Is the following language decidable: $L_{374} = \{ \langle M \rangle | L(M) = \{ 0^{374} \} \}$

CS/ECE-374: Lecture 25 - SAT

Lecturer: Nickvash Kani Chat moderator: Samir Khan April 22, 2021

University of Illinois at Urbana-Champaign

Is the following language decidable: $L_{374} = \{ \langle M \rangle | L(M) = \{ 0^{374} \} \}$

2

The Satisfiability Problem (SAT)

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- A *literal* is either a boolean variable x_i or its negation $\neg x_i$.
- A *clause* is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- A *literal* is either a boolean variable x_i or its negation $\neg x_i$.
- A *clause* is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.
- A formula φ is a 3CNF:
 A CNF formula such that every clause has exactly 3 literals.
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Every boolean formula $f : \{0,1\}^n \to \{0,1\}$ can be written as a CNF formula.

<i>X</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> 4	<i>X</i> ₅	<i>X</i> ₆	$f(x_1, x_2, \ldots, x_6)$	$\overline{X_1} \lor X_2 \overline{X_3} \lor X_4 \lor \overline{X_5} \lor X_6$
0	0	0	0	0	0	f(0,,0,0)	1
0	0	0	0	0	1	f(0,,0,1)	1
:	:	:	:	:	÷	:	:
1	0	1	0	0	1	?	1
1	0	1	0	1	0	0	0
1	0	1	0	1	1	?	1
:	÷	÷	÷	÷	÷	:	
1	1	1	1	1	1	f(1,,1)	1

For every row that f is zero compute corresponding CNF clause. Take the and (Λ) of all the CNF clauses computed

Problem: SAT

Instance: A CNF formula φ . **Question:** Is there a truth assignment to the variable of φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ .

Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take x_1, x_2, \dots, x_5 to be all true
- $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor x_2)$ is not satisfiable.

3SAT

Given a 3CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

(More on **2SAT** in a bit...)

Importance of SAT and 3SAT

- SAT and 3SAT are basic constraint satisfaction problems.
- Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- Arise naturally in many applications involving hardware and software verification and correctness.
- As we will see, it is a fundamental problem in theory of NPCompleteness.

Given two bits *x*, *z* which of the following **SAT** formulas is equivalent to the formula $z = \overline{x}$:

```
(A) (\overline{z} \lor x) \land (z \lor \overline{x}).

(B) (z \lor x) \land (\overline{z} \lor \overline{x}).

(C) (\overline{z} \lor x) \land (\overline{z} \lor \overline{x}) \land (\overline{z} \lor \overline{x}).

(D) z \oplus x.

(E) (z \lor x) \land (\overline{z} \lor \overline{x}) \land (z \lor \overline{x}) \land (\overline{z} \lor x).
```

$z = \overline{x}$: Solution

Given two bits x, z which of the following **SAT** formulas is equivalent to the formula $z = \overline{x}$:

- (A) $(\overline{z} \lor x) \land (z \lor \overline{x}).$
- (B) $(z \lor x) \land (\overline{z} \lor \overline{x}).$
- (C) $(\overline{z} \lor x) \land (\overline{z} \lor \overline{x}) \land (\overline{z} \lor \overline{x}).$

(D) $z \oplus x$.

(E)
$$(z \lor x) \land (\overline{z} \lor \overline{x}) \land (z \lor \overline{x}) \land (\overline{z} \lor x)$$
.

Х	у	$Z = \overline{X}$
0	0	0
0	1	1
1	0	1
1	1	0

Given three bits x, y, z which of the following **SAT** formulas is equivalent to the formula $z = x \land y$:

- (A) $(\overline{z} \lor x \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (B) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (C) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (D) $(z \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (E) $(z \lor x \lor y) \land (z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor x \lor y) \land (\overline{z} \lor x \lor \overline{y}) \land (\overline{z} \lor \overline{x} \lor y) \land (\overline{z} \lor \overline{x} \lor \overline{y}).$

$z = x \wedge y$

Given three bits x, y, z which of the following **SAT** formulas is equivalent to the formula $z = x \land y$:

- (A) $(\overline{z} \lor x \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (B) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (C) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (D) $(z \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (E) $(z \lor x \lor y) \land (z \lor x \lor \overline{y}) \land$ $(z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}) \land$ $(\overline{z} \lor x \lor y) \land (\overline{z} \lor x \lor \overline{y}) \land$

Х	у	Ζ	$z = x \wedge y$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Reducing SAT to 3SAT

$SAT \leq_P 3SAT$

How SAT is different from 3SAT?

