CS/ECE 374: Algorithms & Models of Computation

Midterm 2 review

Lecture 22

Part I

Recursion: Divide and Conquer

- Divide and Conquer: Problem reduced to multiple independent sub-problems.
 - Examples: Binary search, Merge sort, quick sort, multiplication, median selection.
 - Each sub-problem is a fraction smaller.

Discard half every time

- Discard half every time
- 2 Recurrence tree

(UIUC)

- Discard half every time
- 2 Recurrence tree
- **3** Which condition to check?

Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n] containing distinct integers. Describe a fast algorithm to find the median (meaning the *n*th smallest element) of the union $A \cup B$. For example, given the input

 $A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20] \quad A < 4 v + v$ -element $B[1..8] = [2, 4, 5, 8, 17, 19, 21, 23] \xrightarrow{A_1 < m \in J_{10}}$ $< A_{2}$ your algorithm should return the integer 9. $A_1 \leq A_2 < B_7$ A, B, $\leq B_{2}$ Az < By

Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n] containing distinct integers. Describe a fast algorithm to find the median (meaning the *n*th smallest element) of the union $A \cup B$. For example, given the input

A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20]

B[1..8] = [2, 4, 5, 8, 17, 19, 21, 23]

your algorithm should return the integer 9.

Compare the two medians.

 $\frac{\text{MEDIAN}(A[1..n], B[1..n]):}{\text{if } n < 10^{100}}$ use brute force else if A[n/2] > B[n/2]return MEDIAN(A[1..n/2], B[n/2+1..n])else return MEDIAN(A[n/2+1..n], B[1..n/2])

```
\frac{\text{MEDIAN}(A[1..n], B[1..n]):}{\text{if } n < 10^{100}}
use brute force

else if A[n/2] > B[n/2]

return MEDIAN(A[1..n/2], B[n/2+1..n])

else

return MEDIAN(A[n/2+1..n], B[1..n/2])
```

Because we discard the same number of elements from each array, the median of the remaining subarrays is the median of the original $A \cup B$.

Divide into two halves. Together takes O(n) time.

Sorting

- Divide into two halves. Together takes O(n) time.
- 2 Recurrence tree

Sorting

- Divide into two halves. Together takes O(n) time.
- 2 Recurrence tree
- T(n): time for merge sort to sort an n element array

$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + cn$

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= 10ⁿx_Ly_L + 10^{n/2}(x_Ly_R + x_Ry_L) + x_Ry_R

Gauss trick: $x_Ly_R + x_Ry_L = (x_L + x_R)(y_L + y_R) - x_Ly_L - x_Ry_R$

$$\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$$

Gauss trick: $x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$

Recursively compute only $x_L y_L, x_R y_R, (x_L + x_R)(y_L + y_R)$.

$$\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$$

Gauss trick: $x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

which means

(UIUC)

$$\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$$

Gauss trick: $x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

T(n) = 3T(n/2) + O(n) T(1) = O(1)

which means $T(n) = O(n^{\log_2 3}) = O(n^{1.585})$

Recursion tree analysis

(UIUC)

April 8, 2021 9 / 54

CS/ECE 374

Selecting in Unsorted Lists

One-armed Quick-sort

Selecting in Unsorted Lists

One-armed Quick-sort

With a good pivot (median of the medians)

 $T(n) \leq T(\lceil n/5 \rceil) + T(\lceil 7n/10 \rceil) + O(n)$

and

$$T(n) = O(1) \qquad n < 10$$

Recursion tree analysis

Part II

Dynamic programming

- Divide and Conquer: Problem reduced to multiple independent sub-problems.
 - Examples: Merge sort, quick sort, multiplication, median selection.
 - Each sub-problem is a fraction smaller.

Divide and Conquer: Problem reduced to multiple independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median selection.

Each sub-problem is a fraction smaller.

Backtracking: A sequence of decision problems. Recursion tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to n-1.

Divide and Conquer: Problem reduced to multiple independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median selection.

