CS/ECE 374: Algorithms & Models of Computation

Shortest Paths: DAG and Floyd-Warshall

Lecture 18

Part I

The Crucial Optimality Substructure

Optimality substructure:

 $\operatorname{dist}(s, u) = \min_{v \in \operatorname{In}(u)} \left[\operatorname{dist}(s, v) + \ell(v, u)\right]$

Optimality substructure:

 $\operatorname{dist}(s, u) = \min_{v \in \mathit{In}(u)} \left[\operatorname{dist}(s, v) + \ell(v, u)\right]$

Bellman-Ford: $d(u) = \min_{v \in In(u)} [d(v) + \ell(v, u)]$

Optimality substructure:

 $\operatorname{dist}(s, u) = \min_{v \in \operatorname{In}(u)} \left[\operatorname{dist}(s, v) + \ell(v, u)\right]$

Bellman-Ford: $d(u) = \min_{v \in In(u)} [d(v) + \ell(v, u)]$

If v is on the shortest path of u, and d(v) = dist(s, v), then d(u) = dist(s, u) in the next iteration.

Optimality substructure:

 $\operatorname{dist}(s, u) = \min_{v \in \operatorname{In}(u)} \left[\operatorname{dist}(s, v) + \ell(v, u) \right]$

Bellman-Ford: $d(u) = \min_{v \in In(u)} [d(v) + \ell(v, u)]$

- If v is on the shortest path of u, and d(v) = dist(s, v), then d(u) = dist(s, u) in the next iteration.
- Initialize d(s) = 0, all $d(u) = \infty$, converge to the fixed point.

Example

-3

5

D

e

4

 $\left(\right)$

Example

Parsimonious updates of Dijkstra

Optimality substructure:

 $\operatorname{dist}(s, u) = \min_{v \in \operatorname{In}(u)} \left[\operatorname{dist}(s, v) + \ell(v, u)\right]$

Dijkstra: $d(u) = \min_{v \in In(u), v \in X} [d(v) + \ell(v, u)]$

Parsimonious updates of Dijkstra

Optimality substructure:

 $\operatorname{dist}(s, u) = \min_{v \in \operatorname{In}(u)} \left[\operatorname{dist}(s, v) + \ell(v, u)\right]$

Dijkstra: $d(u) = \min_{v \in In(u), v \in X} [d(v) + \ell(v, u)]$

• v in X is known to have d(v) = d(s, v)

Parsimonious updates of Dijkstra

Optimality substructure:

 $\operatorname{dist}(s, u) = \min_{v \in \operatorname{In}(u)} \left[\operatorname{dist}(s, v) + \ell(v, u)\right]$

Dijkstra: $d(u) = \min_{v \in In(u), v \in X} [d(v) + \ell(v, u)]$

- v in X is known to have d(v) = d(s, v)
- Only update *u* adjacent to *X*. Each edge is only updated once.
- A good evaluation order saves a lot of work. We will see it again with DAG.

Why didn't we use

```
\operatorname{dist}(s, u) = \min_{v} \left[ \operatorname{dist}(s, v) + \operatorname{dist}(v, u) \right] ?
```


Why didn't we use

 $\operatorname{dist}(s, u) = \min_{v} \left[\operatorname{dist}(s, v) + \operatorname{dist}(v, u) \right] ?$

Bellman-Ford? $d(u) = min_v [d(v) + d(v, u)]$?

Why didn't we use

 $\operatorname{dist}(s, u) = \min_{v} \left[\operatorname{dist}(s, v) + \operatorname{dist}(v, u) \right] ?$

Bellman-Ford? $d(u) = min_v [d(v) + d(v, u)]$?

- We will need to compute d(v, u), for all v, when we only need distances from s. Extra work.
- Will be useful for computing all-pair shortest distance. Floyd-Warshall

Part II

Shortest Paths in DAGs

Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- ② Given node s find shortest path from s to all other nodes.

Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- 2) Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

- No cycles and hence no negative length cycles!
- ② Can order nodes using topological sort

Algorithm for DAGs

- Want to find shortest paths from s. Ignore nodes not reachable from s.
- 2 Let $s = v_1, v_2, v_{i+1}, \dots, v_n$ be a topological sort of G

Algorithm for DAGs

- Want to find shortest paths from s. Ignore nodes not reachable from s.
- 2 Let $s = v_1, v_2, v_{i+1}, \ldots, v_n$ be a topological sort of G

Observation:

- shortest path from s to v_i cannot use any node from v_{i+1}, \ldots, v_n
- 2 can find shortest paths in topological sort order.

Algorithm for DAGs

```
for i = 1 to n do

d(s, v_i) = \infty

d(s, s) = 0

for i = 1 to n - 1 do

for each edge (v_i, v_j) in Out(v_i) do

d(s, v_j) = \min\{d(s, v_j), d(s, v_i) + \ell(v_i, v_j)\}
```

return $d(s, \cdot)$ values computed

Correctness: induction on *i* and observation in previous slide. Running time: O(m + n) time algorithm!