In **SAT** clauses might have arbitrary length: 1, 2, 3, ... variables:

$$\left(x \lor y \lor z \lor w \lor u\right) \land \left(\neg x \lor \neg y \lor \neg z \lor w \lor u\right) \land \left(\neg x\right)$$

In **3SAT** every clause must have *exactly* 3 different literals.

How SAT is different from 3SAT?

In **SAT** clauses might have arbitrary length: 1, 2, 3, ... variables:

$$\left(x \lor y \lor z \lor w \lor u\right) \land \left(\neg x \lor \neg y \lor \neg z \lor w \lor u\right) \land \left(\neg x\right)$$

In **3SAT** every clause must have *exactly* 3 different literals.

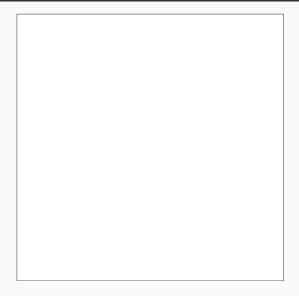
To reduce from an instance of **SAT** to an instance of **3SAT**, we must make all clauses to have exactly 3 variables...

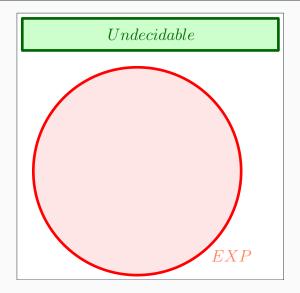
Basic idea

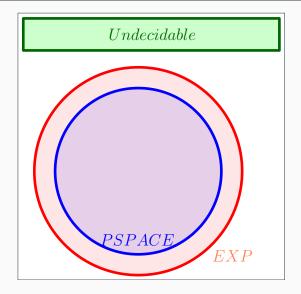
- Pad short clauses so they have 3 literals.
- Break long clauses into shorter clauses.
- Repeat the above till we have a 3CNF.

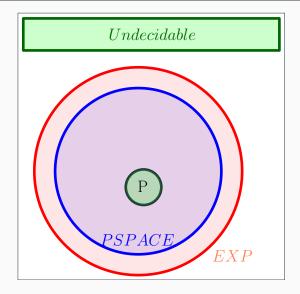
Proof of this in Prof. Har-Peled's async lectures!

