CS/ECE 374: Algorithms \& Models of

Computation

BFS and Dijkstra's Algorithm

Lecture 17

Part I

A Brief Review

Whatever-first-search

Given $G=(\boldsymbol{V}, E)$ a directed graph and vertex $\boldsymbol{u} \in \boldsymbol{V}$. Let $n=|V|$.

Explore (G,u):
array Visited[1..n]
Initialize: Set Visited[i]=FALSE for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$ List: ToExplore, S
Add \boldsymbol{u} to ToExplore and to S, Visited $[u]=$ TRUE Make tree \boldsymbol{T} with root as \boldsymbol{u} while (ToExplore is non-empty) do

Remove node x from ToExplore for each edge (x, y) in $\operatorname{Adj}(x)$ do if (Visited $[y]==$ FALSE) Visited $[y]=$ TRUE
Add y to ToExplore Add \boldsymbol{y} to \boldsymbol{S} Add \boldsymbol{y} to \boldsymbol{T} with edge $(\boldsymbol{x}, \boldsymbol{y})$
Output S

Properties of Basic Search

DFS and BFS are special case of BasicSearch.
(1) Depth First Search (DFS): use stack data structure to implement the list ToExplore
(2) Breadth First Search (BFS): use queue data structure to implementing the list ToExplore

DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)
for all $u \in V(G)$ do
Mark u as unvisited
\boldsymbol{T} is set to \emptyset
time $=0$
while ヨunvisited \boldsymbol{u} do DFS(u)
Output T

DFS (u)

```
Mark u as visited
pre(u) = ++time
for each uv in Out(u) do
    if v}\mathrm{ is not marked then
        add edge uv to T
        DFS(v)
```

$\operatorname{post}(u)=++$ time

An Edge in DAG

Proposition

If G is a DAG and post $(u)<\operatorname{post}(v)$, then (u, v) is not in G. ie., for all edges (u, v) in a DAG, post (u) $>\operatorname{post}(v)$.

$$
u<v
$$

Reverse post-order is topological order

$\begin{array}{lllllll}16 & 14 & 12 & 11 & 10 & 7 & 6 \\ C & b & a \rightarrow e \rightarrow g & d \rightarrow f \rightarrow h\end{array}$

Reverse post-order is topological order

(c) $1,8 \quad b$
$2,7 \stackrel{\downarrow}{e}$
g $3,4 \frac{2}{g} \quad h$

$a 11,1 b$ \downarrow d 1215 \downarrow f 13,14

$$
\begin{array}{llllllll}
16 & 15 & 14 & 10 & 8 & 7 \\
a \rightarrow d \rightarrow f & b \rightarrow e
\end{array} \quad \begin{aligned}
& 4 \\
& h
\end{aligned}
$$

Sort PCs
The JCs are topologically sorted by arranging them in decreasing order of their highest post number.

$1,16 A \quad$ Graph G
$\begin{gathered}1,16 A \\ \downarrow\end{gathered}>F 10,15$
$2,9 \underset{\downarrow}{\downarrow} \quad F \xrightarrow[B]{\downarrow} \quad>_{B}^{11,14}$ $3,8 \stackrel{\downarrow}{\square}, 4,7 \rightarrow G^{5,6}$

Graph of JCs $G^{\text {SOC }}$

A Different DFS

Part II

Breadth First Search

Breadth First Search (BFS)

Overview

(A) BFS is obtained from BasicSearch by processing edges using a data structure called a queue.
(B) It processes the vertices in the graph in the order of their shortest distance from the vertex s (the start vertex).

As such...
(1) DFS good for exploring graph structure
(2) BFS good for exploring distances

Queue Data Structure

Queues

A queue is a list of elements which supports the operations:
(1) enqueue: Adds an element to the end of the list
(2) dequeue: Removes an element from the front of the list Elements are extracted in first-in first-out (FIFO) order, i.e., elements are removed in the order in which they were inserted.

BFS Algorithm

Given (undirected or directed) graph $G=(V, E)$ and node $s \in V$

BFS(s)

Mark all vertices as unvisited Initialize search tree \boldsymbol{T} to be empty
Mark vertex s as visited
set \boldsymbol{Q} to be the empty queue
enq(s)
while \boldsymbol{Q} is nonempty do

$$
u=\operatorname{deq}(Q)
$$

for each vertex $v \in \operatorname{Adj}(u)$
if \boldsymbol{v} is not visited then add edge $(\boldsymbol{u}, \boldsymbol{v})$ to \boldsymbol{T} Mark v as visited and enq(v)

Proposition

BFS(s) runs in $O(n+m)$ time.

BFS: An Example in Undirected Graphs

1. [1]

BFS: An Example in Undirected Graphs

1. [1]
2. $[2,3]$

BFS: An Example in Undirected Graphs

1. [1]
2. $[2,3]$
3. $[3,4,5]$

BFS: An Example in Undirected Graphs

1. [1]
2. $[4,5,7,8]$
3. $[2,3]$
4. $[3,4,5]$

BFS: An Example in Undirected Graphs

$\begin{array}{llll}\text { 1. } & {[1]} & \text { 4. } & {[4,5,7,8]} \\ \text { 2. } & {[2,3]} & \text { 5. } & {[5,7,8]} \\ \text { 3. } & {[3,4,5]} & & \end{array}$

BFS: An Example in Undirected Graphs

1. [1]
2. $[4,5,7,8]$
3. $[2,3]$
4. $[5,7,8]$
5. $[3,4,5]$
6. $[7,8,6]$

BFS: An Example in Undirected Graphs

$\begin{array}{llllll}\text { 1. } & {[1]} & \text { 4. } & {[4,5,7,8]} & \text { 7. } & {[8,6]} \\ \text { 2. } & {[2,3]} & \text { 5. } & {[5,7,8]} & & \\ \text { 3. } & {[3,4,5]} & \text { 6. } & {[7,8,6]} & & \end{array}$

BFS: An Example in Undirected Graphs

$\begin{array}{llllll}\text { 1. } & {[1]} & \text { 4. } & {[4,5,7,8]} & \text { 7. } & {[8,6]} \\ \text { 2. } & {[2,3]} & \text { 5. } & {[5,7,8]} & \text { 8. } & {[6]} \\ \text { 3. } & {[3,4,5]} & \text { 6. } & {[7,8,6]} & & \end{array}$

BFS: An Example in Undirected Graphs

1. [1]
2. $[2,3]$
3. $[3,4,5]$
4. $[4,5,7,8]$
5. $[8,6]$
6. $[5,7,8]$
7. [6]
8. $[7,8,6]$
9. []

BFS: An Example in Undirected Graphs

BFS tree is the set of black edges.

BFS: An Example in Directed Graphs

BFS with Distance

BFS(s)

Mark all vertices as unvisited; for each v set $\operatorname{dist}(v)=\infty$ Initialize search tree \boldsymbol{T} to be empty Mark vertex \boldsymbol{s} as visited and set $\operatorname{dist}(\boldsymbol{s})=\mathbf{0}$ set \boldsymbol{Q} to be the empty queue enq(s)
while Q is nonempty do

$$
u=\operatorname{deq}(Q)
$$

for each vertex $v \in \operatorname{Adj}(u)$ do
if v is not visited do
add edge $(\boldsymbol{u}, \boldsymbol{v})$ to \boldsymbol{T}
Mark v as visited, enq(v) and $\operatorname{set} \operatorname{dist}(\boldsymbol{v})=\operatorname{dist}(\boldsymbol{u})+\mathbf{1}$

Properties of BFS: Undirected Graphs

Theorem

The following properties hold upon termination of BFS(s)
(A) The search tree contains exactly the set of vertices in the connected component of s.
(B) If $\operatorname{dist}(u)<\operatorname{dist}(v)$ then \boldsymbol{u} is visited before \boldsymbol{v}.
(0) For every vertex $\boldsymbol{u}, \operatorname{dist}(\mathbf{u})$ is the length of a shortest path (in terms of number of edges) from \boldsymbol{s} to \boldsymbol{u}.
(D) If u, v are in connected component of s and $e=\{u, v\}$ is an edge of G, then $|\operatorname{dist}(u)-\operatorname{dist}(v)| \leq 1$.

Properties of BFS: Directed Graphs

Theorem

The following properties hold upon termination of BFS(s):
(A) The search tree contains exactly the set of vertices reachable from s
(B) If $\operatorname{dist}(u)<\operatorname{dist}(v)$ then u is visited before v
(0) For every vertex $\boldsymbol{u}, \operatorname{dist}(\mathbf{u})$ is the length of shortest path from \boldsymbol{s} to u
(D) If \boldsymbol{u} is reachable from \boldsymbol{s} and $\mathbf{e}=(\boldsymbol{u}, \boldsymbol{v})$ is an edge of \mathbf{G}, then $\operatorname{dist}(v)-\operatorname{dist}(u) \leq 1$.
Not necessarily the case that $\operatorname{dist}(u)-\operatorname{dist}(v) \leq 1$.