Part III

All Pairs Shortest Paths

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- **9** Given nodes s, t find shortest path from s to t.
- I Given node s find shortest path from s to all other nodes.
- Sind shortest paths for all pairs of nodes.

Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- **2** Given node *s* find shortest path from *s* to all other nodes.

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes *s*, *t* find shortest path from *s* to *t*.
- **2** Given node *s* find shortest path from *s* to all other nodes.

Dijkstra's algorithm for non-negative edge lengths. Running time: $O((m + n) \log n)$ with heaps and $O(m + n \log n)$ with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Ind shortest paths for all pairs of nodes.

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Ind shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

• Non-negative lengths. $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced priority queues.

• Arbitrary edge lengths: $O(n^2m)$.

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Ind shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

- Non-negative lengths. $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced priority queues.
- **2** Arbitrary edge lengths: $O(n^2m)$.

Can we do better?

Optimality substructure

Why don't we use

```
\operatorname{dist}(s, u) = \min_{v} \left[ \operatorname{dist}(s, v) + \operatorname{dist}(v, u) \right] ?
```


Optimality substructure

Why don't we use

```
\operatorname{dist}(s, u) = \min_{v} \left[ \operatorname{dist}(s, v) + \operatorname{dist}(v, u) \right] ?
```

What is a smart recursion?

A naive recursion

A naive recursion

Running Time: $O(n^4)$, Space: $O(n^3)$.

Running Time: $O(n^4)$, Space: $O(n^3)$.

Worse than Bellman-Ford: $O(n^2m)$, when $m = O(n^2)$.

Running Time: $O(n^4)$, Space: $O(n^3)$.

Worse than Bellman-Ford: $O(n^2m)$, when $m = O(n^2)$.

It's wasteful because the intermediate nodes can be any node.
 As a result, we compute the same path many times.

Running Time: $O(n^4)$, Space: $O(n^3)$.

Worse than Bellman-Ford: $O(n^2m)$, when $m = O(n^2)$.

- It's wasteful because the intermediate nodes can be any node.
 As a result, we compute the same path many times.
- **2** Idea: Restrict the set of intermediate nodes.

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an *intermediate node* is at most k (could be -∞ if there is a negative length cycle).

dist(i, j, 0) = dist(i, j, 1) = dist(i, j, 2) =dist(i, j, 3) =

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an *intermediate node* is at most k (could be -∞ if there is a negative length cycle).

dist(i, j, 0) = 100dist(i, j, 1) =dist(i, j, 2) =dist(i, j, 3) =

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an *intermediate node* is at most k (could be -∞ if there is a negative length cycle).

dist(i, j, 0) = 100dist(i, j, 1) = 9dist(i, j, 2) =dist(i, j, 3) =

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an *intermediate node* is at most k (could be -∞ if there is a negative length cycle).

dist(i, j, 0) = 100dist(i, j, 1) = 9dist(i, j, 2) = 8dist(i, j, 3) =

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an *intermediate node* is at most k (could be -∞ if there is a negative length cycle).

dist(i, j, 0) = 100dist(i, j, 1) = 9dist(i, j, 2) = 8dist(i, j, 3) = 5

For the following graph, **dist(i, j, 2)** is...

10

11

12

15

(UIUC)

$$dist(i, j, k) = \min \begin{cases} dist(i, j, k - 1) \\ dist(i, k, k - 1) + dist(k, j, k - 1) \end{cases}$$

Base case: $dist(i, j, 0) = \ell(i, j)$ if $(i, j) \in E$, otherwise ∞

If *i* can reach *k* and *k* can reach *j* and dist(k, k, k - 1) < 0 then *G* has a negative length cycle containing *k* and $dist(i, j, k) = -\infty$.

Recursion below is valid only if $dist(k, k, k - 1) \ge 0$. We can detect this during the algorithm or wait till the end.

$$dist(i, j, k) = \min \begin{cases} dist(i, j, k - 1) \\ dist(i, k, k - 1) + dist(k, j, k - 1) \end{cases}$$

Floyd-Warshall Algorithm for All-Pairs Shortest Paths

for
$$i = 1$$
 to n do
for $j = 1$ to n do
 $dist(i,j,0) = \ell(i,j)$ (* $\ell(i,j) = \infty$ if $(i,j) \notin E$, 0 if $i = j$ *)
for $k = 1$ to n do
for $i = 1$ to n do
for $j = 1$ to n do
 $dist(i,j,k) = \min \begin{cases} dist(i,j,k-1), \\ dist(i,k,k-1) + dist(k,j,k-1) \end{cases}$
for $i = 1$ to n do
if $(dist(i,i,n) < 0)$ then
Output that there is a negative length cycle in G

