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Part I

A Brief Review
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Whatever-first-search

Given G = (V ,E) a directed graph and vertex u ∈ V . Let
n = |V |.

Explore(G,u):
array Visited [1..n]
Initialize: Set Visited [i ] = FALSE for 1 ≤ i ≤ n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u] = TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y ] == FALSE)

Visited [y ] = TRUE
Add y to ToExplore
Add y to S
Add y to T with edge (x, y)

Output S
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Properties of Basic Search

DFS and BFS are special case of BasicSearch.

1 Depth First Search (DFS): use stack data structure to
implement the list ToExplore

2 Breadth First Search (BFS): use queue data structure to
implementing the list ToExplore
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DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)
for all u ∈ V (G) do

Mark u as unvisited

T is set to ∅
time = 0
while ∃unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each uv in Out(u) do

if v is not marked then
add edge uv to T
DFS(v)

post(u) = ++time
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An Edge in DAG

Proposition

If G is a DAG and post(u) < post(v), then (u, v) is not in G.
i.e., for all edges (u, v) in a DAG, post(u) > post(v).
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Reverse post-order is topological order
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Sort SCCs

The SCCs are topologically sorted by arranging them in decreasing
order of their highest post number.

AB C

DE F

G H

Graph G

B,E , F

G H

A,C ,D

Graph of SCCs GSCC
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A Different DFS
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Part II

Breadth First Search
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Breadth First Search (BFS)

Overview
(A) BFS is obtained from BasicSearch by processing edges using a

data structure called a queue.
(B) It processes the vertices in the graph in the order of their

shortest distance from the vertex s (the start vertex).

As such...
1 DFS good for exploring graph structure

2 BFS good for exploring distances
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Queue Data Structure

Queues
A queue is a list of elements which supports the operations:

1 enqueue: Adds an element to the end of the list

2 dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e.,
elements are removed in the order in which they were inserted.
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BFS Algorithm

Given (undirected or directed) graph G = (V ,E) and node s ∈ V
BFS(s)

Mark all vertices as unvisited

Initialize search tree T to be empty

Mark vertex s as visited

set Q to be the empty queue

enq(s)
while Q is nonempty do

u = deq(Q)
for each vertex v ∈ Adj(u)

if v is not visited then
add edge (u, v) to T
Mark v as visited and enq(v)

Proposition

BFS(s) runs in O(n + m) time.
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BFS: An Example in Undirected Graphs
1

2 3

4 5
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78

1. [1]

4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.
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BFS: An Example in Directed Graphs

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug
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BFS with Distance

BFS(s)
Mark all vertices as unvisited; for each v set dist(v) =∞
Initialize search tree T to be empty

Mark vertex s as visited and set dist(s) = 0
set Q to be the empty queue

enq(s)
while Q is nonempty do

u = deq(Q)
for each vertex v ∈ Adj(u) do

if v is not visited do
add edge (u, v) to T
Mark v as visited, enq(v)
and set dist(v) = dist(u) + 1
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Properties of BFS: Undirected Graphs

Theorem
The following properties hold upon termination of BFS(s)
(A) The search tree contains exactly the set of vertices in the

connected component of s.
(B) If dist(u) < dist(v) then u is visited before v .
(C) For every vertex u, dist(u) is the length of a shortest path (in

terms of number of edges) from s to u.
(D) If u, v are in connected component of s and e = {u, v} is an

edge of G , then |dist(u)− dist(v)| ≤ 1.
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Properties of BFS: Directed Graphs

Theorem
The following properties hold upon termination of BFS(s):
(A) The search tree contains exactly the set of vertices reachable

from s
(B) If dist(u) < dist(v) then u is visited before v
(C) For every vertex u, dist(u) is the length of shortest path from s

to u
(D) If u is reachable from s and e = (u, v) is an edge of G , then

dist(v)− dist(u) ≤ 1.
Not necessarily the case that dist(u)− dist(v) ≤ 1.
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BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty

Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list

for each u in Li do
for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited

add (u, v) to tree T
add v to Li+1

i = i + 1

Running time: O(n + m)
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BFS: An Example in Undirected Graphs
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Part III

Shortest Paths and Dijkstra’s
Algorithm
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Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V ,E) with edge

lengths (or costs). For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

3 Find shortest paths for all pairs of nodes.

Many applications!
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Single-Source Shortest Paths:
Non-Negative Edge Lengths

Single-Source Shortest Path Problems
1 Input: A (undirected or directed) graph G = (V ,E) with

non-negative edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

2 Given nodes s, t find shortest path from s to t.

3 Given node s find shortest path from s to all other nodes.

1 Restrict attention to directed graphs

2 Undirected graph problem can be reduced to directed graph
problem
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Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.

1 Run BFS(s) to get shortest path distances from s to all other
nodes.

2 O(m + n) time algorithm.

Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing
`(e)− 1 dummy nodes on e
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Single-Source Shortest Paths via BFS

Let L = maxe `(e). New graph has O(mL) edges and O(mL + n)
nodes. BFS takes O(mL + n) time. Not efficient if L is large.
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Towards an algorithm

Why does BFS work?

BFS(s) explores nodes in increasing (shortest) distance from s

Lemma
Let G be a directed graph with non-negative edge lengths. Let
dist(s, v) denote the shortest path length from s to v . If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk
then for 1 ≤ i < k :

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to
vi

2 dist(s, vi) ≤ dist(s, vk). Relies on non-neg edge lengths.
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A proof by picture

s = v0

v1

v2

v3

v4

v5

v6

Shortest path
from v0 to v6
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A proof by picture
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A proof by picture

s = v0

v1

v2

v3

v4

v5

v6

Shortest path
from v0 to v6

A shorter path
from v0 to v6. A
contradiction.
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A Basic Strategy

Explore vertices in increasing order of (shortest) distance from s:
(For simplicity assume that nodes are at different distances from s
and that no edge has zero length)

Initialize for each node v, dist(s, v) =∞
Initialize X = {s},
for i = 2 to |V | do

(* Invariant: X contains the i − 1 closest nodes to s *)

Among nodes in V − X, find the node v that is the

i’th closest to s
Update dist(s, v)
X = X ∪ {v}

How can we implement the step in the for loop?
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Finding the ith closest node

1 X contains the i − 1 closest nodes to s
2 Want to find the i th closest node from V − X .

What do we know about the i th closest node?

Corollary
The i th closest node is adjacent to X .
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Finding the ith closest node

Claim
Let P be a shortest path from s to v where v is the i th closest
node. Then, all intermediate nodes in P belong to X .

Proof.
If P had an intermediate node u not in X then u will be closer to s
than v . Implies v is not the i ’th closest node to s - recall that X
already has the i − 1 closest nodes.
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Finding the ith closest node repeatedly
An example
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Finding the ith closest node

1 X contains the i − 1 closest nodes to s
2 Want to find the i th closest node from V − X .

1 For each u ∈ V − X let P(s, u,X ) be a shortest path from s
to u using only nodes in X as intermediate vertices.

2 Let d ′(s, u) be the length of P(s, u,X )

Observations: for each u ∈ V − X ,

1 dist(s, u) ≤ d ′(s, u) since we are constraining the paths

2 d ′(s, u) = mint∈X (dist(s, t) + `(t, u))

Lemma
If v is the i th closest node to s, then d ′(s, v) = dist(s, v).
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Finding the ith closest node

Lemma
Given:

1 X : Set of i − 1 closest nodes to s.
2 d ′(s, u) = mint∈X (dist(s, t) + `(t, u))

If v is an i th closest node to s, then d ′(s, v) = dist(s, v).

Proof.
Let v be the i th closest node to s. Then there is a shortest path P
from s to v that contains only nodes in X as intermediate nodes (see
previous claim). Therefore d ′(s, v) = dist(s, v).
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Corollary
The i th closest node to s is the node v ∈ V − X such that
d ′(s, v) = minu∈V−X d ′(s, u).

Proof.
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Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize X = ∅, d ′(s, s) = 0
for i = 1 to |V | do

(* Invariant: X contains the i − 1 closest nodes to s *)

(* Invariant: d ′(s, u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d ′(s, v) = minu∈V−X d ′(s, u)
dist(s, v) = d ′(s, v)
X = X ∪ {v}
for each node u in V − X do

d ′(s, u) = mint∈X

(
dist(s, t) + `(t, u)

)

Correctness: By induction on i using previous lemmas.
Running time: O(n · (n + m)) time.

1 n outer iterations. In each iteration, d ′(s, u) for each u by
scanning all edges out of nodes in X ; O(m + n) time/iteration.
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Improved Algorithm

1 Main work is to compute the d ′(s, u) values in each iteration
2 d ′(s, u) changes from iteration i to i + 1 only because of the

node v that is added to X in iteration i .

Initialize for each node v, dist(s, v) = d ′(s, v) =∞
Initialize X = ∅, d ′(s, s) = 0
for i = 1 to |V | do

// X contains the i − 1 closest nodes to s,
// and the values of d ′(s, u) are current

Let v be node realizing d ′(s, v) = minu∈V−X d ′(s, u)
dist(s, v) = d ′(s, v)
X = X ∪ {v}
Update d ′(s, u) for each u in V − X as follows:

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + `(v , u)

)
Running time: O(m + n2) time.

1 n outer iterations and in each iteration following steps
2 updating d ′(s, u) after v is added takes O(deg(v)) time so

total work is O(m) since a node enters X only once
3 Finding v from d ′(s, u) values is O(n) time
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Dijkstra’s Algorithm

1 eliminate d ′(s, u) and let dist(s, u) maintain it

2 update dist values after adding v by scanning edges out of v

Initialize for each node v, dist(s, v) =∞
Initialize X = ∅, dist(s, s) = 0
for i = 1 to |V | do

Let v be such that dist(s, v) = minu∈V−X dist(s, u)
X = X ∪ {v}
for each u in Adj(v) do

dist(s, u) = min
(
dist(s, u), dist(s, v) + `(v , u)

)
Priority Queues to maintain dist values for faster running time

1 Using heaps and standard priority queues: O((m + n) log n)
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Priority Queues

Data structure to store a set S of n elements where each element
v ∈ S has an associated real/integer key k(v) such that the
following operations:

1 makePQ: create an empty queue.

2 findMin: find the minimum key in S .

3 extractMin: Remove v ∈ S with smallest key and return it.

4 insert(v , k(v)): Add new element v with key k(v) to S .

5 delete(v): Remove element v from S .

6 decreaseKey(v , k ′(v)): decrease key of v from k(v) (current
key) to k ′(v) (new key). Assumption: k ′(v) ≤ k(v).

7 meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.
decreaseKey is implemented via delete and insert.
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Dijkstra’s Algorithm using Priority Queues

Q ← makePQ()

insert(Q, (s, 0))
for each node u 6= s do

insert(Q, (u,∞))

X ← ∅
for i = 1 to |V | do

(v , dist(s, v)) = extractMin(Q)
X = X ∪ {v}
for each u in Adj(v) do

decreaseKey
(
Q,

(
u, min

(
dist(s, u), dist(s, v) + `(v , u)

)))
.

Priority Queue operations:

1 O(n) insert operations

2 O(n) extractMin operations

3 O(m) decreaseKey operations

(UIUC) CS/ECE 374 40 March 30, 2021 40 / 45



Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

1 All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n + m) log n) time.

(UIUC) CS/ECE 374 41 March 30, 2021 41 / 45



Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

1 All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n + m) log n) time.

(UIUC) CS/ECE 374 41 March 30, 2021 41 / 45



Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps
1 extractMin, insert, delete, meld in O(log n) time

2 decreaseKey in O(1) amortized time:

` decreaseKey
operations for ` ≥ n take together O(`) time

3 Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

1 Dijkstra’s algorithm can be implemented in O(n log n + m)
time. If m = Ω(n log n), running time is linear in input size.

2 Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)
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Shortest Path Tree

Dijkstra’s algorithm finds the shortest path distances from s to V .
Question: How do we find the paths themselves?

Q = makePQ()

insert(Q, (s, 0))
prev(s)← null
for each node u 6= s do

insert(Q, (u,∞) )

prev(u)← null

X = ∅
for i = 1 to |V | do

(v , dist(s, v)) = extractMin(Q)
X = X ∪ {v}
for each u in Adj(v) do

if (dist(s, v) + `(v , u) < dist(s, u)) then
decreaseKey(Q, (u, dist(s, v) + `(v , u)))
prev(u) = v
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Shortest Path Tree

Lemma
The edge set (u, prev(u)) is the reverse of a shortest path tree
rooted at s. For each u, the reverse of the path from u to s in the
tree is a shortest path from s to u.

Proof Sketch.
1 The edge set {(u, prev(u)) | u ∈ V} induces a directed

in-tree rooted at s (Why?)

2 Use induction on |X | to argue that the tree is a shortest path
tree for nodes in V .
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Shortest paths to s

Dijkstra’s algorithm gives shortest paths from s to all nodes in V .
How do we find shortest paths from all of V to s?

1 In undirected graphs shortest path from s to u is a shortest path
from u to s so there is no need to distinguish.

2 In directed graphs, use Dijkstra’s algorithm in G rev!
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