BFS with Layers

BFSLayers(s):

Mark all vertices as unvisited and initialize \boldsymbol{T} to be empty Mark s as visited and set $L_{0}=\{s\}$
$i=0$
while L_{i} is not empty do initialize $\boldsymbol{L}_{\boldsymbol{i}+\boldsymbol{1}}$ to be an empty list for each \boldsymbol{u} in L_{i} do for each edge $(u, v) \in \operatorname{Adj}(u)$ do if v is not visited mark v as visited add $(\boldsymbol{u}, \boldsymbol{v})$ to tree \boldsymbol{T} add \boldsymbol{v} to $\boldsymbol{L}_{\boldsymbol{i}+\boldsymbol{1}}$

$$
i=i+1
$$

BFS with Layers

BFSLayers(s) :
Mark all vertices as unvisited and initialize \boldsymbol{T} to be empty Mark s as visited and set $L_{0}=\{s\}$
$i=0$
while L_{i} is not empty do
initialize $\boldsymbol{L}_{\boldsymbol{i + 1}}$ to be an empty list for each \boldsymbol{u} in L_{i} do
for each edge $(u, v) \in \operatorname{Adj}(u)$ do
if v is not visited
mark v as visited
add $(\boldsymbol{u}, \boldsymbol{v})$ to tree \boldsymbol{T}
add \boldsymbol{v} to $\boldsymbol{L}_{\boldsymbol{i}+\mathbf{1}}$

$$
i=i+1
$$

Running time: $O(n+m)$

BFS: An Example in Undirected Graphs

Part III

Shortest Paths and Dijkstra's Algorithm

Shortest Path Problems

Shortest Path Problems

> Input A (undirected or directed) graph $G=(V, E)$ with edge lengths (or costs). For edge $e=(u, v)$, $\ell(e)=\ell(u, v)$ is its length.
(1) Given nodes s, t find shortest path from s to t.
(2) Given node s find shortest path from s to all other nodes.
(3) Find shortest paths for all pairs of nodes.

Many applications!

Single-Source Shortest Paths:

Non-Negative Edge Lengths

Single-Source Shortest Path Problems

(1) Input: A (undirected or directed) graph $G=(V, E)$ with non-negative edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$, $\ell(e)=\ell(u, v)$ is its length.
(2) Given nodes s, t find shortest path from s to t.
(3) Given node s find shortest path from s to all other nodes.

Single-Source Shortest Paths:

Non-Negative Edge Lengths

Single-Source Shortest Path Problems

(1) Input: A (undirected or directed) graph $G=(V, E)$ with non-negative edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$, $\ell(e)=\ell(u, v)$ is its length.
(2) Given nodes s, t find shortest path from s to t.
(3) Given node s find shortest path from s to all other nodes.
(1) Restrict attention to directed graphs
(2) Undirected graph problem can be reduced to directed graph problem

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
(1) Run BFS(s) to get shortest path distances from s to all other nodes.
(2) $O(m+n)$ time algorithm.

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
(1) Run BFS(s) to get shortest path distances from s to all other nodes.
(2) $O(m+n)$ time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e ?
Can we use BFS?

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
(1) Run BFS(s) to get shortest path distances from s to all other nodes.
(2) $O(m+n)$ time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e ?
Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e)-\mathbf{1}$ dummy nodes on e

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
(1) Run BFS(s) to get shortest path distances from s to all other nodes.
(2) $O(m+n)$ time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all \boldsymbol{e} ?
Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e)-\mathbf{1}$ dummy nodes on e

Single-Source Shortest Paths via BFS

Let $L=\max _{e} \ell(e)$. New graph has $O(m L)$ edges and $O(m L+n)$ nodes. BFS takes $O(m L+n)$ time. Not efficient if L is large.

Towards an algorithm

Why does BFS work?

Towards an algorithm

Why does BFS work?
BFS(s) explores nodes in increasing (shortest) distance from s

Towards an algorithm

Why does BFS work?
BFS(s) explores nodes in increasing (shortest) distance from s

Lemma

Let G be a directed graph with non-negative edge lengths. Let $\operatorname{dist}(s, v)$ denote the shortest path length from s to v. If $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k}$ is a shortest path from s to v_{k} then for $\mathbf{1} \leq i<k$:
(1) $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{i}$ is a shortest path from s to v_{i}
(2) $\operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{k}\right)$. Relies on non-neg edge lengths.

A proof by picture

A proof by picture

A proof by picture

A Basic Strategy

Explore vertices in increasing order of (shortest) distance from s : (For simplicity assume that nodes are at different distances from s and that no edge has zero length)

```
Initialize for each node v, dist(s,v)=\infty
Initialize }X={s}\mathrm{ ,
for i=2 to |V| do
    (* Invariant: X contains the i-1 closest nodes to s *)
    Among nodes in }\boldsymbol{V}-\boldsymbol{X},\mathrm{ find the node v that is the
        i'th closest to s
    Update dist(s,v)
    X = X \cup{v}
```


A Basic Strategy

Explore vertices in increasing order of (shortest) distance from s : (For simplicity assume that nodes are at different distances from s and that no edge has zero length)

```
Initialize for each node v, dist(s,v)=\infty
Initialize X = {s},
for i=2 to |V| do
    (* Invariant: X contains the i-1 closest nodes to s *)
    Among nodes in }\boldsymbol{V}-\boldsymbol{X}\mathrm{ , find the node v that is the
        i'th closest to s
    Update dist(s,v)
    X=X\cup{v}
```

How can we implement the step in the for loop?

Finding the ith closest node

(1) X contains the $i-1$ closest nodes to s
(2) Want to find the i th closest node from $V-X$.

What do we know about the ith closest node?

Finding the ith closest node

(1) \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to s
(2) Want to find the i th closest node from $\boldsymbol{V}-\boldsymbol{X}$.

What do we know about the i th closest node?

Corollary

The ith closest node is adjacent to \boldsymbol{X}.

Finding the ith closest node

Claim

Let P be a shortest path from s to v where \boldsymbol{v} is the ith closest node. Then, all intermediate nodes in P belong to \boldsymbol{X}.

Finding the ith closest node

Claim

Let P be a shortest path from s to v where v is the ith closest node. Then, all intermediate nodes in P belong to \boldsymbol{X}.

Proof.

If \boldsymbol{P} had an intermediate node \boldsymbol{u} not in \boldsymbol{X} then \boldsymbol{u} will be closer to \boldsymbol{s} than \boldsymbol{v}. Implies \boldsymbol{v} is not the \boldsymbol{i} 'th closest node to s - recall that \boldsymbol{X} already has the $\boldsymbol{i} \mathbf{- \mathbf { 1 }}$ closest nodes.

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

An example

Finding the th closest node repeatedly

An example

$a c$

Finding the ith closest node repeatedly

An example

$a b c$

$e f d$
131936

$$
\begin{aligned}
& x \rightarrow f \\
& a \rightarrow b \rightarrow f \\
& a \rightarrow 19 f
\end{aligned}
$$

$$
24
$$

Finding the ith closest node repeatedly

An example

Finding the th closest node repeatedly

 An example

$$
\begin{gathered}
d \\
25 \\
28
\end{gathered}
$$

$$
\begin{aligned}
& f \rightarrow d^{25} \\
& c \rightarrow d^{3}
\end{aligned}
$$

$$
\begin{aligned}
& e \rightarrow d \\
& 33 \\
& e \rightarrow h^{38}
\end{aligned}
$$

$$
f \rightarrow h
$$

$$
38
$$

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node

(1) \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to s
(2) Want to find the \boldsymbol{i} th closest node from $\boldsymbol{V}-\boldsymbol{X}$.
(1) For each $u \in V-X$ let $P(s, u, X)$ be a shortest path from s to u using only nodes in \boldsymbol{X} as intermediate vertices.
(2) Let $d^{\prime}(s, u)$ be the length of $P(s, u, X)$

Finding the ith closest node

(1) \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to s
(2) Want to find the i th closest node from $V-X$.
(1) For each $u \in V-X$ let $P(s, u, X)$ be a shortest path from s to u using only nodes in \boldsymbol{X} as intermediate vertices.
(2) Let $d^{\prime}(s, u)$ be the length of $P(s, u, X)$

Observations: for each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$,
(1) $\operatorname{dist}(s, u) \leq d^{\prime}(s, u)$ since we are constraining the paths
(2) $d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))$

Finding the ith closest node

(1) X contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to s
(2) Want to find the i th closest node from $\boldsymbol{V}-\boldsymbol{X}$.
(1) For each $u \in V-X$ let $P(s, u, X)$ be a shortest path from s to u using only nodes in X as intermediate vertices.
(2) Let $d^{\prime}(s, u)$ be the length of $P(s, u, X)$

Observations: for each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$,
(1) $\operatorname{dist}(s, u) \leq d^{\prime}(s, u)$ since we are constraining the paths
(2) $d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))$

Lemma

If v is the ith closest node to s, then $d^{\prime}(s, v)=\operatorname{dist}(s, v)$.

Finding the ith closest node

Lemma

Given:
(1) X : Set of $\mathbf{i} \mathbf{1}$ closest nodes to s.
(2) $d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))$

If v is an ith closest node to s, then $d^{\prime}(s, v)=\operatorname{dist}(s, v)$.

Proof.

Let v be the i th closest node to s. Then there is a shortest path P from s to v that contains only nodes in X as intermediate nodes (see previous claim). Therefore $d^{\prime}(s, v)=\operatorname{dist}(s, v)$.

Finding the ith closest node

Lemma

If v is an ith closest node to s, then $d^{\prime}(s, v)=\operatorname{dist}(s, v)$.

Corollary

The i th closest node to s is the node $v \in \boldsymbol{V}-\boldsymbol{X}$ such that $d^{\prime}(s, v)=\min _{u \in v-x} d^{\prime}(s, u)$.

Finding the ith closest node

Lemma

If v is an ith closest node to s, then $d^{\prime}(s, v)=\operatorname{dist}(s, v)$.

Corollary

The ith closest node to s is the node $v \in \boldsymbol{V}-\boldsymbol{X}$ such that $d^{\prime}(s, v)=\min _{u \in v-x} d^{\prime}(s, u)$.

Proof.

For every node $u \in V-X, \operatorname{dist}(s, u) \leq d^{\prime}(s, u)$ and for the i th closest node $v, \operatorname{dist}(s, v)=d^{\prime}(s, v)$. Moreover, $\operatorname{dist}(s, u) \geq \operatorname{dist}(s, v)$ for each $u \in V-X$.

Algorithm

Initialize for each node v : $\operatorname{dist}(s, v)=\infty$ Initialize $X=\emptyset, \boldsymbol{d}^{\prime}(s, s)=0$
for $\boldsymbol{i}=1$ to $|V|$ do
(* Invariant: \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s} *)
(* Invariant: $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ is shortest path distance from \boldsymbol{u} to \boldsymbol{s} using only \boldsymbol{X} as intermediate nodes*)
Let v be such that $d^{\prime}(s, v)=\min _{u \in \boldsymbol{v}-\boldsymbol{X}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, u)$
$\operatorname{dist}(s, v)=d^{\prime}(s, v)$
$X=X \cup\{v\}$
for each node \boldsymbol{u} in $\boldsymbol{V}-\boldsymbol{X}$ do

$$
d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))
$$

Algorithm

Initialize for each node v : $\operatorname{dist}(s, v)=\infty$
Initialize $X=\emptyset, \boldsymbol{d}^{\prime}(s, s)=0$
for $\boldsymbol{i}=1$ to $|V|$ do
(* Invariant: \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s} *)
(* Invariant: $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ is shortest path distance from \boldsymbol{u} to \boldsymbol{s} using only \boldsymbol{X} as intermediate nodes*)
Let v be such that $d^{\prime}(s, v)=\min _{u \in \boldsymbol{v}-\boldsymbol{X}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, u)$
$\operatorname{dist}(s, v)=d^{\prime}(s, v)$
$X=X \cup\{v\}$
for each node \boldsymbol{u} in $\boldsymbol{V}-\boldsymbol{X}$ do

$$
d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))
$$

Correctness: By induction on \boldsymbol{i} using previous lemmas.