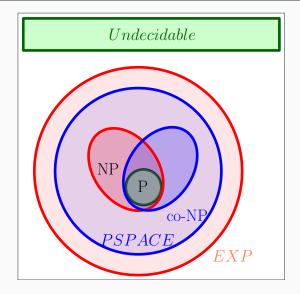
Overview of Complexity Classes

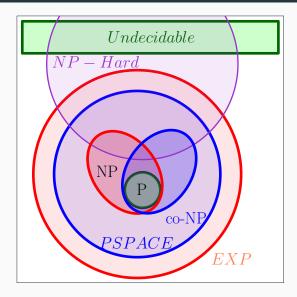


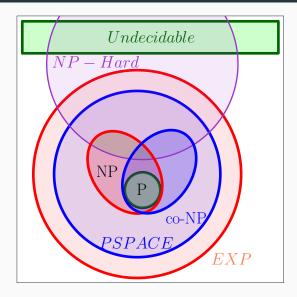


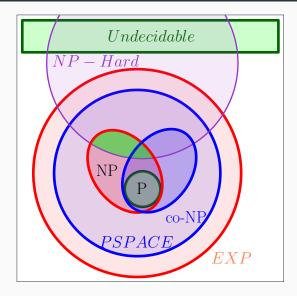


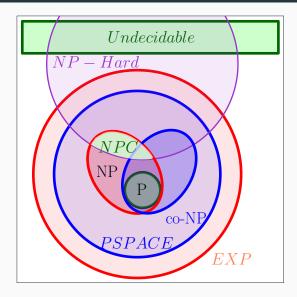












Non-deterministic polynomial time -NP

P and NP and Turing Machines

- P: set of decision problems that have polynomial time algorithms.
- NP: set of decision problems that have polynomial time *non-deterministic* algorithms.
- Many natural problems we would like to solve are in NP.
- Every problem in NP has an exponential time algorithm
- $P \subseteq NP$
- Some problems in *NP* are in *P* (example, shortest path problem)

Big Question: Does every problem in *NP* have an efficient algorithm? Same as asking whether P = NP.

Problems with no known deterministic polynomial time algorithms

Problems

- Independent Set
- · Vertex Cover
- · Set Cover
- · SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Problems with no known deterministic polynomial time algorithms

Problems

- Independent Set
- · Vertex Cover
- · Set Cover
- · SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

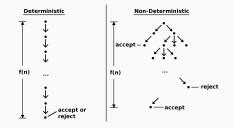
Question: What is common to above problems?

They can all be solved via a non-deterministic computer in polynomial time!

Non-determinism is a special property of algorithms.

An algorithm that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.



Problems with no known deterministic polynomial time algorithms

Problems

- Independent Set & Vertex Cover Can build algorithm to check all possible collection of vertices
- Set Cover Can check all possible collection of sets
- **SAT** -Can build a non-deterministic algorithm that checks every possible boolean assignment.

But we don't have access to a non-deterministic computer. So how can a deterministic computer verify that a algorithm is in NP? Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Examples:

- **SAT** formula φ : proof is a satisfying assignment.
- Independent Set in graph G and k: a subset S of vertices.
- · Homework

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a *certifier* for problem X if the following two conditions hold:

- For every $s \in X$ there is some string t such that C(s,t) = "yes"
- If $s \notin X$, C(s, t) ="no" for every t.

The string s is the problem instance. (Example: particular graph in independent set problem) The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)

A certifier C is an *efficient certifier* for problem X if there is a polynomial $p(\cdot)$ such that the following conditions hold:

- For every $s \in X$ there is some string t such that C(s,t) = "yes" and $|t| \le p(|s|)$.
- If $s \notin X$, C(s, t) ="no" for every t.
- $C(\cdot, \cdot)$ runs in polynomial time.

Example: Independent Set

- Problem: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set $S \subseteq V$.
 - Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.

Example: SAT

- Problem: Does formula φ have a satisfying truth assignment?
 - Certificate: Assignment a of 0/1 values to each variable.
 - Certifier: Check each clause under *a* and say "yes" if all clauses are true.

A certifier is an algorithm C(I, c) with two inputs:

- I: instance.
- *c*: proof/certificate that the instance is indeed a YES instance of the given problem.

One can think about C as an algorithm for the original problem, if:

- Given *I*, the algorithm guesses (non-deterministically, and who knows how) a certificate *c*.
- The algorithm now verifies the certificate *c* for the instance *l*.

NP can be equivalently described using Turing machines.

Cook-Levin Theorem

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- Hardest problem must be in NP.
- Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition A problem X is said to be **NP-Complete** if

- $X \in NP$, and
- (Hardness) For any $Y \in NP$, $Y \leq_P X$.

Lemma

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

- \Rightarrow Suppose X can be solved in polynomial time
 - Let $Y \in NP$. We know $Y \leq_P X$.
 - We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
 - Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
 - Since $P \subseteq NP$, we have P = NP.
- $\Leftrightarrow \text{ Since } P = NP, \text{ and } X \in NP, \text{ we have a polynomial time algorithm for } X.$

Definition A problem Y is said to be NP-Hard if

• (Hardness) For any $X \in NP$, we have that $X \leq_P Y$.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

If X is NP-Complete

- Since we believe $P \neq NP$,
- and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for *X*.