Each sub-problem is a fraction smaller.

Backtracking: A sequence of decision problems. Recursion tries all possibilities at each step. Each subproblem is only a constant smaller, e.g. from n to

n - 1.

Openation Openation State Structure Structu

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Recursion!

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Recursion!

Text segmentation: All possibilities for next word

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Recursion!

Text segmentation: All possibilities for next word

LIS: Two possibilities: Include the current number or not

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Recursion!

Text segmentation: All possibilities for next word

LIS: Two possibilities: Include the current number or not

Edit distance: Three possibilities: align the two letters, or each align with a gap

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Recursion!

Text segmentation: All possibilities for next word

LIS: Two possibilities: Include the current number or not

Edit distance: Three possibilities: align the two letters, or each align with a gap

Max-Weight Independent Set in Trees: Two possibilities: Include the root or not

How to design DP algorithms

- Find a "smart" recursion (The hard part)
 - Formulate the sub-problem
 - so that the number of distinct subproblems is small; polynomial in the original problem size.

How to design DP algorithms

Find a "smart" recursion (The hard part)

- Formulate the sub-problem
- so that the number of distinct subproblems is small; polynomial in the original problem size.

2 Memoization

- Identify distinct subproblems
- Ochoose a memoization data structure
- 3 Identify dependencies and find a good evaluation order
- An iterative algorithm replacing recursive calls with array lookups
- **5** Further optimize space

Which data structure?

- Text segmentation, suffix, 1-D array
- Longest increasing subsequence, suffix+index, 2-D array
- Edit distance, two prefixes, 2-D array
- Max-Weight Independent Set in Trees, tree

Part III

Graphs

Path and cycle

A path is a sequence of *distinct* vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k - 1$. The length of the path is k - 1 (the number of edges in the path) and the path is from v_1 to v_k . Note: a single vertex u is a path of length 0.

Path and cycle

A path is a sequence of *distinct* vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k - 1$. The length of the path is k - 1 (the number of edges in the path) and the path is from v_1 to v_k . Note: a single vertex u is a path of length 0.

A cycle is a sequence of *distinct* vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k - 1$ and $\{v_1, v_k\} \in E$. Single vertex not a cycle according to this definition.
Connectivity on Undirected Graphs

Given a graph G = (V, E):

A vertex \boldsymbol{u} is connected to \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v} .

Connectivity on Undirected Graphs

Given a graph G = (V, E):

A vertex \boldsymbol{u} is connected to \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v} .

The connected component of u, con(u), is the set of all vertices connected to u.

Directed Connectivity

Given a graph G = (V, E):

A vertex \boldsymbol{u} can reach \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v} .

Directed Connectivity

Given a graph G = (V, E):

A vertex \boldsymbol{u} can reach \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v} .

Let rch(u) be the set of all vertices reachable from u.

Asymmetricity: *D* can reach *B* but *B* cannot reach *D*

(UIUC)

20

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

Define relation C where uCv if u is (strongly) connected to v.

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

Define relation C where uCv if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

Define relation C where uCv if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C: strong connected components of G. They partition the vertices of G. SCC(u): strongly connected component containing u.

21

Structure of a Directed Graph

Graph of SCCs G^{SCC}

 $\mathsf{Graph}\ \mathbf{G}$

Reminder

 $G^{\rm SCC}$ is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proposition

A directed graph G can be topologically ordered iff it is a DAG.

Topological Ordering/Sorting

Graph G

Definition

A topological ordering/topological sorting of G = (V, E) is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

(UIUC)

DAGs and Topological Sort

What does it mean?

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza \rightarrow eat the pizza, have a Coke.

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza \rightarrow eat the pizza, have a Coke. Case 2: Circular dependence.

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza \rightarrow eat the pizza, have a Coke. Case 2: Circular dependence.

Application: Given pairwise ranking, find an overall ranking that satisfies all pairwise ranking.