Algorithm

Initialize for each node v : $\operatorname{dist}(s, v)=\infty$
Initialize $X=\emptyset, \boldsymbol{d}^{\prime}(s, s)=0$
for $\boldsymbol{i}=1$ to $|V|$ do
(* Invariant: \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s} *)
(* Invariant: $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ is shortest path distance from \boldsymbol{u} to \boldsymbol{s} using only \boldsymbol{X} as intermediate nodes*)
Let v be such that $d^{\prime}(s, v)=\min _{u \in \boldsymbol{v}-\boldsymbol{X}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, u)$
$\operatorname{dist}(s, v)=d^{\prime}(s, v)$
$X=X \cup\{v\}$
for each node \boldsymbol{u} in $\boldsymbol{V}-\boldsymbol{X}$ do

$$
d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))
$$

Correctness: By induction on \boldsymbol{i} using previous lemmas.
Running time:

Algorithm

Initialize for each node v : $\operatorname{dist}(s, v)=\infty$
Initialize $X=\emptyset, \boldsymbol{d}^{\prime}(s, s)=0$
for $i=1$ to $|V|$ do
(* Invariant: \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s} *)
(* Invariant: $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ is shortest path distance from \boldsymbol{u} to \boldsymbol{s} using only \boldsymbol{X} as intermediate nodes*)
Let v be such that $d^{\prime}(s, v)=\min _{u \in \boldsymbol{v}-\boldsymbol{X}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, u)$
$\operatorname{dist}(s, v)=d^{\prime}(s, v)$
$X=X \cup\{v\}$
for each node \boldsymbol{u} in $\boldsymbol{V}-\boldsymbol{X}$ do

$$
d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))
$$

Correctness: By induction on \boldsymbol{i} using previous lemmas.
Running time: $O(n \cdot(n+m))$ time.
(1) n outer iterations. In each iteration, $d^{\prime}(s, u)$ for each u by scanning all edges out of nodes in $X ; O(m+n)$ time/iteration.

Improved Algorithm

(1) Main work is to compute the $d^{\prime}(s, u)$ values in each iteration
(2) $d^{\prime}(s, u)$ changes from iteration i to $i+1$ only because of the node \boldsymbol{v} that is added to \boldsymbol{X} in iteration \boldsymbol{i}.

Improved Algorithm

(1) Main work is to compute the $d^{\prime}(s, u)$ values in each iteration
(2) $d^{\prime}(s, u)$ changes from iteration i to $i+1$ only because of the node v that is added to \boldsymbol{X} in iteration i.

```
Initialize for each node v, dist(s,v)=\mp@subsup{d}{}{\prime}(s,v)=\infty
Initialize X = \emptyset, d}\mp@subsup{\boldsymbol{d}}{}{\prime}(\boldsymbol{s},\boldsymbol{s})=
for i=1 to |V| do
    // X contains the i-1 closest nodes to s,
    // and the values of (\mp@subsup{\boldsymbol{d}}{}{\prime}(\boldsymbol{s},\boldsymbol{u})\mathrm{ are current}
    Let v}\mathrm{ be node realizing }\mp@subsup{\boldsymbol{d}}{}{\prime}(\boldsymbol{s},\boldsymbol{v})=\mp@subsup{\boldsymbol{min}}{\boldsymbol{u}\in\boldsymbol{v}-\boldsymbol{X}}{}\mp@subsup{\boldsymbol{d}}{}{\prime}(\boldsymbol{s},\boldsymbol{u}
    dist}(s,v)=\mp@subsup{d}{}{\prime}(s,v
    X=X\cup{v}
    Update \mp@subsup{\boldsymbol{d}}{}{\prime}(\boldsymbol{s},\boldsymbol{u})\mathrm{ for each u}\mathrm{ in }\boldsymbol{V}-\boldsymbol{X}\mathrm{ as follows:}
    d'(s,u)=min}(\mp@subsup{d}{}{\prime}(s,u),\operatorname{dist}(s,v)+\ell(v,u)
```

Running time:

Improved Algorithm

```
Initialize for each node \(v\), \(\operatorname{dist}(s, v)=d^{\prime}(s, v)=\infty\)
Initialize \(X=\emptyset, d^{\prime}(s, s)=0\)
for \(\boldsymbol{i}=\mathbf{1}\) to \(|\boldsymbol{V}|\) do
    // \(\boldsymbol{X}\) contains the \(\boldsymbol{i} \mathbf{- 1}\) closest nodes to \(\boldsymbol{s}\),
    // and the values of \(\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})\) are current
    Let \(\boldsymbol{v}\) be node realizing \(\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{m i n}_{\boldsymbol{u} \in \boldsymbol{v}-\boldsymbol{x}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})\)
    \(\operatorname{dist}(s, v)=d^{\prime}(s, v)\)
    \(X=X \cup\{v\}\)
    Update \(\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})\) for each \(\boldsymbol{u}\) in \(\boldsymbol{V}-\boldsymbol{X}\) as follows:
        \(d^{\prime}(s, u)=\min \left(d^{\prime}(s, u), \operatorname{dist}(s, v)+\ell(v, u)\right)\)
```

Running time: $O\left(m+n^{2}\right)$ time.
(1) n outer iterations and in each iteration following steps
(2) updating $d^{\prime}(s, u)$ after v is added takes $O(\operatorname{deg}(v))$ time so total work is $O(m)$ since a node enters X only once
(3) Finding v from $d^{\prime}(s, u)$ values is $O(n)$ time

Dijkstra's Algorithm

(1) eliminate $d^{\prime}(s, u)$ and let $\operatorname{dist}(s, u)$ maintain it
(2) update dist values after adding v by scanning edges out of v

$$
\begin{aligned}
& \text { Initialize for each node v, } \operatorname{dist}(s, v)=\infty \\
& \text { Initialize } X=\emptyset \text {, } \operatorname{dist}(s, s)=0 \\
& \text { for } i=1 \text { to }|V| \text { do } \\
& \text { Let } v \text { be such that } \operatorname{dist}(s, v)=\min _{u \in v-x} \operatorname{dist}(s, u) \\
& X=X \cup\{v\} \\
& \text { for each } u \text { in } \operatorname{Adj}(v) \text { do } \\
& \qquad \operatorname{dist}(s, u)=\min (\operatorname{dist}(s, u), \operatorname{dist}(s, v)+\ell(v, u))
\end{aligned}
$$

Priority Queues to maintain dist values for faster running time

Dijkstra's Algorithm

(1) eliminate $d^{\prime}(s, u)$ and let $\operatorname{dist}(s, u)$ maintain it
(2) update dist values after adding v by scanning edges out of v

$$
\begin{aligned}
& \text { Initialize for each node } v, \operatorname{dist}(s, v)=\infty \\
& \text { Initialize } \boldsymbol{X}=\emptyset \text {, } \operatorname{dist}(s, s)=\mathbf{0} \\
& \text { for } \boldsymbol{i}=\mathbf{1} \text { to }|\boldsymbol{V}| \operatorname{do} \\
& \quad \text { Let } v \text { be such that } \operatorname{dist}(s, v)=\min _{u \in v-x} \operatorname{dist}(s, u) \\
& \boldsymbol{X}=\boldsymbol{X} \cup\{v\} \\
& \quad \text { for each } u \text { in } \operatorname{Adj}(v) \text { do } \\
& \quad \operatorname{dist}(s, u)=\boldsymbol{m i n}(\operatorname{dist}(s, u), \operatorname{dist}(s, v)+\ell(v, u))
\end{aligned}
$$

Priority Queues to maintain dist values for faster running time
(1) Using heaps and standard priority queues: $O((m+n) \log n)$

Priority Queues

Data structure to store a set S of \boldsymbol{n} elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:
(1) makePQ: create an empty queue.
(2) findMin: find the minimum key in S.
(3) extractMin: Remove $v \in S$ with smallest key and return it.
(0) insert $(v, k(v))$: Add new element v with key $k(v)$ to S.
(0) delete(v): Remove element v from S.

Priority Queues

Data structure to store a set S of \boldsymbol{n} elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:
(1) makePQ: create an empty queue.
(2) findMin: find the minimum key in S.
(3) extractMin: Remove $v \in S$ with smallest key and return it.
(9) insert $(v, k(v))$: Add new element v with key $k(v)$ to S.
(0) delete(v): Remove element v from S.
(0) decreaseKey $\left(v, k^{\prime}(v)\right)$: decrease key of v from $k(v)$ (current key) to $k^{\prime}(v)$ (new key). Assumption: $k^{\prime}(v) \leq k(v)$.
(0) meld: merge two separate priority queues into one.

Priority Queues

Data structure to store a set S of \boldsymbol{n} elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:
(1) makePQ: create an empty queue.
(2) findMin: find the minimum key in S.
(3) extractMin: Remove $v \in S$ with smallest key and return it.
(9) insert $(v, k(v))$: Add new element v with key $k(v)$ to S.
(0) delete (v) : Remove element v from S.
(0) decreaseKey $\left(v, k^{\prime}(v)\right)$: decrease key of v from $k(v)$ (current key) to $k^{\prime}(v)$ (new key). Assumption: $k^{\prime}(v) \leq k(v)$.
(0) meld: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time. decreaseKey is implemented via delete and insert.

Dijkstra's Algorithm using Priority Queues

```
\(Q \leftarrow\) makePQ()
insert ( \(Q,(s, 0)\) )
for each node \(u \neq s\) do
    insert \((Q,(u, \infty))\)
\(X \leftarrow \emptyset\)
for \(\boldsymbol{i}=1\) to \(|V|\) do
    \((v, \operatorname{dist}(s, v))=\operatorname{extractMin}(Q)\)
    \(X=X \cup\{v\}\)
    for each \(u\) in \(\operatorname{Adj}(v)\) do
        \(\operatorname{decreaseKey}(\boldsymbol{Q},(\boldsymbol{u}, \min (\operatorname{dist}(\boldsymbol{s}, \boldsymbol{u}), \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})+\ell(\boldsymbol{v}, \boldsymbol{u}))))\).
```

Priority Queue operations:
(1) $O(n)$ insert operations
(2) $O(n)$ extractMin operations
(3) $O(m)$ decreaseKey operations

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value (1) All operations can be done in $O(\log n)$ time

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value
(1) All operations can be done in $O(\log n)$ time

Dijkstra's algorithm can be implemented in $O((n+m) \log n)$ time.

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

(1) extractMin, insert, delete, meld in $O(\log n)$ time
(2) decreaseKey in $O(1)$ amortized time:

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

(1) extractMin, insert, delete, meld in $O(\log n)$ time
(2) decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
(0) Relaxed Heaps: decreaseKey in $O(\mathbf{1})$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

(1) extractMin, insert, delete, meld in $O(\log n)$ time
(2) decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
(3) Relaxed Heaps: decreaseKey in $O(\mathbf{1})$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
(1) Dijkstra's algorithm can be implemented in $O(n \log n+m)$ time. If $m=\Omega(n \log n)$, running time is linear in input size.

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

(1) extractMin, insert, delete, meld in $O(\log n)$ time
(2) decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
(3) Relaxed Heaps: decreaseKey in $O(\mathbf{1})$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
(1) Dijkstra's algorithm can be implemented in $O(n \log n+m)$ time. If $m=\Omega(n \log n)$, running time is linear in input size.
(2) Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

Shortest Path Tree

Dijkstra's algorithm finds the shortest path distances from s to V. Question: How do we find the paths themselves?

Shortest Path Tree

Dijkstra's algorithm finds the shortest path distances from s to V. Question: How do we find the paths themselves?

```
\(Q=\) makePQ()
insert ( \(Q,(s, 0)\) )
\(\operatorname{prev}(s) \leftarrow\) null
for each node \(\boldsymbol{u} \neq \boldsymbol{s}\) do
    insert \((Q,(u, \infty))\)
    \(\operatorname{prev}(u) \leftarrow\) null
\(X=\emptyset\)
for \(\boldsymbol{i}=1\) to \(|\boldsymbol{V}|\) do
    \((v, \operatorname{dist}(s, v))=\operatorname{extractMin}(Q)\)
    \(X=X \cup\{v\}\)
    for each \(u\) in \(\operatorname{Adj}(v)\) do
        if \((\operatorname{dist}(s, v)+\ell(v, u)<\operatorname{dist}(s, u))\) then
        \(\operatorname{decreaseKey}(Q,(u, \operatorname{dist}(s, v)+\ell(v, u)))\)
        \(\operatorname{prev}(u)=v\)
```


Shortest Path Tree

Lemma

The edge set $(u, \operatorname{prev}(u))$ is the reverse of a shortest path tree rooted at \boldsymbol{s}. For each \boldsymbol{u}, the reverse of the path from \boldsymbol{u} to \boldsymbol{s} in the tree is a shortest path from s to \mathbf{u}.

Proof Sketch.

(1) The edge set $\{(u, \operatorname{prev}(u)) \mid u \in V\}$ induces a directed in-tree rooted at s (Why?)
(2) Use induction on $|X|$ to argue that the tree is a shortest path tree for nodes in V.

Shortest paths to s

Dijkstra's algorithm gives shortest paths from s to all nodes in V. How do we find shortest paths from all of V to s ?

Shortest paths to s

Dijkstra's algorithm gives shortest paths from s to all nodes in V. How do we find shortest paths from all of V to s ?
(1) In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.
(2) In directed graphs, use Dijkstra's algorithm in $G^{\text {rev }}$!