If X is NP-Complete

- Since we believe $P \neq NP$,
- and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for *X*.

(This is proof by mob opinion — take with a grain of salt.)

Question

Are there any problems that are NP-Complete?

Answer Yes! Many, many problems are NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin) SAT is NP-Complete. Theorem (Cook-Levin) SAT is NP-Complete.

Need to show

- **SAT** is in NP.
- every NP problem X reduces to SAT.

Steve Cook won the Turing award for his theorem.

To prove X is NP-Complete, show

- Show that X is in NP.
- Give a polynomial-time reduction *from* a known NP-Complete problem such as **SAT** to X

To prove X is NP-Complete, show

- Show that X is in NP.
- Give a polynomial-time reduction *from* a known NP-Complete problem such as **SAT** to X

SAT $\leq_P X$ implies that every NP problem $Y \leq_P X$. Why?

To prove X is NP-Complete, show

- Show that X is in NP.
- Give a polynomial-time reduction *from* a known NP-Complete problem such as **SAT** to X

SAT $\leq_P X$ implies that every NP problem Y $\leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

3-SAT is NP-Complete

- 3-SAT is in NP
- **SAT** \leq_P **3-SAT** as we saw

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- SAT \leq_P 3-SAT
- 3-SAT \leq_P Independent Set
- · Independent Set \leq_P Vertex Cover
- · Independent Set \leq_P Clique
- 3-SAT \leq_P 3-Color
- \cdot 3-SAT \leq_P Hamiltonian Cycle

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- SAT \leq_P 3-SAT
- 3-SAT \leq_P Independent Set
- Independent Set \leq_P Vertex Cover
- Independent Set \leq_P Clique
- 3-SAT \leq_P 3-Color
- 3-SAT \leq_P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

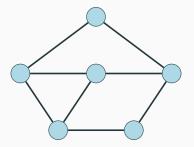
Reducing 3-SAT to Independent Set

Problem: Independent Set

Instance: A graph G, integer *k*. **Question:** Is there an independent set in G of size *k*?

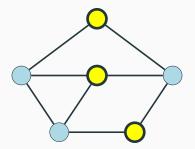
Problem: Independent Set

Instance: A graph G, integer *k*. **Question:** Is there an independent set in G of size *k*?



Problem: Independent Set

Instance: A graph G, integer *k*. **Question:** Is there an independent set in G of size *k*?



There are two ways to think about **3SAT**

- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and ¬x_i

We will take the second view of **3SAT** to construct the reduction.

- \cdot G_{φ} will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5- Take k to be the number of clauses

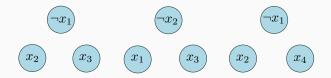


Figure 1: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- \cdot G_{φ} will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5- Take k to be the number of clauses

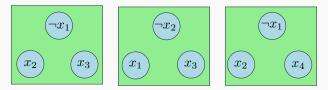


Figure 1: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- \cdot G_{φ} will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5- Take k to be the number of clauses

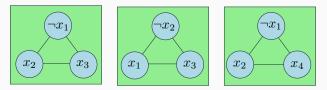


Figure 1: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- \cdot G_{φ} will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5- Take k to be the number of clauses

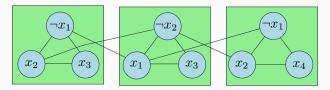


Figure 1: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- \cdot G_{φ} will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5- Take k to be the number of clauses

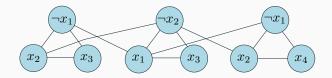


Figure 1: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

Lemma

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- $\Rightarrow~$ Let a be the truth assignment satisfying φ
 - 2- Pick one of the vertices, corresponding to true literals under *a*, from each triangle. This is an independent set of the appropriate size. Why?

Lemma

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

 $\leftarrow \text{ Let S be an independent set of size } k$

- S must contain *exactly* one vertex from each clause triangle
- S cannot contain vertices labeled by conflicting literals
- Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause