Pre-lecture brain teaser

We know that SAT is NP-complete which measn that it is in NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT?

CS/ECE-374: Lecture 27 - More NP-Complete reductions

Lecturer: Nickvash Kani
Chat moderator: Samir Khan
April 29, 2021
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

We know that SAT is NP-complete which measn that it is in NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT?

Today

NP-Completeness of three problems:

- Undirected HC problem
- 3-Color Problem
- Circuit SAT

Important: understanding the problems and that they are hard.

Proofs and reductions will be sketchy and mainly to give a flavor

Hamiltonian cycle in undirected graph

Hamiltonian Cycle in Undirected Graphs

Problem

Input Given undirected graph $G=(V, E)$
Goal Does G have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem
Hamiltonian cycle problem for undirected graphs is
NP-Complete.
Proof.

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: $v_{\text {in }}, v$, and $v_{\text {out }}$

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: $v_{i n}, v$, and $v_{\text {out }}$
- A directed edge (a, b) is replaced by edge ($a_{\text {out }}, b_{\text {in }}$)

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: $v_{i n}, v$, and $v_{\text {out }}$
- A directed edge (a, b) is replaced by edge ($a_{\text {out }}, b_{\text {in }}$)

Reduction Sketch Example

Graph with cycle:

Reduction Sketch Example

Graph with cycle:

Graph without cycle:

NP-Completeness of Graph Coloring

Graph Coloring

Problem: Graph Coloring

Instance: $G=(V, E)$: Undirected graph, integer k.
Question: Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: $G=(V, E)$: Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: $G=(V, E)$: Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.
G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using Breadth-first-Search

Problems related to graph coloring

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph
Vertices are variables, and there is an edge between two
vertices, if the two variables are "live" at the same time.
Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with k colors
- Moreover, 3-COLOR $\leq_{p} k$ - Register Allocation, for any $k \geq 3$

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?
Reduce to Graph k-Coloring problem
Create graph G

- a node v_{i} for each class i
- an edge between v_{i} and v_{j} if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[a, b]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[a, b]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers.

Showing hardness of 3 COLORING

3-Coloring is NP-Complete

- 3-Coloring is in NP.
- Non-deterministically guess a 3-coloring for each node
- Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: We will show 3-SAT \leq p 3-Coloring.

Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) φ with n variables x_{1}, \ldots, x_{n} and m clauses C_{1}, \ldots, C_{m}. Create graph G_{φ} such that
G_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_{1}, \ldots, x_{n} via colors for some nodes in G_{φ}.
- create triangle with node True, False, Base
- for each variable x_{i} two nodes v_{i} and \bar{v}_{i} connected in a triangle with common Base
- If graph is 3 -colored, either v_{i} or $\overline{v_{i}}$ gets the same color as True. Interpret this as a truth assignment to v_{i}
- Need to add constraints to ensure clauses are satisfied (next phase)

Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Let's start off with the simplest SAT we cna think of:

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=\left(x_{1} \vee x_{2}\right) \tag{1}
\end{equation*}
$$

Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Let's start off with the simplest SAT we cna think of:

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=\left(x_{1} \vee x_{2}\right) \tag{1}
\end{equation*}
$$

Assume green=true and red=false,

Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Let's try some stuff:

Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Seems to work:

Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

How do we do the same thing for 3 variables?:

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \vee x_{2} \vee x_{3}\right) \tag{2}
\end{equation*}
$$

Assume green=true and red=false,

3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).

a Yes.
b No.

3 color this gadget.

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).

a Yes.
b No.

3-coloring of the clause gadget

Reduction Idea II - Literal Assignment I

Next we need a gadget that assigns literals. Our previously constructed gadget assumes:

- All literals are either red or green.
- Need to limit graph so only x_{1} or $\overline{x_{1}}$ is green. Other must be red

Reduction Idea II - Literal Assignment II

Review Clause Satisfiability Gadget

For each clause $C_{j}=(a \vee b \vee c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, c
- needs to implement OR

OR-gadget-graph:

OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- for each variable x_{i} two nodes v_{i} and \bar{v}_{i} connected in a triangle with common Base
- for each clause $C_{j}=(a \vee b \vee c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base

Reduction

Lemma

No legal 3-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal 3-coloring of above graph.

Reduction Outline

Example

$\varphi=(u \vee \neg \vee \vee w) \wedge(v \vee x \vee \neg y)$

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color v_{i} True and \bar{v}_{i} False

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color v_{i} True and \bar{v}_{i} False
- for each clause $C_{j}=(a \vee b \vee c)$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color v_{i} True and \bar{v}_{i} False
- for each clause $C_{j}=(a \vee b \vee c)$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color v_{i} True and \bar{v}_{i} False
- for each clause $C_{j}=(a \vee b \vee c)$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.
G_{φ} is 3-colorable implies φ is satisfiable
- if v_{i} is colored True then set x_{i} to be True, this is a legal truth assignment

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color v_{i} True and \bar{v}_{i} False
- for each clause $C_{j}=(a \vee b \vee c)$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.
G_{φ} is 3-colorable implies φ is satisfiable
- if v_{i} is colored True then set x_{i} to be True, this is a legal truth assignment
- consider any clause $C_{j}=(a \vee b \vee c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_{j} has to be colored False but output is connected to Base and False!

Graph generated in reduction from 3SAT to 3COLOR

Circuit-Sat Problem

Circuits

A circuit is a directed acyclic graph with

- Input vertices (without incoming edges) labeled with 0,1 or a distinct variable.
- Every other vertex is labeled \vee, \wedge or \neg.
- Single node output vertex with no outgoing edges.

Circuits

A circuit is a directed acyclic graph with

- Input vertices (without incoming edges) labeled with 0,1 or a distinct variable.
- Every other vertex is labeled \vee, \wedge or \neg.
- Single node output vertex with no outgoing edges.

Circuits

A circuit is a directed acyclic graph with

- Input vertices (without incoming edges) labeled with 0,1 or a distinct variable.
- Every other vertex is labeled \vee, \wedge or \neg.
- Single node output vertex with no outgoing edges.

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)
 Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Definition (Circuit Satisfaction (CSAT).)
Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Lemma
CSAT is in NP.

- Certificate: Assignment to input variables.
- Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem
SAT $\leq_{p} 3 S A T \leq_{p}$ CSAT.
Theorem
CSAT \leq_{p} SAT \leq_{p} 3SAT.

Converting a CNF formula into a Circuit

Given 3CNF formula φ with n variables and m clauses, create a Circuit C.

- Inputs to C are the n boolean variables $x_{1}, x_{2}, \ldots, x_{n}$
- Use NOT gate to generate literal $\neg x_{i}$ for each variable x_{i}
- For each clause ($\ell_{1} \vee \ell_{2} \vee \ell_{3}$) use two OR gates to mimic formula
- Combine the outputs for the clauses using AND gates to obtain the final output

Example: 3 SAT \leq_{p} CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example: 3 SAT \leq_{p} CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example: 3 SAT \leq_{p} CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example: 3 SAT \leq_{p} CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example: 3 SAT \leq_{p} CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example: 3 SAT \leq_{p} CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example: 3 SAT \leq_{p} CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Example: 3 SAT \leq_{p} CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Converting a circuit to a SAT formula

What will converting a circuit to a SAT formula prove?

Converting a circuit to a SAT formula

What will converting a circuit to a SAT formula prove?

But first we need to look back at a gadget!

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

| z | x | y | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |$|$

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$			
0	0	0	1			
0	0	1	1			
0	1	0	1			
0	1	1	0			
1	0	0	0			
1	0	1	0			
1	1	0	0			
1	1	1	1			

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$				
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $z=x \wedge y$ to 3SAT

z	x	y	$z=x \wedge y$	$z \vee \bar{x}$ vee \bar{y}			
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $z=x \wedge y$ to 3SAT

z	x	y	$z=x \wedge y$	$z \vee \bar{x}$ veē	$\bar{z} \vee x \vee y$		
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $z=x \wedge y$ to 3SAT

z	x	y	$z=x \wedge y$	$z \vee \bar{x} v e e \bar{y}$	$\bar{z} \vee x \vee y$	$\bar{z} \vee x \vee \bar{y}$	
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $z=x \wedge y$ to 3SAT

z	x	y	$z=x \wedge y$	$z \vee \bar{x} v e e \bar{y}$	$\bar{z} \vee x \vee y$	$\bar{z} \vee x \vee \bar{y}$	$\bar{z} \vee \bar{x} \vee y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $z=x \wedge y$ to 3SAT

z	x	y	$z=x \wedge y$	$z \vee \bar{x} v e e \bar{y}$	$\bar{z} \vee x \vee y$	$\bar{z} \vee x \vee \bar{y}$	$\bar{z} \vee \bar{x} \vee y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $z=x \wedge y$ to 3SAT

z	x	y	$z=x \wedge y$	$z \vee \bar{x} v e e \bar{y}$	$\bar{z} \vee x \vee y$	$\bar{z} \vee x \vee \bar{y}$	$\bar{z} \vee \bar{x} \vee y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

$$
\begin{aligned}
& (z=x \wedge y) \\
& \equiv
\end{aligned}
$$

$$
(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee y)
$$

Summary of formulas we derived

Lemma

The following identities hold:

$$
\begin{array}{ll}
\cdot z=\bar{x} \quad \equiv & (z \vee x) \wedge(\bar{z} \vee \bar{x}) \\
\cdot(z=x \vee y) & \equiv \\
\cdot(z \vee \bar{y}) \wedge(z \vee \bar{x}) \wedge(\bar{z} \vee x \vee y) \\
\cdot(z=x \wedge y) \equiv & (z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x) \wedge(\bar{z} \vee y)
\end{array}
$$

Converting a circuit into a CNF formula

(A) Input circuit

(B) Label the nodes.

Converting a circuit into a CNF formula

(B) Label the nodes.

(C) Introduce var for each node.

Converting a circuit into a CNF formula

$x_{k} \quad$ (Demand a sat' assign-
ment!)

$$
\begin{aligned}
& x_{k}=x_{i} \wedge x_{j} \\
& x_{j}=x_{g} \wedge x_{h} \\
& x_{i}=\neg x_{f} \\
& x_{h}=x_{d} \vee x_{e} \\
& x_{g}=x_{b} \vee x_{c} \\
& x_{f}=x_{a} \wedge x_{b} \\
& x_{d}=0 \\
& x_{a}=1
\end{aligned}
$$

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Converting a circuit into a CNF formula

x_{k}	x_{k}
$x_{k}=x_{i} \wedge x_{j}$	$\left(\neg x_{k} \vee x_{i}\right) \wedge\left(\neg x_{k} \vee x_{j}\right) \wedge\left(x_{k} \vee \neg x_{i} \vee \neg x_{j}\right)$
$x_{j}=x_{g} \wedge x_{h}$	$\left(\neg x_{j} \vee x_{g}\right) \wedge\left(\neg x_{j} \vee x_{h}\right) \wedge\left(x_{j} \vee \neg x_{g} \vee \neg x_{h}\right)$
$x_{i}=\neg x_{f}$	$\left(x_{i} \vee x_{f}\right) \wedge\left(\neg x_{i} \vee \neg x_{f}\right)$
$x_{h}=x_{d} \vee x_{e}$	$\left(x_{h} \vee \neg x_{d}\right) \wedge\left(x_{h} \vee \neg x_{e}\right) \wedge\left(\neg x_{h} \vee x_{d} \vee x_{e}\right)$
$x_{g}=x_{b} \vee x_{c}$	$\left(x_{g} \vee \neg x_{b}\right) \wedge\left(x_{g} \vee \neg x_{c}\right) \wedge\left(\neg x_{g} \vee x_{b} \vee x_{c}\right)$
$x_{f}=x_{a} \wedge x_{b}$	$\left(\neg x_{f} \vee x_{a}\right) \wedge\left(\neg x_{f} \vee x_{b}\right) \wedge\left(x_{f} \vee \neg x_{a} \vee \neg x_{b}\right)$
$x_{d}=0$	$\neg x_{d}$
$x_{a}=1$	x_{a}

Converting a circuit into a CNF formula

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

Reduction: CSAT \leq_{p} SAT

- For each gate (vertex) v in the circuit, create a variable x_{v}
- Case $\neg: v$ is labeled \neg and has one incoming edge from u (so $x_{v}=\neg x_{u}$). In SAT formula generate, add clauses $\left(x_{u} \vee x_{v}\right),\left(\neg x_{u} \vee \neg x_{v}\right)$. Observe that

$$
x_{v}=\neg x_{u} \text { is true } \Longleftrightarrow \begin{aligned}
& \left(x_{u} \vee x_{v}\right) \\
& \left(\neg x_{u} \vee \neg x_{v}\right)
\end{aligned} \text { both true. }
$$

Reduction: CSAT \leq_{p} SAT

- Case \vee : So $x_{V}=x_{u} \vee x_{w}$. In SAT formula generated, add clauses $\left(x_{v} \vee \neg x_{u}\right),\left(x_{v} \vee \neg x_{w}\right)$, and $\left(\neg x_{v} \vee x_{u} \vee x_{w}\right)$. Again, observe that

$$
\left(x_{v}=x_{u} \vee x_{w}\right) \text { is true } \Longleftrightarrow \quad \begin{aligned}
& \left(x_{v} \vee \neg x_{u}\right), \\
& \left(x_{v} \vee \neg x_{w}\right), \\
& \left(\neg x_{v} \vee x_{u} \vee x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{p} SAT

- Case \wedge : So $x_{v}=x_{u} \wedge x_{w}$. In SAT formula generated, add clauses $\left(\neg x_{v} \vee x_{u}\right)$, $\left(\neg x_{v} \vee x_{w}\right)$, and $\left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)$. Again observe that

$$
\begin{aligned}
x_{v}=x_{u} \wedge x_{w} \text { is true } \Longleftrightarrow & \left(\neg x_{v} \vee x_{u}\right), \\
& \left(\neg x_{v} \vee x_{w}\right), \\
& \left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{p} SAT

- If v is an input gate with a fixed value then we do the following. If $x_{v}=1$ add clause x_{v}. If $x_{v}=0$ add clause $\neg x_{v}$
- Add the clause x_{v} where v is the variable for the output gate

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_{C} is satisfiable
\Rightarrow Consider a satisfying assignment a for C

- Find values of all gates in C under a
- Give value of gate v to variable x_{v}; call this assignment a^{\prime}
- a^{\prime} satisfies φ_{C} (exercise)
\Leftarrow Consider a satisfying assignment a for φ_{C}
- Let a^{\prime} be the restriction of a to only the input variables
- Value of gate v under a^{\prime} is the same as value of x_{v} in a
- Thus, a^{\prime} satisfies C

