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Pre-lecture brain teaser

We know that SAT is NP-complete which measn that it is in
NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT?
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Today

NP-Completeness of three problems:

• Undirected HC problem
• 3-Color Problem
• Circuit SAT

Important: understanding the problems and that they are hard.

Proofs and reductions will be sketchy and mainly to give a
flavor
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Hamiltonian cycle in undirected
graph



Hamiltonian Cycle in Undirected Graphs

Problem

Input Given undirected graph G = (V, E)
Goal Does G have a Hamiltonian cycle? That is, is there

a cycle that visits every vertex exactly one (except
start and end vertex)?
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NP-Completeness

Theorem
Hamiltonian cycle problem for undirected graphs is
NP-Complete.

Proof.

• The problem is in NP; proof left as exercise.
• Hardness proved by reducing Directed Hamiltonian Cycle
to this problem
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected
graph G′ such that G has Hamiltonian Path iff G′ has
Hamiltonian path

Reduction
•
•

b

a

v

c

d
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Reduction Sketch Example

Graph with cycle:

v1

v3v2

v1v1
i v1

o

v2v2
i v2

o v2v2
i v2

o

Graph without cycle:

v1

v3v2

v1v1
i v1

o

v2v2
i v2

o v2v2
i v2

o
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NP-Completeness of Graph Coloring



Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k.
Question: Can the vertices of the graph be col-
ored using k colors so that vertices connected by
an edge do not get the same color?
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?
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Graph Coloring

Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G. Thus, G
can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time
algorithm to check if G is bipartite using Breadth-first-Search
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Problems related to graph coloring



Graph Coloring and Register Allocation

Register Allocation
Assign variables to (at most) k registers such that variables
needed at the same time are not assigned to the same register

Interference Graph
Vertices are variables, and there is an edge between two
vertices, if the two variables are “live” at the same time.

Observations

• [Chaitin] Register allocation problem is equivalent to
coloring the interference graph with k colors

• Moreover, 3-COLOR ≤P k− Register Allocation, for any
k ≥ 3
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Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph G

• a node vi for each class i
• an edge between vi and vj if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient
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Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division
Multiple Access (FDMA) (example: GSM in Europe and Asia and
AT&T in USA)

• Breakup a frequency range [a,b] into disjoint bands of
frequencies [a0,b0], [a1,b1], . . . , [ak,bk]

• Each cell phone tower (simplifying) gets one band
• Constraint: nearby towers cannot be assigned same band,
otherwise signals will interference

Problem: given k bands and some region with n towers, is
there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict
graph on towers.
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Showing hardness of 3 COLORING



3-Coloring is NP-Complete

• 3-Coloring is in NP.
• Non-deterministically guess a 3-coloring for each node
• Check if for each edge (u, v), the color of u is different from
that of v.

• Hardness: We will show 3-SAT ≤P 3-Coloring.
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Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) ϕ with n variables
x1, . . . , xn and m clauses C1, . . . , Cm. Create graph Gϕ such that
Gϕ is 3-colorable iff ϕ is satisfiable

• need to establish truth assignment for x1, . . . , xn via colors
for some nodes in Gϕ.

• create triangle with node True, False, Base
• for each variable xi two nodes vi and v̄i connected in a
triangle with common Base

• If graph is 3-colored, either vi or v̄i gets the same color as
True. Interpret this as a truth assignment to vi

• Need to add constraints to ensure clauses are satisfied
(next phase)
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Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

• Is 3 colorable if at least one of the literals is true
• Not 3-colorable if none of the literals are true

Let’s start off with the simplest SAT we cna think of:

f (x1, x2) = (x1 ∨ x2) (1)

Assume green=true and red=false,
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Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

• Is 3 colorable if at least one of the literals is true
• Not 3-colorable if none of the literals are true

Let’s try some stuff:
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Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

• Is 3 colorable if at least one of the literals is true
• Not 3-colorable if none of the literals are true

Seems to work:
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Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

• Is 3 colorable if at least one of the literals is true
• Not 3-colorable if none of the literals are true

How do we do the same thing for 3 variables?:

f (x1, x2, x3) = (x1 ∨ x2 ∨ x3) (2)

Assume green=true and red=false,
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3 color this gadget II

You are given three colors: red, green and blue. Can the
following graph be three colored in a valid way (assuming that
some of the nodes are already colored as indicated).

a Yes.
b No.
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3 color this gadget.

