}, so we write sb in
the third column.

4In fact, we can immediately quickly discard any subset of NFA-states that is not closed under e-transitions, but
that still leaves a lot of DFA states.
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e Next, e-reach({s, b}) = e-reach(s) U e-reach(b) = {s,a,d} U {b} = {s,a, b,d}, so we write
sabd in the fourth column. Because sabd does not already appear in the first column, we
have discovered a new DFA state! We start a new row for DFA state sabd.

* Finally, 6'({s,a,d},1) =6(s,1)Ub(a,1)ud(d,1) = {s}ud U {e} = {s, e}, so we write se
in the fourth column, and we start a new row for the new DFA state se.

We now have two new rows to fill in, corresponding to DFA-states sabd and sade. The algorithm
continues filling in rows (and discovering new rows) until all rows are filled.

Although it avoids unreachable states, the incremental subset algorithm still produces a DFA
with more states than necessary, intuitively because it keeps looking for 00 and 11 substrings
even after it’s already found one. When the NFA finds both 00 and 11 as substrings, it doesn’t
kill all the other parallel execution threads, because it can’t. NFAs often have significantly fewer
states than equivalent DFAs, but that efficiency also makes them kind of stupid.

Alternative “e-first” Construction

In an earlier version of this note, my definition of the subset construction reversed the order of
chasing real transitions and chasing e-transitions. In particular, instead of chasing e-transitions
before the DFA starts, this alternative formulation chases e-transitions in the acceptance criterion
when the input ends.

Q =22

/
S =S

A:={¢dcq | g-reach(q) NA# @}
6'(q’,a) :== 8(e-reach(q’),a)  forallg’ CQandaex.

This yields a

This “e-first” subset construction also yields an alternative incremental subset construction
algorithm. For each row, we compute the e-reach of the set ¢’ NFA states named in that row,
check whether ¢-reach(q’) contains an accepting state, evaluates the transition function on
e-reach(q’), and then start new rows for any new DFA states we discover. This variant of the
incremental subset construction tends to produce DFAs with more states, but shorter state names.

q" | e-reach(q’) q' €A'? | 5(e-reach(q’),0) 5(e-reach(q’),1)
sad sb se

sb sabd sbc se

se sade : sb : sef

Csbe | sabedg i VA sbcg seg

sef sacdefg v sbg sefg

sbcg sabcdg v sbcg seg

seg sadeg v sbg sefg

sbg sabdg v sbcg seg

sefg sacdefg v sbg sefg

10
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An eight-state NFA with e-transitions, and the output of the “e-first” incremental subset construction for that NFA.

4.8 Regular Expression to NFA: Thompson’s Algorithm

We now turn to the core of Kleene’s theorem, which claims that regular languages (described by
regular expressions) and automatic languages (accepted by finite-state automata) are the same.

Lemma 4.2. Every regular language is accepted by a nondeterministic finite-state automaton.

Proof: In fact, we will prove the following stronger claim: Every regular language is accepted
by an NFA with exactly one accepting state, which is different from its start state. The following
construction was first described by Ken Thompson in 1968. Thompson’s algorithm actually proves
a stronger statement: For any regular language L, there is an NFA that accepts L that has exactly
one accepting state t, which is distinct from the starting state s.

Let R be an arbitrary regular expression over an arbitrary finite alphabet . Assume that for
any sub-expression S of R, the language described by S is accepted by an NFA with one accepting
state distinct from its start state, which we denote pictorially by % s 1@. There are six cases
to consider—three base cases and three recursive cases—mirroring the recursive definition of a
regular expression.

* If R =, then L(R) = @ is accepted by the trivial NFA»© ©.
* If R =¢, then L(R) = {¢} is accepted by a different trivial NFA s0—>©.

e If R = w for some non-empty string w € %, then L(R) = {w} is accepted by an NFA
consisting of a single chain of transitions from s to t, labeled by the symbols in w in order.
For example, the language {101} is accepted by the NFA s—>0—>0—>0.

* Suppose R =ST for some regular expressions S and T. The inductive hypothesis implies

that the languages L(S) and L(T) are accepted by NFAs and % 1 19, respectively.
Then L(R) = L(ST) = L(S) * L(T) is accepted by the NFA %{_s 05 r 19, built by
connecting the two component NFAs in series.

* Suppose R =S+ T for some regular expressions S and T. The inductive hypothesis implies
that the languages L(S) and L(T) are accepted by NFAs and *{_r_©, respectively.

Then L(R) = L(ST) = L(S) * L(T) is accepted by the NFA @@, built by connecting

the two component NFAs in parallel with new start and accept states.

11
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* Finally, suppose R = S* for some regular expression S. The inductive hypothesis implies that
the languages L(S) is accepted by an NFA*Y{_s 1©. Then the language L(R) = L(S*) = L(S)*

is accepted by the NFA .

In all cases, the language L(R) is accepted by an NFA with one accepting state, which is different
from its start state, as claimed. O

As an example, given the regular expression (04 10%1)* of strings containing an even number
of 1s, Thompson’s algorithm produces a 14-state NFA shown on the next page. As this example
shows, Thompson’s algorithm tends to produce NFAs with many redundant states. Fortunately,

just as there are for DFAs, there are algorithms that can reduce any NFA to an equivalent NFA
with the smallest possible number of states.

