CS/ECE 374: Algorithms \& Models of
 Computation

Midterm 2 review

Lecture 22

Part I

Recursion: Divide and Conquer

Recursion types

(1) Divide and Conquer: Problem reduced to multiple independent sub-problems.
Examples: Binary search, Merge sort, quick sort, multiplication, median selection.
Each sub-problem is a fraction smaller.

Binary Search

(1) Discard half every time

Binary Search
(1) Discard half every time
(2) Recurrence tree

$O(\log n)$

Binary Search

(1) Discard half every time
(2) Recurrence tree
(3) Which condition to check?

Binary Search

Suppose you are given two sorted arrays $A[1$.. n] and $B[1 . . n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the \boldsymbol{n} th smallest element) of the union $\boldsymbol{A} \cup B$. For example, given the input

$$
\begin{aligned}
& \qquad \begin{array}{l}
A[1 . .8]=[0,1,6,9,12,13,18,20] \quad A_{1}<4 \text { of } \\
\text { element }
\end{array} \\
& B[1 . .8]=[2,4,5,8,17,19,21,23] \frac{A_{1}<\text { medic }}{\leqslant A_{3}} \\
& \text { your algorithm should return the integer } 9 .
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \quad B_{1} \\
& A_{2}<B_{2} \\
& A_{3} B_{3}
\end{aligned}
$$

$$
A_{1} \leqslant A_{2}<B_{2}
$$

$$
\leqslant B_{3}
$$

Binary Search

Suppose you are given two sorted arrays $A[1 . . n]$ and $B[1 . . n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the \boldsymbol{n} th smallest element) of the union $\boldsymbol{A} \cup B$. For example, given the input

$$
\begin{aligned}
& A[1 . .8]=[0,1,6,9,12,13,18,20] \\
& B[1 . .8]=[2,4,5,8,17,19,21,23]
\end{aligned}
$$

your algorithm should return the integer 9 .
Compare the two medians.

Binary Search

$$
\begin{aligned}
& \frac{\operatorname{MEDIAN}(A[1 . . n], B[1 . . n]):}{\text { if } n<10^{100}} \quad \\
& \quad \text { use brute force } \\
& \text { else if } A[n / 2]>B[n / 2] \\
& \quad \text { return } \operatorname{MEDIAN}(A[1 . . n / 2], B[n / 2+1 \ldots n]) \\
& \text { else } \quad \\
& \quad \text { return } \operatorname{MEDIAN}(A[n / 2+1 . . n], B[1 . . n / 2])
\end{aligned}
$$

Binary Search

$$
\begin{aligned}
& \frac{\operatorname{MEDIAN}(A[1 . . n], B[1 . . n]):}{\text { if } n<10^{100}} \\
& \quad \text { use brute force } \\
& \text { else if } A[n / 2]>B[n / 2] \\
& \quad \text { return } \operatorname{MEDIAN}(A[1 . . n / 2], B[n / 2+1 . . n]) \\
& \text { else } \\
& \quad \text { return } \operatorname{MEDIAN}(A[n / 2+1 . . n], B[1 . . n / 2]) \\
& \hline
\end{aligned}
$$

Because we discard the same number of elements from each array, the median of the remaining subarrays is the median of the original $A \cup B$.

Sorting

(1) Divide into two halves. Together takes $\mathrm{O}(\mathrm{n})$ time.

Sorting
(1) Divide into two halves. Together takes $\mathrm{O}(\mathrm{n})$ time.
(2) Recurrence tree
$T(n)$: time for merge sort to sort an n element array

$$
\begin{array}{ccc}
n^{\prime} & n & O(n) \\
\frac{n^{\prime}}{2} \frac{n}{2} & \log n \frac{n^{\prime}}{2} \frac{n}{2} & O(n \log n) \\
\frac{n}{4} \frac{n}{4} \frac{n}{4} \frac{n}{4} & \frac{n^{\prime}}{4} \frac{n}{4} \frac{n}{4} \frac{n}{4}
\end{array}
$$

Sorting

(1) Divide into two halves. Together takes $\mathrm{O}(\mathrm{n})$ time.
(2) Recurrence tree
$\boldsymbol{T}(\boldsymbol{n})$: time for merge sort to sort an \boldsymbol{n} element array

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c n
$$

Karatsuba's Algorithm

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$

Karatsuba's Algorithm

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$
Recursively compute only $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$.

Karatsuba's Algorithm

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$
Recursively compute only $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$.