You are given three colors: red, green and blue. Can the
following graph be three colored in a valid way (assuming that
some of the nodes are already colored as indicated).

a Yes.
b No.
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3-coloring of the clause gadget
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Reduction Idea II - Literal Assignment I

Next we need a gadget that assigns literals. Our previously
constructed gadget assumes:

• All literals are either red or green.
• Need to limit graph so only x1 or x1 is green. Other must
be red
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Reduction Idea II - Literal Assignment II

v1

v1

v2

v2

vn

vn

T F

Base
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Review Clause Satisfiability Gadget

For each clause Cj = (a ∨ b ∨ c), create a small gadget graph

• gadget graph connects to nodes corresponding to a,b, c
• needs to implement OR

OR-gadget-graph:

a

b

c

a ∨ b

a ∨ b ∨ c
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OR-Gadget Graph

Property: if a,b, c are colored False in a 3-coloring then output
node of OR-gadget has to be colored False.

Property: if one of a,b, c is colored True then OR-gadget can be
3-colored such that output node of OR-gadget is colored True.
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Reduction

• create triangle with nodes True, False, Base
• for each variable xi two nodes vi and v̄i connected in a
triangle with common Base

• for each clause Cj = (a ∨ b ∨ c), add OR-gadget graph with
input nodes a,b, c and connect output node of gadget to
both False and Base

a

b

c

a ∨ b

a ∨ b ∨ c

T

F

Base
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Reduction

a

b

c

a ∨ b

a ∨ b ∨ c

T

F

Base

Lemma
No legal 3-coloring of above graph (with coloring of nodes
T, F,B fixed) in which a,b, c are colored False. If any of a,b, c
are colored True then there is a legal 3-coloring of above
graph.
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Reduction Outline

Example
ϕ = (u ∨ ¬v ∨ w) ∧ (v ∨ x ∨ ¬y)

v

u

~w

y

x

w

~y

~x

~v

~u

FT

N

Literals get colour T or F
colours

have complementary
Variable and negation

OR−gates

Palette
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Correctness of Reduction

ϕ is satisfiable implies Gϕ is 3-colorable

• if xi is assigned True, color vi True and v̄i False

• for each clause Cj = (a ∨ b ∨ c) at least one of a,b, c is
colored True. OR-gadget for Cj can be 3-colored such that
output is True.

Gϕ is 3-colorable implies ϕ is satisfiable

• if vi is colored True then set xi to be True, this is a legal
truth assignment

• consider any clause Cj = (a ∨ b ∨ c). it cannot be that all
a,b, c are False. If so, output of OR-gadget for Cj has to be
colored False but output is connected to Base and False!
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Graph generated in reduction from 3SAT to 3COLOR

d

X

ca b

T

a b c d

F
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Circuit-Sat Problem



Circuits

A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

∧

Inputs:

Output:

• Input vertices (without
incoming edges) labeled
with 0, 1 or a distinct
variable.

• Every other vertex is
labeled ∨, ∧ or ¬.

• Single node output vertex
with no outgoing edges.

32



Circuits

A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

∧

Inputs:

Output:

• Input vertices (without
incoming edges) labeled
with 0, 1 or a distinct
variable.

• Every other vertex is
labeled ∨, ∧ or ¬.

• Single node output vertex
with no outgoing edges.

32



Circuits

A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

∧

Inputs:

Output:

• Input vertices (without
incoming edges) labeled
with 0, 1 or a distinct
variable.

• Every other vertex is
labeled ∨, ∧ or ¬.

• Single node output vertex
with no outgoing edges.

32



CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)
Given a circuit as input, is there an assignment to the input
variables that causes the output to get value 1?

Lemma
CSAT is in NP.

• Certificate: Assignment to input variables.
• Certifier: Evaluate the value of each gate in a topological
sort of DAG and check the output gate value.
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Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to
express Boolean formulas

However they are equivalent in terms of polynomial-time
solvability.

Theorem
SAT ≤P 3SAT ≤P CSAT.

Theorem
CSAT ≤P SAT ≤P 3SAT.
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Converting a CNF formula into a Circuit

Given 3CNF formula ϕ with n variables and m clauses, create a
Circuit C.

• Inputs to C are the n boolean variables x1, x2, . . . , xn
• Use NOT gate to generate literal ¬xi for each variable xi
• For each clause (`1 ∨ `2 ∨ `3) use two OR gates to mimic
formula

• Combine the outputs for the clauses using AND gates to
obtain the final output
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Example: 3SAT ≤P CSAT

ϕ =
(
x1 ∨ ∨x3 ∨ x4

)
∧
(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4

)
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Converting a circuit to a SAT formula

What will converting a circuit to a SAT formula prove?

But first we need to look back at a gadget!
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Converting z = x ∧ y to 3SAT

z x y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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Converting z = x ∧ y to 3SAT

z x y z = x ∧ y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
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Converting z = x ∧ y to 3SAT

z x y z = x ∧ y
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1

0 1 1 0 0 1 1 1

1 0 0 0 1 0 1 1

1 0 1 0 1 1 0 1

1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1
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Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x veey z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1(

z = x ∧ y
)

≡
(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)
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Summary of formulas we derived

Lemma
The following identities hold:

• z = x ≡ (z ∨ x) ∧(z ∨ x) .
•
(
z = x ∨ y

)
≡ (z ∨ y) ∧(z ∨ x) ∧(z ∨ x ∨ y)

•
(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)
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Converting a circuit into a CNF formula

1 ? ? 0 ?

Inputs

Output:

∧

∧

∧

∨ ∨

¬

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

(A) Input circuit (B) Label the nodes.
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Converting a circuit into a CNF formula

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

(B) Label the nodes. (C) Introduce var for each node.
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Converting a circuit into a CNF formula

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk (Demand a sat’ assign-
ment!)
xk = xi ∧ xj
xj = xg ∧ xh
xi = ¬xf
xh = xd ∨ xe
xg = xb ∨ xc
xf = xa ∧ xb
xd = 0
xa = 1

(C) Introduce var for each node.

(D) Write a sub-formula for
each variable that is true
if the var is computed cor-
rectly. 42



Converting a circuit into a CNF formula

xk xk
xk = xi ∧ xj (¬xk ∨ xi) ∧ (¬xk ∨ xj) ∧ (xk ∨ ¬xi ∨ ¬xj)
xj = xg ∧ xh (¬xj ∨ xg) ∧ (¬xj ∨ xh) ∧ (xj ∨ ¬xg ∨ ¬xh)
xi = ¬xf (xi ∨ xf ) ∧ (¬xi ∨ ¬xf )

xh = xd ∨ xe (xh ∨ ¬xd) ∧ (xh ∨ ¬xe) ∧ (¬xh ∨ xd ∨ xe)
xg = xb ∨ xc (xg ∨ ¬xb) ∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
xf = xa ∧ xb (¬xf ∨ xa) ∧ (¬xf ∨ xb) ∧ (xf ∨ ¬xa ∨ ¬xb)
xd = 0 ¬xd
xa = 1 xa
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Converting a circuit into a CNF formula

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk ∧ (¬xk ∨ xi) ∧ (¬xk ∨ xj)
∧ (xk ∨ ¬xi ∨ ¬xj) ∧ (¬xj ∨ xg)
∧ (¬xj ∨ xh) ∧ (xj ∨ ¬xg ∨ ¬xh)
∧ (xi ∨ xf ) ∧ (¬xi ∨ ¬xf )
∧ (xh ∨ ¬xd) ∧ (xh ∨ ¬xe)
∧ (¬xh ∨ xd ∨ xe) ∧ (xg ∨ ¬xb)
∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
∧ (¬xf ∨ xa) ∧ (¬xf ∨ xb)
∧ (xf ∨ ¬xa ∨ ¬xb) ∧ (¬xd) ∧ xa

We got a CNF formula that is satisfiable if and only if the
original circuit is satisfiable.
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Reduction: CSAT ≤P SAT

• For each gate (vertex) v in the circuit, create a variable xv
• Case ¬: v is labeled ¬ and has one incoming edge from u
(so xv = ¬xu). In SAT formula generate, add clauses
(xu ∨ xv), (¬xu ∨ ¬xv). Observe that

xv = ¬xu is true ⇐⇒ (xu ∨ xv)
(¬xu ∨ ¬xv)

both true.
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Reduction: CSAT ≤P SAT

• Case ∨: So xv = xu ∨ xw . In SAT formula generated, add
clauses (xv ∨ ¬xu), (xv ∨ ¬xw), and (¬xv ∨ xu ∨ xw). Again,
observe that

(
xv = xu ∨ xw

)
is true ⇐⇒

(xv ∨ ¬xu),
(xv ∨ ¬xw),
(¬xv ∨ xu ∨ xw)

all true.

46



Reduction: CSAT ≤P SAT

• Case ∧: So xv = xu ∧ xw . In SAT formula generated, add
clauses (¬xv ∨ xu), (¬xv ∨ xw), and (xv ∨ ¬xu ∨ ¬xw). Again
observe that

xv = xu ∧ xw is true ⇐⇒
(¬xv ∨ xu),
(¬xv ∨ xw),
(xv ∨ ¬xu ∨ ¬xw)

all true.
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Reduction: CSAT ≤P SAT

• If v is an input gate with a fixed value then we do the
following. If xv = 1 add clause xv . If xv = 0 add clause ¬xv

• Add the clause xv where v is the variable for the output
gate
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Correctness of Reduction

Need to show circuit C is satisfiable iff ϕC is satisfiable

⇒ Consider a satisfying assignment a for C
• Find values of all gates in C under a
• Give value of gate v to variable xv ; call this assignment a′

• a′ satisfies ϕC (exercise)
⇐ Consider a satisfying assignment a for ϕC

• Let a′ be the restriction of a to only the input variables
• Value of gate v under a′ is the same as value of xv in a
• Thus, a′ satisfies C
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