~or T o
o )

The NFA constructed by Thompson’s algorithm for the regular expression (0 + 10*1)*.
The four non-¢-transitions are drawn with with bold red arrows for emphasis.

Interestingly, applying the incremental subset algorithm to Thompson’s NFA tends to yield
a DFA with relatively few states, in part because the states in Thompson’s NFA tend to have
large e-reach, and in part because relatively few of those states are the sources of non-e-
transitions. Starting with the Thompson’s NFA for (0 + 10"1)*, for example, the incremental
subset construction yields a DFA with just five states.

q qgeA? | 8(,0) e-reach | 6'(q’,1) g-reach
sabjm |V k . sabjklt c . cdegh
sabjklt k  sabjklt ¢ i cdegh
cdegh f . defgh i sabijlt
defgh f i defsh i | sabijlt
sabijlt | k  sabjklt ¢ cdegh

12
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Keeping track of the large e-reaches can be rather onerous if you're executing this algorithm
by hand. We can save a bit of work by observing that in the incremental subset construction, we
can ignore any states that are only connected to other states by e-transitions, except for the start
state s and the accepting state t.

¢ qeA?|&(q,0) i ereach | 8(¢/,1) i ereach
shim @ k i shjkt c i ceh
shikt | k  shike c i ceh
ceh f efh i i shijt
efh f efh i i shijt
shijit & k shjkt c i ceh

This DFA can be further simplified to just two states, by observing that all three accepting
states are equivalent, and that both non-accepting states are equivalent. But still, five states is
pretty good, especially compared with the 214 = 16384 states (or 2!° interesting states) that the
naive subset construction would yield!

4.9 Another Example

The figures on the next page show another example of all the algorithms we’ve seen so far, starting
with the regular expression (@ + 1)*(00 + 11)(@ + 1)*, which describes the language accepted by
our very first example NFA. Thompson’s algorithm constructs the following 26-state monster; I've
shaded and left unnamed states that only connected to other states by e-transitions.

Below the NFA, we show the execution of the incremental subset construction and the
resulting equivalent DFA, which has only nine states. Yes, even if we ignore all the ¢-only states,
the e-reaches get a bit ridiculous; unfortunately, this is typical for NFAs produced by Thompson’s
algorithm, which have lots of e-transitions. (On the other hand, it’s rare that anyone would
execute this algorithm by hand. After all, that’s why the gods gave us computers!) In the table

13
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Thompson’s NFA for the regular expression (@ + 1)*(00 + 11)(0 + 1)*,
with the e-reach {s, a, c, e, h} of the start state s highlighted.

I've clustered the NFA-states saceh together, because those are part of every DFA-state, and I've
clustered the states kmt together, because every DFA-state containing one of those NFA-states
contains all three.

As usual, the resulting DFA still has far more states than necessary, but significantly less than
the 224 = 16777 216 states that the naive subset construction would give us. (In the drawing of
the DFAs, I've omitted the g-reach NFA-states from the DFA-state names.)

q P q eA? | 8(q,0) 0 ereach 8'(¢/,1) i ereach

saceh bf | sacehbf di |  sacehdi

sacehbf bfg : sacehbfgkmt di : sacehdi
saceh di bf saceh bf dij i sacehdijkmt

sacehbfgkmt i v | bfgl : sacehbfglkmt | din : sacehdinkmt

saceh dij kmt v bfl saceh bfl kmt dijn saceh dijn kmt
saceh bfgl kmt v bfal saceh bfgl kmt din saceh din kmt
saceh din kmt v bfl saceh bfl kmt dijn saceh dijn kmt
saceh bfl kmt v bfal saceh bfgl kmt din saceh din kmt
saceh dijn kmt v bfl saceh bfl kmt dijn saceh dijn kmt

The DFA computed by the incremental subset algorithm from Thompson’s NFA for (0 + 1)*(00 + 11)(@ + 1)*.

Finally, the DFA-minimization algorithm from the previous lecture note correctly discovers
that all six accepting states of the incremental-subset DFA are equivalent, and thus reduces the
DFA to just four states, as shown on the next page.

*4.10 NFA to Regular Expression: State Elimination

The only component of Kleene’s theorem left to prove is that every language accepted by an NFA
is regular. I'll describe a proof that is morally equivalent to Kleene’s 1951 argument, but uses
more modern standard notation. This formulation of the proof was first published in 1960 by

14
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The minimal DFA that accepts the language (0 + 1)*(00 + 11)(0 + 1)*.

Robert McNaughton and Hisao Yamada®. A similar formulation (with much uglier notation) was
published by C. Y. Lee earlier in the same year.® The same algorithm is sometimes attributed to
Janusz Brzozowski and Edward McKluskey, who explored transformations of state machines in
more generality a few years after McNaughton and Yamada.”

Recall that a standard NFA can be represented by a state-transition graph, whose vertices are
the states and whose edges represent possible transitions. Each edge is labeled with a single
symbol in 2. A string w € ¥* is accepted if and only if there is a sequence of transitions

ay az as ag
S—>q1—qy—— """y
where the final state g, is accepting and a;a,---a, = w.

We've already seen that NFAs can be generalized to include e-transitions; we can push this
generalization further. A string NFA allows each transition p—q to be labeled with an arbitrary
string x(p—q) € X*. We are allowed to transition from state p to state q if the label x(p—q) is a
prefix of the remaining input. Thus, a string w € X* is accepted if and only if there is a sequence
of transitions

X1 Xy X3 X
S Q14— (g
where the final state g, is accepting, and x; ® x5 ® --- ® x, = w. Thus, an NFA with e-transitions
is just a string NFA where every label has length 0 or 1. Any string NFA can be converted into an
equivalent standard NFA, by subdividing each edge p—q into a path of length |x(p—q)| (unless
x(p—q) =¢€).

Finally, McNaughton and Yamada define an expression automaton as a finite-state machine
where each transition p—q is labeled with an arbitrary regular expression R(p—q). We can
transition from state p to state q if any prefix of the remaining input matches the regular
expression R(p—q). Thus, a string w € 3* is accepted by an expression automaton if and only if
there is a sequence of transitions

Ry R, Rs Ry
ST 1@ Ty

where the final state g, is accepting, and we can write w = x; ® x5 ® -+ ®* X, = w, where each
substring x; matches the corresponding regular expression R;.
More formally, an expression automaton consists of the following five components:

* A finite set X called the input alphabet

SRobert McNaughton and Hisao Yamada. Regular expressions and state graphs for automata. IRE Trans. Electron.
Comput. 9(1): 39-47, 1960.

6C. Y. Lee. Automata and finite automata. Bell System Technical Journal 39(2), 12671295, 1960.

7Janusz A. Brzozowski and Edward J. McCluskey. Signal flow graph techniques for sequential circuit diagrams.
IEEE Trans. Electronic Computers, EC-13(2):67-76, 1963.
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e Another finite set Q whose elements are called states
* A unique start state s € Q
* A unique target state t €Q \ {s}

* A transition function R: Q x Q — Reg(X), where Reg(X) is the set of regular expressions
over 2.

The requirement that the target state is unique and distinct from s is not essential to the model,
but imposed only to simplify the equivalence proof. Similarly, we assume for convenience that
R(g—s) =R(t—q) = @ for every state q. Both of these assumptions can be enforced if necessary
by adding artificial start and target states connected to other states by e-transitions.

Expression automata are even more nondeterministic than NFAs. A single string could match
several (even infinitely many) transition sequences from s to t, and it could match each of
those sequences in several (even infinitely many) different ways. A string w is accepted if any
decomposition of w into a sequence of substrings matches any sequence of transitions from s to t.
Conversely, a string might match no state sequences, in which case the string is rejected.

Two extreme special cases of expression automata are already familiar. First, every regular
language is clearly the language of an expression automaton with exactly two states. Second,
with only minor modifications, any DFA or NFA can be converted into an expression automaton
with trivial transition expressions. Thompson’s algorithm can be used to transform any expression
automaton into a standard NFA (with e-transitions), by recursively expanding any nontrivial
transition expression. To complete the proof of Kleene’s theorem, we show how to convert an
arbitrary expression automaton into a regular expression, by repeatedly deleting vertices.

Lemma 4.3. Every expression automaton accepts a regular language.

Proof: Let E =(Q,%,R,s, t) be an arbitrary expression automaton. Assume that any expression
automaton with fewer states than E accepts a regular language. There are two cases to consider,
depending on the number of states in Q:

* If Q = {s,t}, then E trivially accepts the regular language R(s—t).

* On the other hand, suppose Q has more than two states; fix an arbitrary state g € Q \ {s, t}.
We modify the automaton, without changing its language, so that state g is redundant and
can be removed. Define a new transition function R": Q X Q — Reg(X) by setting

R'(p—r) := R(p—r)+R(p—q)R(g—~q)*R(g—T).

With this modified transition function in place, any string w that matches the sequence
p—+q—q—---—q—r, with any number of g’s, also matches the single transition p—r. Thus,
by induction, if w matches a sequence of states, it also matches the subsequence obtained
by removing all g’s.

Let E’ be the expression automaton with states Q' = Q \ {q} that uses this modified
transition function R’. This new automaton accepts exactly the same strings as the original
automaton E. Because E’ has fewer states than E, the inductive hypothesis implies E’
accepts a regular language.

In both cases, we conclude that E accepts a regular language. O
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O3

One step in Kleene’s/Lee’s/McNaughton and Yamada'’s reduction algorithm.

This proof can be mechanically translated into an algorithm to convert any DFA or NFA into
an equivalent regular expression, via a sequence of expression automata with fewer and fewer
states, but increasingly complex transition expressions.

The figure below shows McNaughton and Yamada’s reduction algorithm in action, starting
with a DFA that accepts the binary representations of non-negative integers divisible by 3, possibly
with extra leading 0s. (State i means the binary number we’'ve read so far is congruent to
i mod 3.) We add an artificial target state t with an e-transition from the unique accepting
state 0. (We don’t need an artificial start state, because s already has no incoming transitions.)
We then remove the numbered states one by one, updating the transition expressions between
any remaining states at each iteration. For the sake of clarity, the figure omits all edges p—q
where R(p—q) = @. The final regular expression 00*+(00*1+1)(10*1+01*0)*10* can be slightly
simplified to 0*0 4+ 0*1(10*1 + 01%0)*10*, which is precisely the regular expression we gave for
this language back in Lecture Note 2!

Converting a DFA into an equivalent regular expression using McNaughton and Yamada’s algorithm.

Given an NFA with n states (including s and t), McNaughton and Yamada’s algorithm
iteratively removes n — 2 states, updating O(n?) transition expressions in each iteration. If the
concatenation and Kleene star operations could be performed in constant time, the resulting
algorithm would run in O(n®) time. However, in the worst case, the transition expressions grows
in length by roughly a factor of 4 in each iteration, so the final expression has length ©(4"). If we
insist on representing the expressions as explicit strings, the worst-case running time is actually
e(4m).

17
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4.11 Regular Language Transformations

We have already seen that many functions of regular languages are themselves regular: unions,
concatenations, and Kleene closure by definition. and intersections and differences by product
construction on DFA. However, the set of regular languages is closed under a much richer class of
functions.

Suppose we wanted to prove that regular languages are closed under some function f; that
is, for every regular language L, we want to prove that the language f (L) is also regular. There
are two general techniques to prove such a statement:

* Describe an algorithm that transforms an arbitrary regular expression R into a new regular
expression R’ such that L(R") = f (L(R)).

* Describe an algorithm that transforms an arbitrary DFA M into a new NFA M’ such that

L(M") = f(L(M)).

The equivalence between regular expressions and finite automata implies that in principle we
can always use either technique, but in practice, the second one is far more powerful and usually
simpler. The asymmetry in the second technique is important. We start with a DFA for L to
impose as much structure as possible in the input; we aim for an NFA with e-transitions to give
ourselves as much freedom as possible in the output.8

4.11.1 Reversal

For our first example, I'll describe proofs using both techniques.
Lemma 4.4. For any regular language L, the language LR = {wR | w € L} is also regular.

Proof (regular expression to regular expression): Let R be an arbitrary regular expression
such that L = L(R). Assume for any proper subexpression S of R that L(S)® is regular. There are
five cases to consider, mirroring the recursive definition of regular expressions:

« IfR=g, then LR=L =@, so L(R) = L~
e Suppose R consists of a single word w. Let R" = w®. Then L(R') = {wR} = L%,

* Suppose R = A+ B. The inductive hypothesis implies that there are regular expressions
A’ and B’ such that L(A") = L(A)® and L(B’) = L(B)R. Let R = A’ +B’. Then L(R) =
LIAHYULB)=LARULBIR = (LA ULB)R=LR

* Suppose R = A ¢ B. The inductive hypothesis implies that there are regular expressions
A’ and B’ such that L(A") = L(A)R and L(B") = L(B)R. Let R = B’ * A'. Then L(R) =
L(B') * L(A") = L(B)* * L(A)* = (L(A) * L(B))" = L*.

* Finally, suppose R = A*. The inductive hypothesis implies that there is a regular expression A’
such that L(A) = L(A)R. Let R’ = (A)*. Then L(R") = L(A)* = (L(A®)* = (L(A)*)R = LR

8We could give ourselves even more freedom by constructing an expression automaton, or even better, a generalized
expression automaton, which would allow intersections and negations in the transition expressions. On the other
hand, creativity thrives on constraint.
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In all cases, we have constructed a regular expression R’ such that L(R") = LR. We conclude that
LR is regular. O

For example, if L is described by the regular expression (10 + 1)*(01 + 100), then LR is
described by the regular expression (10 + 001)(0 + 01)*.

Careful readers may be unsatisfied with the previous proof, because it assumes several
“obvious” properties of string and language reversal. Specifically, for all strings x and y and all
languages L and L’, we assumed the following identities:

© (xey=yRoxR

o (L-LYR=("HR LR
e (LULNDR=LRU(LNHR.
o (LR = (LR)".

All of these claims are all easy to prove by inductive definition-chasing.
However, in general, it is much easier to argue regularity of the transformed language by
constructing an NFA.

Proof (DFA to NFA): Let M = (%,Q,s,A, 8) be an arbitrary DFA that accepts L. We construct
an NFA MR = (2, QR, sR AR, 6®) with e-transitions that accepts LR, intuitively by reversing every
transition in M, and swapping the roles of the start state and the accepting states. Because M
does not have a unique accepting state, we introduce a new start state sX, with e-transitions to
each accepting state in M. These are the only e-transitions in M~.

QA =Qu{s"}
sR is a new state
At ={s}
SRR, e)=A
SRR a)=0 forallaex
g, e)=2 forallgeQ
6R(q,a)={p | qeé(p,a)} forallgeQandaeX

Routine inductive definition-chasing now implies that the reversal of any sequence s—q;—---—q,
of transitions in M is a valid sequence q,— - - - -q; —s of transitions in M®. Because the transitions
retain their labels (but reverse directions), it follows that M accepts any string w if and only if
MR accepts wh.

We conclude that the NFA MR accepts LR, and therefore L® must be regular. O

The following figure shows an example of this transformation in action. On the left is
a DFA that accepts binary strings whose last two symbols are equal. Applying our reversal
transformation yields the NFA in the middle. Finally, applying the incremental subset construction
to this reversed NFA yields the DFA on the right. The final DFA clearly accepts binary strings
whose first two symbols are equal, and therefore so does the equivalent middle NFA.
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Reversing a DFA, and then transforming the resulting NFA into an equivalent DFA.

4.11.2 First Half of Palindromes

Lemma 4.5. For any regular language L, the language palin(L) := {w | ww® € L} is also regular.

The language palin(L) contains the first half of every even-length palindrome in L. For
example, if L = {&, AHA, POOP, TACOCAT, PALINDROME}, then palin(L) = {&, P0O}.

As a more interesting example, suppose L is the language (0 + 1)*(00 + 11) of strings whose
last two symbols are equal. Every palindrome in L either starts and ends with 00, or starts and
ends with 11. Thus, palin(L) is actually the language @ + 1+ (00 + 11)(@ + 1)* of strings either
with length one or whose first two symbols are equal.

Proof: Let M = (%,Q,s,A, §) be an arbitrary DFA that accepts L.

Intuitively, we construct an NFA M’ that reads its input string w and simulates the original
DFA M reading the input string ww®. The NFA M’ is a product construction of the original DFA M
and its reversal NFA MR constructed in our second proof of Lemma 4.4. Just like any other
product construction, we must explicitly specify the accepting states to complete the description
of M.

Let ¢ = 6*(s, w) be the state that M reaches on reading input string w. Then M accepts the
palindrome ww?® if and only if

5*(s,wwh) = &*(6*(s,w),wt) = 5*(¢q,w?) € A

But 6*(q, wR) € A if and only if the reversed machine MR reaches state q on reading the same
input string w. Thus, our new NFA M’ should accept w if and only if both M and MR end at the
same state. In other words, we need A’ = {(g¢,q) | ¢ € Q}.

Summing up, our new NFA M’ = (%,Q’,s’,A’, 6") is formally defined as follows. All unspecified
transitions go to &.

Q =Qx(Qu{stH where s is a new state
s =(s,s")
A'={gqlqeQ}
&§'((s,s%), &) ={(s,9) | g €A}
5'((q,r),a) = {(5(q,a),p)| r€5(p,a)} forallg,reQand a € & O
The NFAs constructed by this algorithm can be quite large. For example, if M is the five-state
DFA for the language L = (0 + 1)*(00 + 11) that we used to illustrate the reversal transformation,

our algorithm constructs an NFA M’ for palin(L) with 30 states, which is far too complex to draw.
It turns out that 11 of those 30 states either cannot be reached from the start state (s, s®) or cannot
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reach an accepting state (g, q); more significantly, the language palin(L) = 0+1+(00+11)(0+1)*
can actually be decided by a five-state DFA! But that extra complexity from our algorithm is
completely okay—we’re not even trying to construct an efficient machine; we just need to prove
than one NFA exists.

4.11.3 A Harder Example

In our last example, we make more fundamental use of nondeterminism to guess the future
behavior of the DFA we are simulating.

Lemma 4.6. For any regular language L, the language half(L) := {w | ww € L} is also regular.

Proof: Let M = (%,Q,s,A, §) be an arbitrary DFA that accepts L.
Intuitively, we construct an NFA M’ that reads its input string w and simulates the original
DFA M reading the input string ww. Our overall strategy has three parts:

* First M’ non-deterministically guesses the state h = §*(s, w) that M will reach after reading
input w. (We can’t just run M on input w to compute the correct state h, because that
would consume the input string!)

e Then M’ runs two copies of M in parallel (using a product construction): a “left” copy
starting at s and a “right” copy starting at the (guessed) halfway state h.

e Finally, when M’ is done reading w, it accepts if and only if the first copy of M actually
stopped in state h (so our initial guess was correct) and the second copy of M stopped in
an accepting state. That is, M’ accepts if and only if 6*(s,w) = h and 6*(h, w) € A.

To implement this strategy, M’ needs to maintain three states of M: the state of the left copy
of M, the guess h for the halfway state, and the state of the right copy of M. The first and
third states evolve according to the transition function 6, but the second state never changes.
Finally, to implement the non-deterministic guessing, M’ includes a special start state s’ with
e-transitions to every triple of the form (s, h, h).

Summing up, our new NFA M’ = (%,Q’,s’,A’,8’) is formally defined as follows.

QA =@QxQxQ) u {5}
A’={(h,h,q)| h€Qand q €A}
5'(s',€) ={(s,h,h) | he Q}

5'(s",a)=0 forallae X
5'(p,h,q),e) =0 for all p,h,qeQ
§'((p,h,q),a) = {(6(p,a),h,5(q,a))} forall p,h,g€Qanda € O

Exercises
1. For each of the following regular expressions, describe or draw two finite-state machines:

* An NFA that accepts the same language, constructed using Thompson’s algorithm.
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* An equivalent DFA, built from the previous NFA using the incremental subset con-
struction. For each state in your DFA, identify the corresponding subset of states in
your NFA. Your DFA should have no unreachable states.

@ (@1+10)*(0+1+¢)

(b) (e+1)(01)*(e+0)

© 1"+ (10)" + (100)*

(d (e+0+00)(1+10+100)*
@© ((e+1)(@+1))

) e+o0(@+1)"+1(1+0)*

2. The accepting language of an NFA M = (%,Q,s,A, 6) is defined as follows:
L(M):={we x| 5*(s,w)NA#O}.

Kleene’s theorem (described here as McNaughton and Yamada’s state-reduction algorithm)
implies that L(M) is regular. Prove that the following languages associated with M are
also regular:

(@) L'(M):= {W ex* | AC 5*(s, w)}. That is, a string w is in the language LY(M) if and
only if 6*(s, w) contains every accepting state.

() LSM) = {wex* ’ 5*(s,w) CA}. That is, a string w is in the language L=(M) if
and only if 6*(s, w) contains only accepting states.

© L=(M) := {w ex* \ o*(s,w) =A}. That is, a string w is in the language L~(M) if
and only if 6*(s, w) is exactly the set of accepting states.

[Hint: These are easier than they look!]

3. Let M = (Q,S,A,6) be an NFA, possibly with E-transitions and multiple start states.
Given any input string w, the NFA nondeterministically chooses a sequence of transitions
s —5 q1 =, qs BERLR q, where each g; is either € or a symbol in ¥ and a;a, - --a;, = w.
We call any such sequence a computation path for w in M. We call a computation path is

accepting if it ends in an accepting state and rejecting otherwise.

The standard definition of NFA acceptance is that M accepts w if and only if there is
at least one accepting computation path for w in M. This questions asks you to consider
alternative acceptance criteria.

(@) A universal finite-state automaton, abbreviated YFA accepts w if and only if every
computation path for w is accepting, or equivalently, if there are no rejecting
computation paths for w.

i. Prove that the set of all strings accepted by a VFA is regular.
ii. Prove that every regular language is the set of strings accepted by a VFA.
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*(b) A parity finite-state automaton, abbreviated @&FA, is an NFA M without e-transitions
that accepts w if and only if there are an odd number of accepting computation paths
for win M.

i. Prove that the set of all strings accepted by a @FA is regular.
ii. Prove that every regular language is the set of strings accepted by a ®FA.
* () An infinitary finite-state automaton, abbreviated coFA, accepts w if and only if there
are infinitely many accepting computation paths for w.
i. Prove that the set of all strings accepted by an coFA is regular.
ii. Prove that every regular language is the set of strings accepted by an coFA.

[Hint: If there are infinitely many computation paths for w, there must be a cycle of
e-transitions in M .]

*(d) A blind infinitary finite-state automaton, abbreviated BooFA, accepts w if and only if
there are infinitely many computation paths for w. Notice that accepting states play
absolutely no role in this definition!

i. Prove that the set of all strings accepted by a BooFA is regular.
ii. Prove that every regular language is the set of strings accepted by a BooFA.

4. A certain professor who really should know better once woke up in the middle of the night
with a startling revelation—Thompson’s algorithm doesn’t need all those e-transitions!
Filled with the certainty that only sleep deprivation can bring, he ran to his laptop and
quickly changed two cases in his description of Thompson’s algorithm.

e WhenR=S ¢ T, instead of connecting the accept state of to the start state
of with an e-transition, we can just identify those two states to build the
simpler NFA % s X 7 10!

* When R = S¥, instead of introducing two new states and four e-transitions, we can
just add two e-transitions between the start and accept states of to build the

&

simpler NFA !

&

Satisfied with his simplification, he thanked the penguin who gave him the idea, and then
flew his hat back into the ocean marshmallows, where a giant man with the head of a dog
gave him the power of bread.® The next morning, while he was proudly teaching his new
simplified proof for the first time, he realized his embarrassing mistake.

Prove that neither of the professor’s optimizations is actually correct.

(a) Find a regular expression R, such that the NFA constructed from R by Thompson’s
algorithm with only the first modification accepts strings that are not in L(R).

(b) Find a regular expression R, such that the NFA constructed from R by Thompson’s
algorithm with only the second modification accepts strings that are not in L(R).

°Eid ma clack shaw supoven del ba. Mertepy ven seinur cofally ragdah.
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The moral of this story: Whenever you use the word “just”’, you're probably missing
something important.

5. A Moore machine is a variant of a finite-state automaton that produces output; Moore
machines are sometimes called finite-state transducers. For purposes of this problem, a
Moore machine formally consists of six components:

* A finite set X called the input alphabet

* A finite set T called the output alphabet

* A finite set Q whose elements are called states
e A start states € Q

e A transition function §: Q x ¥ — Q

* An output function w: Q =T

More intuitively, a Moore machine is a graph with a special start vertex, where every node
(state) has one outgoing edge labeled with each symbol from the input alphabet, and each
node (state) is additionally labeled with a symbol from the output alphabet.

The Moore machine reads an input string w € ¥* one symbol at a time. For each
symbol, the machine changes its state according to the transition function 6, and then
outputs the symbol w(q), where ¢ is the new state. Formally, we recursively define a
transducer function w™*: ¥* x Q — I'* as follows:

€ fw=¢

© (W’ q) - {(U((S(a’ Q)) . Q)*(.X', 6(&, q)) if w=ax

Given the input string w € ©*, the machine outputs the string w*(w,s) € I'*. To simplify
notation, we define M(w) = w™*(w,s).

Finally, the output language L°(M) of a Moore machine M is the set of all strings that
the machine can output:
L°(M) :={M(w) | we =}
(@) Let M be an arbitrary Moore machine. Prove that L°(M) is a regular language.
(b) Let M be an arbitrary Moore machine whose input alphabet ¥ and output alphabet T
are identical. Prove that the language
L=(M)={wex*| M(w)=w}

is regular. Strings in L= (M) are also called fixed points of the function M : ¥* — ¥*,

*(c) Asin part (b), let M be an arbitrary Moore machine whose input and output alphabets
are identical. Prove that the language {w ex* | MMw)) = w} is regular.

[Hint: Parts (a) and (b) are easier than they look!]

6. A Mealy machine is a variant of a finite-state automaton that produces output; Mealy
machines are sometimes called finite-state transducers. For purposes of this problem, a
Mealy machine formally consists of six components:
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* A finite set X called the input alphabet

* A finite set I called the output alphabet

e A finite set Q whose elements are called states
e A start states € Q

e A transition function 6: Q x ¥ —» Q

* An output function w: Q x X —=T

More intuitively, a Mealy machine is a graph with a special start vertex, where every node
(state) has one outgoing edge labeled with each symbol from the input alphabet, and
each edge (transition) is additionally labeled with a symbol from the output alphabet.
(Mealy machines are closely related to Moore machines, which produce output at each
state instead of at each transition.)

The Mealy machine reads an input string w € 3* one symbol at a time. For each symbol,
the machine changes its state according to the transition function &, and simultaneously
outputs a symbol according the output function w. Formally, we recursively define a
transducer function w*: Q x ¥* — I'* as follows:

€ fw=e¢

' w) = {a)(q, a) - w*(6(g,a),x) ifw=ax

Given any input string w € ¥, the machine outputs the string w*(w,s) € I'*. To simplify
notation, we define M(w) = w*(w, s).

Finally, the output language L°(M) of a Mealy machine M is the set of all strings that
the machine can output:
L°(M):={Mw)| wex*}

(@) Let M be an arbitrary Mealy machine. Prove that L°(M) is a regular language.

(b) Let M be an arbitrary Mealy machine whose input alphabet X and output alphabet T’
are identical. Prove that the language

L= (M)={weX* | w=w*(s,w)}

is regular. L=(M) consists of all strings w such that M outputs w when given input w;
these are also called fixed points for the transducer function w*.

*(c) Asin part (b), let M be an arbitrary Mealy machine whose input and output alphabets
are identical. Prove that the language {w ex® | M(M(w)) = w} is regular.

[Hint: Parts (a) and (b) are easier than they look!]

7. Let L € ¥* be an arbitrary regular language. Prove that the following languages are regular.
Assume # € 2.

(@) censor(L) := {#lwl ’ we L}
(b) dehash(L) = {dehash(w) | welL }, where dehash(w) is the subsequence of w obtained
by deleting every #.
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insert#(L) := {x#y | Xy € L}.

delete#(L) := {xy | x#ty € L}.

prefix(L) := {x € ¥* | xy € L for some y € ©*}

suffix(L) :={y € ¥* | xy € L for some x € *}
substring(L) :={y € ¥* | xyz € L for some x,z € ¥*}
superstring(L) := {xyz | y € L and x,z € ©*}

cycle(L) :={xy | x,ye X" and yx € L}
prefmax(L):={x€L| xy €l < y=c¢}.

sufmin(L) :={xy€L|y€eL < x=¢}.

minimal(L) := {w € L | no proper substring of w is in L}.
maximal(L) := {w € L | no proper superstring of w is in L}.

evens(L) := {evens(w) | w € L}, where even(w) is the subsequence of w containing
every even-indexed symbol. For example, evens(EVENINDEX) = VNNE.

evens Y(L) := {w € &* | evens(w) € L}.

subseq(L) := {x € ¥* | x is a subsequence of some y € L}

superseq(L) := {x € ©* | some y € L is a subsequence of x}

swap(L) := {swap(w) | w € L}, where swap(w) is defined recursively as follows:

) w if lw| <1
swap(w) =
P ba ¢ swap(x) if w=abx for some a,b € ¥ and x € &*

oneswap(L) := {xbay | xaby € L where a,be X and x,y € Z*}.

left(L) := {x € ¥* | xy € L for some y € ©* where |x| = |y|}

right(L) :={y € ¥* | xy € L for some x € ©* where |x| = |y|}

middle(L) := {y € ¥* | xyz € L for some x,z € &* where |x| = |y| = |z|}

halfseq(L) := {w € &* | w is a subsequence of some string x € L where |x|=2-|w|}
third(L) :={we X" | www € L}

drome(L) := {W ex* | wlw e L}

8. Let L and L’ be arbitrary regular languages over the alphabet {0,1}. Prove that the
following languages are also regular:

@

(b)

LAL :={xny | x € L and y € L’ and |x| = |y|}, where x My denotes bitwise-and.
For example, 001110101 = 0001.

LurL :=={xuy | x € L and y € L’ with |x| = |y|}, where x L y denotes bitwise-or.
For example, 0011 L0101 =0111.
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©

LBl = {xBy | x € L and y € L’ with |x| = |y|}, where x 8 y denotes bitwise-
exclusive-or. For example, 0011 H 0101 =0110.

(d) faro(L,L’) := {faro(x,z) { x € L and z € L’ with |x| = |z|}, where

(e)

(b)

©

2 ifx=¢
faro(x,z) :=
a-faro(z,y) ifx=ay

For example, faro(0011,0101) = 00011011.

shuffles(L, L") := U, ep e p shuffles(w, y), where shuffles(w, y) is the set of all strings
obtained by shuffling w and y, or equivalently, all strings in which w and y are
complementary subsequences. Formally:

{r} ifw=g
shuffles(w, y) = { {w} ify=¢
{a} ¢ shuffles(x,y) U {b} * shuffles(w,z) if w=ax and y = bz

For example, shuffles(01,10) = {0101,0110,1001,1010} and shuffles(00,11) = {0011,
0101,1001,0110,1010, 1100}

Let inc: {0,1}* — {0, 1}* denote the increment function, which transforms the binary
representation of an arbitrary integer n into the binary representation of n + 1,
truncated to the same number of bits. For example:

inc(0010) = 0011 inc(0111) = 1000 inc(1111) = 0000 inc(e) =¢
Let L C {0, 1}* be an arbitrary regular language. Prove that inc(L) = {inc(w) |w € L}

is also regular.

Let dec: {0,1}* — {0, 1}* denote the decrement function, which transforms the binary
representation of an arbitrary integer n into the binary representation of n —1,
truncated to the same number of bits. More simply, dec is the inverse function of inc.
For example:

dec(0011) = 0010 dec(1000) = 0111 dec(0000) = 1111 dec(e) =¢

Let L C {0, 1}* be an arbitrary regular language. Prove that dec(L) = {dec(w) | w € L}
is also regular.

Let dub: {0,1}* — {0, 1}* denote the doubling function, which transforms the binary
representation of an arbitrary integer n into the binary representation of 2n, truncated
to the same number of bits. For example:

dub(0010) =0100  dub(0111)=1110  dub(1111)=1110  dub(e)=¢

Let L C {0, 1}* be an arbitrary regular language. Prove that dub(L) = {dub(w) |w € L}
is also regular.
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*(d) Lettrip: {0,1}* — {0, 1}* denote the tripling function, which transforms the binary
representation of an arbitrary integer n into the binary representation of 3n, truncated
to the same number of bits. For example:

trip(0010) =0110  trip(@111)=0101  trip(1111)=1101  trip(e) =¢

Let L € {0, 1}* be an arbitrary regular language. Prove that trip(L) = {trip(w) |w € L}
is also regular. [Hint: It may be easier to consider the language trip(L®)R first.]

*10. Let L C ¥* be an arbitrary regular language. Prove that the following languages are

12.

13.

regular.

@) sqrt(L) := {x ex* | xy € L for some y € X" such that |y| = |x|2}
(b) log(L) := {x ex* | xy € L for some y € %* such that |y| = 2|x|}

(©) flog(L) := {x ex* | xy € L for some y € 3* such that |y| = F|x|}, where F, is the
nth Fibonacci number.

. Let L € ¥* be an arbitrary regular language. Prove that the following languages are

regular.

(@) somerep(L) :={weX*| w" €L for some n > 0}
(b) allreps(L) :={w e x*| w" € L for every n > 0}
(c) manyreps(L) :={w € ¥* | w" € L for infinitely many n > 0}

(d) fewreps(L) :={w e X*| w" € L for finitely many n > 0}

2

(e) powers(L):= {w ex* | w?" € L for some n > O}

*(f) whatthey(L) := {w € =* | w" € L for some n € N}, where N is an arbitrary fixed set
of non-negative integers. [Hint: You only have to prove that an accepting NFA exists;
you don’t have to describe how to construct it.]

[Hint: For each of these languages, there is an accepting NFA with at most q? states,
where q is the number of states in some DFA that accepts L.]

For any string w € (0 + 1)*, let sort(w) be the string obtained by sorting the symbols in w.
More succinctly, let sort(w) = @#(@w)1#(0,w),

(@) Prove that there is a regular language L C (0 + 1)* such that the language sort(L) =
{sort(w) | w € L} is not regular.

*(b) Prove that for any regular language L C (0 + 1)*, the language sort *(L) = {w |
sort(w) € L} is regular.

For any string w € (0 + 1)*, let (w), denote the integer represented by w in binary. For
example:
()2 =0 (0010)y =2 (0111), =7 (1111), =15
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4.

Let L and L’ be arbitrary regular languages over the alphabet {0,1}. Prove that the
following language is also regular:

{W e@+1)" | (W)y = (x)y + (y), for some strings x € L and y € L’}

Let L € ¥* be an arbitrary regular language. Prove that the following languages are
regular.

(@) repsqrt(L) = {w en* | whl e L}.
(b) replog(L) = {we | w?"' eL}.
(c) repflog(L) = {w ex* | whivl e L}, where F,, is the nth Fibonacci number.

[Hint: The NFAs for these languages use a LOT of states. Let M = (%,Q,s,A,8) be a
DFA that accepts L. Imagine that you somehow know 6*(q,w) in advance, for every state
g €Q. Ha, ha, ha! Mine is an evil laugh!]
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