Floyd-Warshall Algorithm for All-Pairs Shortest Paths

for
$$i = 1$$
 to n do
for $j = 1$ to n do
 $dist(i, j, 0) = \ell(i, j)$ (* $\ell(i, j) = \infty$ if $(i, j) \notin E$, 0 if $i = j$ *)
for $k = 1$ to n do
for $i = 1$ to n do
for $j = 1$ to n do
 $dist(i, j, k) = \min \begin{cases} dist(i, j, k - 1), \\ dist(i, k, k - 1) + dist(k, j, k - 1) \end{cases}$
for $i = 1$ to n do
if $(dist(i, i, n) < 0)$ then
Output that there is a negative length cycle in G

Running Time:

Floyd-Warshall Algorithm for All-Pairs Shortest Paths

for
$$i = 1$$
 to n do
for $j = 1$ to n do
 $dist(i,j,0) = \ell(i,j)$ (* $\ell(i,j) = \infty$ if $(i,j) \notin E$, 0 if $i = j$ *)
for $k = 1$ to n do
for $i = 1$ to n do
for $j = 1$ to n do
 $dist(i,j,k) = \min \begin{cases} dist(i,j,k-1), \\ dist(i,k,k-1) + dist(k,j,k-1) \end{cases}$
for $i = 1$ to n do
if $(dist(i,i,n) < 0)$ then
Output that there is a negative length cycle in G

Running Time: $O(n^3)$, Space: $O(n^3)$.

CS/ECE 374: Algorithms & Models of Computation

Graph Modeling

Lecture

Part I

An Application to make

Make/Makefile

- I know what make/makefile is.
- I do NOT know what make/makefile is.

make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - 3 How to create them

project: main.o utils.o command.o
 cc -o project main.o utils.o command.o
main.o: main.c defs.h
 cc -c main.c
utils.o: utils.c defs.h command.h

cc -c utils.c
command.o: command.c defs.h command.h
 cc -c command.c

makefile as a Digraph

Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

Part II

Application to Currency Trading

Several Applications

- Shortest path problems useful in modeling many situations in some negative lengths are natural
- Negative length cycle can be used to find arbitrage opportunities in currency trading
- Important sub-routine in algorithms for more general problem: minimum-cost flow

Negative cycles Application to Currency Trading

Currency Trading

Input: *n* currencies and for each ordered pair (*a*, *b*) the *exchange rate* for converting one unit of *a* into one unit of *b*. **Questions**:

- Is there an arbitrage opportunity?
- Q Given currencies s, t what is the best way to convert s to t (perhaps via other intermediate currencies)?

Concrete example:

- 1 Chinese Yuan = 0.1116 Euro
- 2 1 Euro = 1.3617 US dollar
- **3** 1 US Dollar = **7.1** Chinese Yuan.

Thus, if exchanging $1 \$ \rightarrow$ Yuan \rightarrow Euro \rightarrow \$, we get: 0.1116 * 1.3617 * 7.1 =1.07896\$.

Observation: If we convert currency *i* to *j* via intermediate currencies k_1, k_2, \ldots, k_h then one unit of *i* yields $exch(i, k_1) \times exch(k_1, k_2) \ldots \times exch(k_h, j)$ units of *j*.

Observation: If we convert currency *i* to *j* via intermediate currencies k_1, k_2, \ldots, k_h then one unit of *i* yields $exch(i, k_1) \times exch(k_1, k_2) \ldots \times exch(k_h, j)$ units of *j*.

Create currency trading *directed* graph G = (V, E):
Tor each currency *i* there is a node v_i ∈ V
E = V × V: an edge for each pair of currencies
edge length ℓ(v_i, v_j) =

Observation: If we convert currency *i* to *j* via intermediate currencies k_1, k_2, \ldots, k_h then one unit of *i* yields $exch(i, k_1) \times exch(k_1, k_2) \ldots \times exch(k_h, j)$ units of *j*.

Create currency trading *directed* graph G = (V, E):
Tor each currency *i* there is a node v_i ∈ V
E = V × V: an edge for each pair of currencies
edge length ℓ(v_i, v_i) = -log(exch(i, j)) can be negative

Observation: If we convert currency *i* to *j* via intermediate currencies k_1, k_2, \ldots, k_h then one unit of *i* yields $exch(i, k_1) \times exch(k_1, k_2) \ldots \times exch(k_h, j)$ units of *j*.

Create currency trading *directed* graph G = (V, E): • For each currency *i* there is a node $v_i \in V$

- **2** $E = V \times V$: an edge for each pair of currencies
- edge length $\ell(v_i, v_j) = -\log(exch(i, j))$ can be negative

Exercise: Verify that

There is an arbitrage opportunity if and only if G has a negative length cycle.

The best way to convert currency *i* to currency *j* is via a shortest path in *G* from *i* to *j*. If *d* is the distance from *i* to *j* then one unit of *i* can be converted into 2^{-d} units of *j*.

(UIUC)

Reducing Currency Trading to Shortest Paths Math recall - relevant information

• $\log(\alpha_1 * \alpha_2 * \cdots * \alpha_k) = \log \alpha_1 + \log \alpha_2 + \cdots + \log \alpha_k$. • $\log x > 0$ if and only if x > 1.