(UIUC)

Part IV

Graph Search

Basic Search

Given G = (V, E) and vertex $u \in V$. Let n = |V|.

```
Explore(G, u):
    array Visited[1...n]
    Initialize: Set Visited[i] = FALSE for 1 \le i \le n
    List: ToExplore, S
    Add u to ToExplore and to S, Visited[u] = TRUE
    while (ToExplore is non-empty) do
        Remove node x from ToExplore
        for each edge (x, y) in Adj(x) do
            if (Visited[y] == FALSE)
                Visited[y] = TRUE
                Add y to ToExplore
                Add y to S
    Output S
```

Running time: O(n+m)

Properties of Basic Search

Proposition

On an undirected graph, Explore(G, u) terminates with S = con(u).

Proposition

On a directed graph, Explore(G, u) terminates with S = rch(u).

Properties of Basic Search

DFS and BFS are special case of BasicSearch.

- Depth First Search (DFS): use stack data structure to implement the list *ToExplore*
- Breadth First Search (BFS): use queue data structure to implementing the list *ToExplore*

Spanning tree

A depth-first and breadth-first spanning tree.

• Given G and u, compute all v that can reach u, that is all v such that $u \in rch(v)$.

Definition (Reverse graph.)

Given G = (V, E), G^{rev} is the graph with edge directions reversed $G^{rev} = (V, E')$ where $E' = \{(y, x) \mid (x, y) \in E\}$

• Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$.

Definition (Reverse graph.)

Given G = (V, E), G^{rev} is the graph with edge directions reversed $G^{rev} = (V, E')$ where $E' = \{(y, x) \mid (x, y) \in E\}$

Compute rch(u) in G^{rev} !

• Running time: O(n + m) to obtain G^{rev} from G and O(n + m) time to compute rch(u) via Basic Search.

 $SCC(G, u) = \{v \mid u \text{ is strongly connected to } v\}$

$SCC(G, u) = \{v \mid u \text{ is strongly connected to } v\}$

• Find the strongly connected component containing node u. That is, compute SCC(G, u).

$SCC(G, u) = \{v \mid u \text{ is strongly connected to } v\}$

• Find the strongly connected component containing node u. That is, compute SCC(G, u).

 $SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u)$

$SCC(G, u) = \{v \mid u \text{ is strongly connected to } v\}$

• Find the strongly connected component containing node u. That is, compute SCC(G, u).

$SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u)$

Hence, SCC(G, u) can be computed with Explore(G, u) and $Explore(G^{rev}, u)$. Total O(n + m) time.

• Is *G* strongly connected?

• Is **G** strongly connected?

Pick arbitrary vertex u. Check if SCC(G, u) = V.

DFS with Visit Times

Keep track of when nodes are visited.

```
DFS(G)
for all u \in V(G) do
    Mark u as unvisited
T is set to Ø
time = 0
while \existsunvisited u do
    DFS(u)
Output T
```

```
DFS(u)
```

```
Mark u as visited
pre(u) = ++time
for each uv in Out(u) do
    if v is not marked then
        add edge uv to T
        DFS(v)
post(u) = ++time
```

An Edge in DAG

Proposition

If G is a DAG and post(u) < post(v), then (u, v) is not in G. i.e., for all edges (u, v) in a DAG, post(u) > post(v).

Reverse post-order is topological order

Sort SCCs

The SCCs are topologically sorted by arranging them in decreasing order of their highest post number.

Graph of SCCs G^{SCC}

Graph G

DFS post

Linear Time Algorithm

...for computing the strong connected components in ${\bf G}$

```
do DFS(G<sup>rev</sup>) and output vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do
    if u is not visited then
        DFS(u)
        Let S_u be the nodes reached by u
        Output S_u as a strong connected component
        Remove S_u from G
```

Theorem

Algorithm runs in time O(m + n) and correctly outputs all the SCCs of **G**.

Using DAG and SCC

A node u is good if it can reach every node in V. Describe a linear-time algorithm to find if there is a good node in G.

Using DAG and SCC

A node u is good if it can reach every node in V. Describe a linear-time algorithm to find if there is a good node in G.

First consider a DAG.

$$DFS \rightarrow S \rightarrow \nu_1 \rightarrow \cdots \nu_n$$

$$S \rightarrow \nu_1 \rightarrow \nu_n$$

Using DAG and SCC

A node u is good if it can reach every node in V. Describe a linear-time algorithm to find if there is a good node in G.

- First consider a DAG.
- For any directed graph, construct the meta-graph G^{SCC}, which is a DAG.

Using DAG and SCC

A node u is good if it can reach every node in V. Describe a linear-time algorithm to find if there is a good node in G.

- First consider a DAG.
- For any directed graph, construct the meta-graph G^{SCC}, which is a DAG.
- The good node, if exists, has to be in the source SCC.

 \mathcal{N}

Part V

Shortest Path in Graphs

Breadth First Search (BFS)

Overview

- BFS is obtained from BasicSearch by processing edges using a data structure called a queue.
- It processes the vertices in the graph in the order of their shortest distance from the vertex s (the start vertex).

BFS finds shortest distance starting from s on unweighted graphs.

Non-negative edge length: Dijkstra

Dijkstra's Algorithm using Priority Queues

```
Q \leftarrow makePQ()
insert(Q, (s, 0))
for each node u \neq s do
     insert(Q, (u, \infty))
     (* Invariant: X contains the i-1 closest nodes to s *)
     (* Invariant: d'(s, u) is shortest path distance from s to u
      using only X as intermediate nodes*)
X \leftarrow \emptyset
for i = 1 to |V| do
     (v, \operatorname{dist}(s, v)) = extractMin(Q)
     X = X \cup \{v\}
     for each u in Adj(v) do
          decreaseKey(Q, (u, \min(\operatorname{dist}(s, u), \operatorname{dist}(s, v) + \ell(v, u)))).
```

Running time: $O((m + n) \log n)$ with heaps and $O(m + n \log n)$ with advanced priority queues.

Compute the shortest path from s to t on a graph with exactly one negative edge $x \rightarrow y$.

Compute the shortest path from s to t on a graph with exactly one negative edge $x \rightarrow y$.

Detect if there is a negative length cycle.

Compute the shortest path from s to t on a graph with exactly one negative edge $x \rightarrow y$.

- Detect if there is a negative length cycle.
 - **1** Remove the negative edge: G'.

Compute the shortest path from s to t on a graph with exactly one negative edge $x \rightarrow y$.

- O Detect if there is a negative length cycle.
 - Remove the negative edge: G'.
 - **2** Compute the shortest distance $y \to x$ on G'.

Compute the shortest path from s to t on a graph with exactly one negative edge $x \rightarrow y$.

- Detect if there is a negative length cycle.
 - Remove the negative edge: G'.
 - **2** Compute the shortest distance $y \to x$ on G'.
- Suppose no negative length cycle, find shortest distance by

$$dist(s,t) = \min \left\{ \begin{array}{c} dist'(s,t) \\ dist'(s,u) + w(u \rightarrow v) + dist'(v,t) \end{array} \right\}$$

 ~ 1

44

Negative-length edges: Bellman-Ford Algorithm

```
for each \boldsymbol{u} \in \boldsymbol{V} do
    d(u) \leftarrow \infty
d(s) \leftarrow 0
for k = 1 to n - 1 do
            for each \mathbf{v} \in \mathbf{V} do
                  for each edge (u, v) \in In(v) do
                         d(v) = \min\{d(v), d(u) + \ell(u, v)\}
for each v \in V do
            dist(s, v) \leftarrow d(v)
```

Running time: **O(mn)**

Bellman-Ford: Negative Cycle Detection

Check if distances change in iteration *n*.

```
for each \mu \in V do
    d(u) \leftarrow \infty
d(s) \leftarrow 0
for k = 1 to n - 1 do
           for each \mathbf{v} \in \mathbf{V} do
                for each edge (u, v) \in In(v) do
                      d(v) = \min\{d(v), d(u) + \ell(u, v)\}
(* One more iteration to check if distances change *)
for each \mathbf{v} \in \mathbf{V} do
     for each edge (u, v) \in In(v) do
           if (d(v) > d(u) + \ell(u, v))
                Output ''Negative Cycle''
for each \mathbf{v} \in \mathbf{V} do
           dist(s, v) \leftarrow d(v)
```

Algorithm for DAGs

Observation:

- shortest path from s to v_i cannot use any node from v_{i+1}, \ldots, v_n
- 2 can find shortest paths in topological sort order.

Algorithm for DAGs

Let $s = v_1, v_2, v_{i+1}, \ldots, v_n$ be a topological sort of G

Running time: O(m + n) time algorithm! Works for negative edge lengths and hence can find *longest* paths in a DAG.

Part VI

Graph reduction and tricks

Split nodes

original graph with vertex weights

Add nodes

Given a graph G = (V, E) and two disjoint sets of nodes $A, B \subset V$, is there a path from some node in A to some node in B?

Add nodes

Given a graph G = (V, E) and two disjoint sets of nodes $A, B \subset V$, is there a path from some node in A to some node in B?

Connect s to each node in A, and t to each node in B. This becomes the basic s - t reachability problem.

Q: How to compute the shortest distance between s and t with at most k hops?

Q: How to compute the shortest distance between s and t with at most k hops?

Ans: We arrived at Bellman-Ford by considering the shortest distance with at most k hops. \downarrow (\mathcal{N} , \triangleleft)

Q: How to compute the shortest distance between s and t with at most k hops?

Ans: We arrived at Bellman-Ford by considering the shortest distance with at most \boldsymbol{k} hops.

Q: A subset of risky nodes $E' \subset E$. Find shortest path from s with at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which $u \to v$ edge to include for each v. $d(S, \mathcal{N}) \to \mathcal{V} + \mathcal{W}(\mathcal{N}, \mathcal{N})$ $d(S, \mathcal{N}) \to \mathcal{V} + \mathcal{W}(\mathcal{N}, \mathcal{N})$ $d(S, \mathcal{N}) \to \mathcal{V}$

Q: A subset of risky nodes $E' \subset E$. Find shortest path from s with at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which $u \rightarrow v$ edge to include for each v. Remove the risky nodes to form G'.

Q: A subset of risky nodes $E' \subset E$. Find shortest path from s with at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which $u \rightarrow v$ edge to include for each v. Remove the risky nodes to form G'.

$$\begin{array}{c} \left(V, i, j \right) = \min \left\{ \begin{array}{c} d(v, i-1, j) \\ d(v, i, j-1) \end{array} \right. \\ \left. \begin{array}{c} d(v, i, j-1) \end{array} \right. \\ \min_{(u,v) \in E'} d(u, i \not h, j-1) + \ell(u,v) \\ \min_{(u,v) \in E-E'} d(u, i-1, j) + \ell(u,v) \end{array} \right\} \quad \mathcal{U} \rightarrow \mathcal{V} \\ \left. \begin{array}{c} \mathcal{U} \rightarrow \mathcal{V} \end{array} \right. \\ \left. \begin{array}{c} \mathcal{U} \rightarrow \mathcal{U} \end{array} \right. \\ \left. \begin{array}{c} \mathcal{U} \rightarrow \mathcal{U} \end{array} \right. \\ \left. \begin{array}{c} \mathcal{U} \rightarrow \mathcal{U} \end{array} \right.$$
 \\ \left. \begin{array}{c} \mathcal{U} \rightarrow \mathcal{U} \end{array} \right. \\ \left. \begin{array}{c} \mathcal{U} \rightarrow \mathcal{U} \end{array} \right.

Q: A subset of risky nodes $E' \subset E$. Find shortest path from s with at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which $u \rightarrow v$ edge to include for each v. Remove the risky nodes to form G'.

$$d(v, i, j) = \min \begin{cases} d(v, i-1, j) \\ d(v, i, j-1) \\ \min_{(u,v) \in E'} d(u, i-1, j-1) + \ell(u, v) \\ \min_{(u,v) \in E-E'} d(u, i-1, j) + \ell(u, v) \end{cases}$$

Base case: Use Bellman-Ford to compute d(v, i, 0), shortest distance on G' with no risky edge. Running time: O(mnk).

(UIUC)

Q: A subset of risky nodes $E' \subset E$. Find shortest path from s with at most h risky edges. TEMOVE risky edges. TEMOVE risky edges. TEMOVE risky edges.

- Create h + 1 copies of $G': G_0, G_1, \ldots, G_h$
- 2 Include a directed edge from vertex u in G_i to vertex v in G_{i+1} if (u, v) is a risky edge in G.

- Create h + 1 copies of $G': G_0, G_1, \ldots, G_h$
- 2 Include a directed edge from vertex u in G_i to vertex v in G_{i+1} if (u, v) is a risky edge in G.
- The idea is that the only way a path can move from one copy of G' to the next is by traversing a risky edge.

- Create h + 1 copies of $G': G_0, G_1, \ldots, G_h$
- 2 Include a directed edge from vertex u in G_i to vertex v in G_{i+1} if (u, v) is a risky edge in G.
- The idea is that the only way a path can move from one copy of G' to the next is by traversing a risky edge.
- Run Dijkstra's algorithm on this new graph, from vertex s₀, the copy of s in G₀, to v_0, \ldots, v_h be the corresponding vertices in copies G₀, ..., G_h.

- Create h + 1 copies of $G': G_0, G_1, \ldots, G_h$
- 2 Include a directed edge from vertex u in G_i to vertex v in G_{i+1} if (u, v) is a risky edge in G.
- The idea is that the only way a path can move from one copy of G' to the next is by traversing a risky edge.
- Run Dijkstra's algorithm on this new graph, from vertex s_0 , the copy of s in G_0 , to v_0, \ldots, v_h be the corresponding vertices in copies G_0, \ldots, G_h .
- [s] d(s₀, v_i) is just the shortest path from s to v in the original graph G that uses exactly i risky edges.

- Create h + 1 copies of $G': G_0, G_1, \ldots, G_h$
- 2 Include a directed edge from vertex u in G_i to vertex v in G_{i+1} if (u, v) is a risky edge in G.
- The idea is that the only way a path can move from one copy of G' to the next is by traversing a risky edge.
- Run Dijkstra's algorithm on this new graph, from vertex s_0 , the copy of s in G_0 , to v_0, \ldots, v_h be the corresponding vertices in copies G_0, \ldots, G_h .
- d(s₀, v_i) is just the shortest path from s to v in the original graph G that uses exactly i risky edges.
- the distance from s to v in the original graph that uses at most h risky edges is just $\min_{0 \le i \le h} d(s_0, v_i)$.

Q: A subset of risky nodes $E' \subset E$. Find shortest path from *s* with at most *h* risky edges.

- Create h + 1 copies of $G': G_0, G_1, \ldots, G_h$
- 2 Include a directed edge from vertex u in G_i to vertex v in G_{i+1} if (u, v) is a risky edge in G.
- The idea is that the only way a path can move from one copy of G' to the next is by traversing a risky edge.
- Run Dijkstra's algorithm on this new graph, from vertex s_0 , the copy of s in G_0 , to v_0, \ldots, v_h be the corresponding vertices in copies G_0, \ldots, G_h .
- $d(s_0, v_i)$ is just the shortest path from s to v in the original graph G that uses exactly i risky edges.
- the distance from s to v in the original graph that uses at most h risky edges is just $\min_{0 \le i \le h} d(s_0, v_i)$.

Running time: $O(mk + nk \log(nk))$

(UIUC)

54