Time Analysis

Running time is given by

$$
T(n)=3 T(n / 2)+O(n) \quad T(1)=O(1)
$$

which means

Karatsuba's Algorithm

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$
Recursively compute only $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$.

Time Analysis

Running time is given by

$$
T(n)=3 T(n / 2)+O(n) \quad T(1)=O(1)
$$

which means $T(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)$

Recursion tree analysis

$$
\begin{aligned}
& \frac{n}{2} \frac{n}{4} \mathbb{1} \\
& O\left(\left(\frac{3}{2}\right)^{\log n} n\right) \\
& \frac{3^{\log n}}{n} n=3^{\log n}=2^{(\log 3)(\log n)} \\
& =n^{\log 3}
\end{aligned}
$$

Selecting in Unsorted Lists

(1) One-armed Quick-sort

Selecting in Unsorted Lists

(1) One-armed Quick-sort
(2) With a good pivot (median of the medians)

$$
T(n) \leq T(\lceil n / 5\rceil)+T(\lceil 7 n / 10\rceil)+O(n)
$$

and

$$
T(n)=O(1) \quad n<10
$$

Recursion tree analysis

$$
\begin{array}{ccc}
n & n & \\
\frac{n}{5} \frac{7 n}{10} & \frac{9}{10} n & \\
\frac{1}{25} \frac{1}{50} n \frac{7}{50} n \frac{49}{100} n & \left(\frac{9}{10}\right)^{2} n & 1-\frac{9}{10}=10 n \\
O(n)
\end{array}
$$

Part II

Dynamic programming

Recursion types

(1) Divide and Conquer: Problem reduced to multiple independent sub-problems.
Examples: Merge sort, quick sort, multiplication, median selection.

Each sub-problem is a fraction smaller.

Recursion types

(1) Divide and Conquer: Problem reduced to multiple independent sub-problems.
Examples: Merge sort, quick sort, multiplication, median selection.
Each sub-problem is a fraction smaller.
(2) Backtracking: A sequence of decision problems. Recursion tries all possibilities at each step.
Each subproblem is only a constant smaller, e.g. from \boldsymbol{n} to $\boldsymbol{n}-1$.

Recursion types

(1) Divide and Conquer: Problem reduced to multiple independent sub-problems.
Examples: Merge sort, quick sort, multiplication, median selection.
Each sub-problem is a fraction smaller.
(2) Backtracking: A sequence of decision problems. Recursion tries all possibilities at each step.
Each subproblem is only a constant smaller, e.g. from \boldsymbol{n} to $\boldsymbol{n}-1$.
(3) Dynamic Programming: Smart recursion with memoization

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Recursion!

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Recursion!

Text segmentation: All possibilities for next word

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Recursion!

Text segmentation: All possibilities for next word

LIS: Two possibilities: Include the current number or not

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Recursion!

Text segmentation: All possibilities for next word

LIS: Two possibilities: Include the current number or not
Edit distance: Three possibilities: align the two letters, or each align with a gap

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Recursion!

Text segmentation: All possibilities for next word

LIS: Two possibilities: Include the current number or not

Edit distance: Three possibilities: align the two letters, or each align with a gap

Max-Weight Independent Set in Trees: Two possibilities: Include the root or not

How to design DP algorithms

(1) Find a "smart" recursion (The hard part)
(1) Formulate the sub-problem
(2) so that the number of distinct subproblems is small; polynomial in the original problem size.

How to design DP algorithms

(1) Find a "smart" recursion (The hard part)
(1) Formulate the sub-problem
(2) so that the number of distinct subproblems is small; polynomial in the original problem size.
(2) Memoization
(1) Identify distinct subproblems
(2) Choose a memoization data structure
(3) Identify dependencies and find a good evaluation order
(1) An iterative algorithm replacing recursive calls with array lookups
(5) Further optimize space

Which data structure?

- Text segmentation, suffix, 1-D array
- Longest increasing subsequence, suffix+index, 2-D array
- Edit distance, two prefixes, 2-D array
- Max-Weight Independent Set in Trees, tree

Part III

Graphs

Path and cycle

A path is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ for $\mathbf{1} \leq i \leq k-1$. The length of the path is $k-1$ (the number of edges in the path) and the path is from $\boldsymbol{v}_{\boldsymbol{1}}$ to $\boldsymbol{v}_{\boldsymbol{k}}$. Note: a single vertex \boldsymbol{u} is a path of length $\mathbf{0}$.

Path and cycle

A path is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ for $\mathbf{1} \leq i \leq k-\mathbf{1}$. The length of the path is $k-\mathbf{1}$ (the number of edges in the path) and the path is from v_{1} to v_{k}. Note: a single vertex \boldsymbol{u} is a path of length $\mathbf{0}$.

A cycle is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ for $\mathbf{1} \leq i \leq k-\mathbf{1}$ and $\left\{v_{i}, v_{k}\right\} \in E$. Single vertex not a cycle according to this definition.

$$
\left\{V_{k}, V_{1}\right\}
$$

$m i n$

$$
\begin{array}{ll}
S_{N}^{\prime} N & d(s \rightarrow u)+w(u \rightarrow s) \\
N & d(s \rightarrow v)+w(v \rightarrow s)
\end{array}
$$

Connectivity on Undirected Graphs

Given a graph $G=(V, E)$:

A vertex \boldsymbol{u} is connected to \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v}.

Connectivity on Undirected Graphs

Given a graph $G=(V, E)$:

A vertex \boldsymbol{u} is connected to \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v}.
The connected component of $\boldsymbol{u}, \operatorname{con}(\boldsymbol{u})$, is the set of all vertices connected to \boldsymbol{u}.

Directed Connectivity

Given a graph $G=(V, E)$:

A vertex \boldsymbol{u} can reach \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v}.

Directed Connectivity

Given a graph $G=(V, E)$:

A vertex \boldsymbol{u} can reach \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v}.
Let $\mathbf{r c h}(\boldsymbol{u})$ be the set of all vertices reachable from \boldsymbol{u}.
Asymmetricity: D can reach B but B cannot reach D

Connectivity and Strong Connected Components

Definition

Given a directed graph $\boldsymbol{G}, \boldsymbol{u}$ is strongly connected to \boldsymbol{v} if \boldsymbol{u} can reach \boldsymbol{v} and \boldsymbol{v} can reach \boldsymbol{u}. In other words $\boldsymbol{v} \in \operatorname{rch}(u)$ and $\boldsymbol{u} \in \operatorname{rch}(v)$.

Connectivity and Strong Connected Components

Definition

Given a directed graph $\boldsymbol{G}, \boldsymbol{u}$ is strongly connected to \boldsymbol{v} if \boldsymbol{u} can reach \boldsymbol{v} and \boldsymbol{v} can reach \boldsymbol{u}. In other words $\boldsymbol{v} \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

Define relation C where $u C v$ if \boldsymbol{u} is (strongly) connected to \boldsymbol{v}.

Connectivity and Strong Connected Components

Definition

Given a directed graph $\boldsymbol{G}, \boldsymbol{u}$ is strongly connected to \boldsymbol{v} if \boldsymbol{u} can reach \boldsymbol{v} and \boldsymbol{v} can reach \boldsymbol{u}. In other words $\boldsymbol{v} \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

Define relation C where $\boldsymbol{u C v}$ if \boldsymbol{u} is (strongly) connected to \boldsymbol{v}.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Connectivity and Strong Connected Components

Definition

Given a directed graph $\boldsymbol{G}, \boldsymbol{u}$ is strongly connected to \boldsymbol{v} if \boldsymbol{u} can reach \boldsymbol{v} and \boldsymbol{v} can reach \boldsymbol{u}. In other words $\boldsymbol{v} \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

Define relation C where $\boldsymbol{u C v}$ if \boldsymbol{u} is (strongly) connected to \boldsymbol{v}.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C : strong connected components of G. They partition the vertices of G.
SCC(u): strongly connected component containing \boldsymbol{u}.

Structure of a Directed Graph

Graph G

Graph of SCCs G ${ }^{\text {SCC }}$

Reminder

$\mathrm{G}^{S C C}$ is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph $G^{S C C}$ is a DAG.

DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proposition

A directed graph G can be topologically ordered iff it is a DAG.

Topological Ordering/Sorting

Topological Ordering of G

Graph G

Definition

A topological ordering/topological sorting of $G=(V, E)$ is an ordering \prec on V such that if $(\boldsymbol{u}, \boldsymbol{v}) \in E$ then $\boldsymbol{u} \prec \boldsymbol{v}$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

DAGs and Topological Sort

What does it mean?

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza \rightarrow eat the pizza, have a Coke.

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza \rightarrow eat the pizza, have a Coke. Case 2: Circular dependence.

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza \rightarrow eat the pizza, have a Coke. Case 2: Circular dependence.

Application: Given pairwise ranking, find an overall ranking that satisfies all pairwise ranking.

Part IV

Graph Search

Basic Search

Given $G=(\boldsymbol{V}, \boldsymbol{E})$ and vertex $\boldsymbol{u} \in \boldsymbol{V}$. Let $\boldsymbol{n}=|\boldsymbol{V}|$.
Explore ($\boldsymbol{G}, \boldsymbol{u}$) :

```
array Visited[1..n]
Initialize: Set Visited[i]= FALSE for 1\leqi\leqn
```

List: ToExplore, S
Add \boldsymbol{u} to ToExplore and to S, Visited $[u]=$ TRUE
while (ToExplore is non-empty) do
Remove node x from ToExplore
for each edge (x, y) in $\operatorname{Adj}(x)$ do
if (Visited $[y]==$ FALSE $)$
Visited $[y]=$ TRUE
Add y to ToExplore
Add \boldsymbol{y} to \boldsymbol{S}

Output S
Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Properties of Basic Search

Proposition

On an undirected graph, $\operatorname{Explore}(G, u)$ terminates with $S=\operatorname{con}(u)$.

Proposition

On a directed graph, Explore (G, u) terminates with $S=r c h(u)$.

Properties of Basic Search

DFS and BFS are special case of BasicSearch.
(1) Depth First Search (DFS): use stack data structure to implement the list ToExplore
(2) Breadth First Search (BFS): use queue data structure to implementing the list ToExplore

Spanning tree

A depth-first and breadth-first spanning tree.

Algorithms via Basic Search-II

(1) Given \boldsymbol{G} and \boldsymbol{u}, compute all \boldsymbol{v} that can reach \boldsymbol{u}, that is all \boldsymbol{v} such that $u \in \operatorname{rch}(v)$.

Definition (Reverse graph.)

Given $G=(V, E), G^{r e v}$ is the graph with edge directions reversed $G^{\text {rev }}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$

Algorithms via Basic Search-II

(1) Given \boldsymbol{G} and \boldsymbol{u}, compute all \boldsymbol{v} that can reach \boldsymbol{u}, that is all \boldsymbol{v} such that $u \in \operatorname{rch}(v)$.

Definition (Reverse graph.)

Given $G=(V, E), G^{r e v}$ is the graph with edge directions reversed $G^{r e v}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$

Compute rch(u) in $G^{r e v}$!
(1) Running time: $O(n+m)$ to obtain $G^{\text {rev }}$ from G and $O(n+m)$ time to compute rch(u) via Basic Search.

Algorithms via Basic Search - III

$\operatorname{SCC}(\boldsymbol{G}, u)=\{v \mid \boldsymbol{u}$ is strongly connected to $v\}$

Algorithms via Basic Search - III

$\operatorname{SCC}(G, u)=\{v \mid u$ is strongly connected to $v\}$
(1) Find the strongly connected component containing node \boldsymbol{u}. That is, compute $\operatorname{SCC}(G, u)$.

Algorithms via Basic Search - III

$\operatorname{SCC}(G, u)=\{v \mid \boldsymbol{u}$ is strongly connected to $v\}$
(1) Find the strongly connected component containing node \boldsymbol{u}. That is, compute $\operatorname{SCC}(G, u)$.
$\operatorname{SCC}(G, u)=\operatorname{rch}(G, u) \cap \operatorname{rch}\left(G^{\operatorname{rev}}, u\right)$

Algorithms via Basic Search - III

$\operatorname{SCC}(G, u)=\{v \mid \boldsymbol{u}$ is strongly connected to $v\}$
(1) Find the strongly connected component containing node \boldsymbol{u}. That is, compute $\operatorname{SCC}(G, u)$.
$\operatorname{SCC}(G, u)=\operatorname{rch}(G, u) \cap \operatorname{rch}\left(G^{r e v}, u\right)$
Hence, $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$ can be computed with $\operatorname{Explore}(\mathbf{G}, \boldsymbol{u})$ and Explore $\left(G^{r e v}, u\right)$. Total $O(n+m)$ time.

Algorithms via Basic Search - IV

(1) Is G strongly connected?

Algorithms via Basic Search - IV

© Is G strongly connected?

Pick arbitrary vertex \boldsymbol{u}. Check if $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})=\boldsymbol{V}$.

DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)
for all $u \in V(G)$ do
Mark u as unvisited
\boldsymbol{T} is set to \emptyset
time $=0$
while ヨunvisited u do DFS(u)
Output T

DFS (\boldsymbol{u})

$$
\begin{aligned}
& \text { Mark } \boldsymbol{u} \text { as visited } \\
& \text { pre }(\boldsymbol{u})=++ \text { time } \\
& \text { for each } \boldsymbol{u v} \text { in Out }(\boldsymbol{u}) \text { do } \\
& \text { if } \boldsymbol{v} \text { is not marked then } \\
& \text { add edge } \boldsymbol{u v} \text { to } T \\
& \text { DFS(} \boldsymbol{v})
\end{aligned}
$$

$\operatorname{post}(u)=++$ time

An Edge in DAG

Proposition

If G is a DAG and $\operatorname{post}(u)<\operatorname{post}(v)$, then (u, v) is not in G. i.e., for all edges (u, v) in a DAG, post $(u)>\operatorname{post}(v)$.

$$
\begin{array}{lll}
\text { post } & > & > \\
u_{1} & u_{2} & u_{3}
\end{array}>u_{n}
$$

Reverse post-order is topological order

Sort SCCs

The SCCs are topologically sorted by arranging them in decreasing order of their highest post number.

Graph G

Graph of SCCs G^{SCC}

DFS post

Linear Time Algorithm

...for computing the strong connected components in G

do DFS ($\left.\boldsymbol{G}^{\mathrm{rev}}\right)$ and output vertices in decreasing post order. Mark all nodes as unvisited for each \boldsymbol{u} in the computed order do
if \boldsymbol{u} is not visited then
DFS(u)
Let S_{u} be the nodes reached by u
Output S_{u} as a strong connected component
Remove S_{u} from G

Theorem

Algorithm runs in time $O(m+n)$ and correctly outputs all the SCCs of G.

Using DAG and SCC

A node \boldsymbol{u} is good if it can reach every node in \boldsymbol{V}. Describe a linear-time algorithm to find if there is a good node in G.

Using DAG and SCC

A node \boldsymbol{u} is good if it can reach every node in \boldsymbol{V}. Describe a linear-time algorithm to find if there is a good node in G.
(1) First consider a DAG.

$$
s \quad v_{1} \quad v_{n}
$$

Using DAG and SCC

A node \boldsymbol{u} is good if it can reach every node in \boldsymbol{V}. Describe a linear-time algorithm to find if there is a good node in G.
(1) First consider a DAG.
(2) For any directed graph, construct the meta-graph $G^{S C C}$, which is a DAG.

Using DAG and SCC

A node \boldsymbol{u} is good if it can reach every node in \boldsymbol{V}. Describe a linear-time algorithm to find if there is a good node in G.
(1) First consider a DAG.
(2) For any directed graph, construct the meta-graph $G^{S C C}$, which is a DAG.
(3) The good node, if exists, has to be in the source SCC. u

Part V

Shortest Path in Graphs

Breadth First Search (BFS)

Overview

(A) BFS is obtained from BasicSearch by processing edges using a data structure called a queue.
(B) It processes the vertices in the graph in the order of their shortest distance from the vertex s (the start vertex).

BFS finds shortest distance starting from s on unweighted graphs.

Non-negative edge length: Dijkstra

Initialize for each node v, $\operatorname{dist}(s, v)=\infty$ Initialize $X=\{s\}$,
for $i=2$ to $|V|$ do
(* Invariant: \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s} *)
Among nodes in $\boldsymbol{V}-\boldsymbol{X}$, find the node \boldsymbol{v} that is the i 'th closest to s
Update $\operatorname{dist}(s, v)$

$$
X=X \cup\{v\}
$$

Dijkstra's Algorithm using Priority Queues

$Q \leftarrow$ makePQ()
insert ($Q,(s, 0)$)
for each node $u \neq s$ do
insert ($\boldsymbol{Q},(\boldsymbol{u}, \infty)$)
(* Invariant: \boldsymbol{X} contains the $\boldsymbol{i} \mathbf{- 1}$ closest nodes to \boldsymbol{s} *)
(* Invariant: $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ is shortest path distance from \boldsymbol{s} to \boldsymbol{u} using only \boldsymbol{X} as intermediate nodes*)
$X \leftarrow \emptyset$
for $\boldsymbol{i}=1$ to $|V|$ do
$(v, \operatorname{dist}(s, v))=\operatorname{extractMin}(Q)$
$X=X \cup\{v\}$
for each u in $\operatorname{Adj}(v)$ do $\operatorname{decreaseKey}(\boldsymbol{Q},(\boldsymbol{u}, \boldsymbol{\operatorname { m i n }}(\operatorname{dist}(\boldsymbol{s}, \boldsymbol{u}), \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})+\ell(\boldsymbol{v}, u))))$.
Running time: $O((m+n) \log n)$ with heaps and $O(m+n \log n)$ with advanced priority queues.

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one negative edge $\boldsymbol{x} \rightarrow \boldsymbol{y}$.

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one negative edge $x \rightarrow y$.
(1) Detect if there is a negative length cycle.

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one negative edge $x \rightarrow y$.
(1) Detect if there is a negative length cycle.
(1) Remove the negative edge: \boldsymbol{G}^{\prime}.

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one negative edge $x \rightarrow y$.
(1) Detect if there is a negative length cycle.
(1) Remove the negative edge: \boldsymbol{G}^{\prime}.
(2) Compute the shortest distance $\boldsymbol{y} \rightarrow \boldsymbol{x}$ on \boldsymbol{G}^{\prime}.

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one negative edge $x \rightarrow y$.
(1) Detect if there is a negative length cycle.
(1) Remove the negative edge: \boldsymbol{G}^{\prime}.
(2) Compute the shortest distance $\boldsymbol{y} \rightarrow \boldsymbol{x}$ on \boldsymbol{G}^{\prime}.
(2) Suppose no negative length cycle, find shortest distance by

$$
\operatorname{dist}(s, t)=\min \left\{\begin{array}{c}
\operatorname{dist}^{\prime}(s, t) \\
\operatorname{dist}^{\prime}(s, u)+w(u \rightarrow v)+\operatorname{dist}^{\prime}(v, t)
\end{array}\right\}
$$

Negative-length edges: Bellman-Ford Algorithm

$$
\begin{aligned}
& \text { for each } u \in V \text { do } \\
& d(u) \leftarrow \infty \\
& d(s) \leftarrow 0 \\
& \text { for } k=1 \text { to } n-1 \text { do } \\
& \quad \text { for each } v \in V \text { do } \\
& \quad \text { for each edge }(u, v) \in \ln (v) \text { do } \\
& \qquad d(v)=\min \{d(v), d(u)+\ell(u, v)\}
\end{aligned}
$$

for each $v \in \boldsymbol{V}$ do

$$
\operatorname{dist}(s, v) \leftarrow d(v)
$$

Running time: $O(\mathbf{m n})$

Bellman-Ford: Negative Cycle Detection

Check if distances change in iteration \boldsymbol{n}.

```
for each \(\boldsymbol{u} \in \boldsymbol{V}\) do
    \(d(u) \leftarrow \infty\)
\(d(s) \leftarrow 0\)
for \(k=1\) to \(n-\mathbf{1}\) do
    for each \(v \in V\) do
        for each edge \((u, v) \in \operatorname{In}(v)\) do
                        \(d(v)=\min \{d(v), d(u)+\ell(u, v)\}\)
(* One more iteration to check if distances change *)
for each \(\boldsymbol{v} \in \boldsymbol{V}\) do
    for each edge \((u, v) \in \operatorname{In}(v)\) do
    if \((d(v)>d(u)+\ell(u, v))\)
Output ' 'Negative Cycle')
for each \(\boldsymbol{v} \in \boldsymbol{V}\) do
\[
\operatorname{dist}(s, v) \leftarrow d(v)
\]
```


Algorithm for DAGs

Observation:

(1) shortest path from s to v_{i} cannot use any node from

$$
v_{i+1}, \ldots, v_{n}
$$

(2) can find shortest paths in topological sort order.

Algorithm for DAGs

Let $s=v_{1}, v_{2}, v_{i+1}, \ldots, v_{n}$ be a topological sort of G
for $\boldsymbol{i}=1$ to n do
$d(s, s)=0 \quad d\left(s, v_{i}\right)=\infty$
for $i=1$ to $n-1$ do for each edge $\left(v_{i}, v_{j}\right)$ in $\operatorname{Out}\left(v_{i}\right)$ do $d\left(s, v_{j}\right)=\min \left\{d\left(s, v_{j}\right), d\left(s, v_{i}\right)+\ell\left(v_{i}, v_{j}\right)\right\}$
return $d(s, \cdot)$ values computed
Running time: $O(\boldsymbol{m}+\boldsymbol{n})$ time algorithm! Works for negative edge lengths and hence can find longest paths in a DAG.

Part VI

Graph reduction and tricks

Split nodes

> original graph with vertex weights

new graph
with only edge weights

Add nodes

Given a graph $G=(V, E)$ and two disjoint sets of nodes
$A, B \subset V$, is there a path from some node in \boldsymbol{A} to some node in B ?

Add nodes

Given a graph $G=(V, E)$ and two disjoint sets of nodes
$A, B \subset V$, is there a path from some node in A to some node in B ?
Connect s to each node in \boldsymbol{A}, and t to each node in \boldsymbol{B}. This becomes the basic $s-t$ reachability problem.

DP on graphs

Q: How to compute the shortest distance between s and t with at most k hops?

DP on graphs

Q: How to compute the shortest distance between s and t with at most k hops?

Ans: We arrived at Bellman-Ford by considering the shortest distance with at most k hops.

$$
d(u, k)
$$

DP on graphs

Q: How to compute the shortest distance between s and t with at most k hops?

Ans: We arrived at Bellman-Ford by considering the shortest distance with at most k hops.
edges

Q: A subset of risky nodes $E^{\prime} \subset E$. Find shortest path from s with at most \boldsymbol{h} risky edges.

Ans: Use Bellman-Ford style DP. Consider which $u \rightarrow v$ edge to include for each \boldsymbol{v}.

$$
\begin{aligned}
& d(s, u) \rightarrow v+w\left(u_{1}, v\right) \\
& d\left(s, u_{2}\right) \rightarrow \rightarrow_{2}+w \\
& d\left(s, u_{3}\right)
\end{aligned}
$$

DP on graphs

Q: A subset of risky nodes $E^{\prime} \subset E$. Find shortest path from s with at most \boldsymbol{h} risky edges.

Ans: Use Bellman-Ford style DP. Consider which $\boldsymbol{u} \rightarrow \boldsymbol{v}$ edge to include for each v. Remove the risky nodes to form G^{\prime}.

DP on graphs

Q: A subset of risky nodes $E^{\prime} \subset E$. Find shortest path from s with at most \boldsymbol{h} risky edges.

Ans: Use Bellman-Ford style DP. Consider which $\boldsymbol{u} \rightarrow \boldsymbol{v}$ edge to include for each v. Remove the risky nodes to form G^{\prime}.

DP on graphs

Q: A subset of risky nodes $E^{\prime} \subset E$. Find shortest path from s with at most \boldsymbol{h} risky edges.

Ans: Use Bellman-Ford style DP. Consider which $\boldsymbol{u} \rightarrow \boldsymbol{v}$ edge to include for each v. Remove the risky nodes to form G^{\prime}.

$$
d(v, i, j)=\min \left\{\begin{array}{l}
d(v, i-1, j) \\
d(v, i, j-1) \\
\min _{(u, v) \in E^{\prime}} d(u, i-1, j-1)+\ell(u, v) \\
\min _{(u, v) \in E-E^{\prime}} d(u, i-1, j)+\ell(u, v)
\end{array}\right.
$$

Base case: Use Bellman-Ford to compute $\boldsymbol{d}(\boldsymbol{v}, \boldsymbol{i}, \mathbf{0})$, shortest distance on G^{\prime} with no risky edge. Running time: $O(m n k)$.

Layering

Q: A subset of risky nodes $E^{\prime} \subset E$. Find shortest path from s with at most \boldsymbol{h} risky edges.

Layering

Q: A subset of risky nodes $E^{\prime} \subset E$. Find shortest path from s with at most \boldsymbol{h} risky edges.
(1) Create $\boldsymbol{h}+\mathbf{1}$ copies of $\boldsymbol{G}^{\prime}:$
$G_{0}, G_{1}, \ldots, G_{h}$

Layering

Q: A subset of risky nodes $E^{\prime} \subset E$. Find shortest path from s with at most \boldsymbol{h} risky edges.
(1) Create $h+\mathbf{1}$ copies of $G^{\prime}: G_{0}, G_{1}, \ldots, G_{h}$
(2) Include a directed edge from vertex \boldsymbol{u} in G_{i} to vertex v in G_{i+1} if (u, v) is a risky edge in G.

Layering

Q: A subset of risky nodes $E^{\prime} \subset E$. Find shortest path from s with at most \boldsymbol{h} risky edges.
(1) Create $h+1$ copies of $G^{\prime}: G_{0}, G_{1}, \ldots, G_{h}$
(2) Include a directed edge from vertex \boldsymbol{u} in G_{i} to vertex \boldsymbol{v} in G_{i+1} if (u, v) is a risky edge in G.
(3) The idea is that the only way a path can move from one copy of G^{\prime} to the next is by traversing a risky edge.

Layering

Q: A subset of risky nodes $E^{\prime} \subset E$. Find shortest path from s with at most \boldsymbol{h} risky edges.
(1) Create $h+\mathbf{1}$ copies of $G^{\prime}: G_{0}, G_{1}, \ldots, G_{h}$
(3) Include a directed edge from vertex \boldsymbol{u} in G_{i} to vertex \boldsymbol{v} in G_{i+1} if (u, v) is a risky edge in G.
(3) The idea is that the only way a path can move from one copy of G^{\prime} to the next is by traversing a risky edge.

- Run Dijkstra's algorithm on this new graph, from vertex s_{0}, the copy of s in G_{0}, to v_{0}, \ldots, v_{h} be the corresponding vertices in copies G_{0}, \ldots, G_{h}.

Layering

Q: A subset of risky nodes $E^{\prime} \subset E$. Find shortest path from s with at most \boldsymbol{h} risky edges.
(1) Create $h+\mathbf{1}$ copies of $G^{\prime}: G_{0}, G_{1}, \ldots, G_{h}$
(2) Include a directed edge from vertex \boldsymbol{u} in G_{i} to vertex v in G_{i+1} if (u, v) is a risky edge in G.
(3) The idea is that the only way a path can move from one copy of G^{\prime} to the next is by traversing a risky edge.
(1) Run Dijkstra's algorithm on this new graph, from vertex s_{0}, the copy of s in G_{0}, to v_{0}, \ldots, v_{h} be the corresponding vertices in copies G_{0}, \ldots, G_{h}.
($\boldsymbol{d}\left(s_{0}, v_{i}\right)$ is just the shortest path from s to v in the original graph G that uses exactly i risky edges.

Layering

Q: A subset of risky nodes $E^{\prime} \subset E$. Find shortest path from s with at most \boldsymbol{h} risky edges.
(1) Create $h+\mathbf{1}$ copies of $G^{\prime}: G_{0}, G_{1}, \ldots, G_{h}$
(2) Include a directed edge from vertex \boldsymbol{u} in G_{i} to vertex v in G_{i+1} if (u, v) is a risky edge in G.
(3) The idea is that the only way a path can move from one copy of G^{\prime} to the next is by traversing a risky edge.
(- Run Dijkstra's algorithm on this new graph, from vertex s_{0}, the copy of s in G_{0}, to v_{0}, \ldots, v_{h} be the corresponding vertices in copies G_{0}, \ldots, G_{h}.
(0) $d\left(s_{0}, v_{i}\right)$ is just the shortest path from s to v in the original graph G that uses exactly i risky edges.
(0) the distance from s to v in the original graph that uses at most h risky edges is just $\boldsymbol{m i n}_{0 \leq i \leq h} d\left(s_{0}, v_{i}\right)$.

Layering

Q: A subset of risky nodes $E^{\prime} \subset E$. Find shortest path from s with at most \boldsymbol{h} risky edges.
(1) Create $h+1$ copies of $G^{\prime}: G_{0}, G_{1}, \ldots, G_{h}$
(3) Include a directed edge from vertex \boldsymbol{u} in G_{i} to vertex \boldsymbol{v} in G_{i+1} if (u, v) is a risky edge in G.
(3) The idea is that the only way a path can move from one copy of G^{\prime} to the next is by traversing a risky edge.
(- Run Dijkstra's algorithm on this new graph, from vertex s_{0}, the copy of s in G_{0}, to v_{0}, \ldots, v_{h} be the corresponding vertices in copies G_{0}, \ldots, G_{h}.
(0) $d\left(s_{0}, v_{i}\right)$ is just the shortest path from s to v in the original graph G that uses exactly i risky edges.
(0) the distance from s to v in the original graph that uses at most h risky edges is just $\boldsymbol{m i n}_{0 \leq i \leq h} d\left(s_{0}, v_{i}\right)$.
Running time: $O(m k+n k \log (n k))$

