CS/ECE 374: Algorithms \& Models of Computation

DAGs, DFS and SCC

Lecture 17

Part I

Directed Acyclic Graphs

DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proposition

A directed graph G can be topologically ordered iff it is a DAG.

Topological Ordering/Sorting

Topological Ordering of G

Graph G

Definition

A topological ordering/topological sorting of $G=(V, E)$ is an ordering \prec on V such that if $(\boldsymbol{u}, \boldsymbol{v}) \in E$ then $\boldsymbol{u} \prec \boldsymbol{v}$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

DAGs and Topological Sort

What does it mean?

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza \rightarrow eat the pizza, have a Coke.

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza \rightarrow eat the pizza, have a Coke. Case 2: Circular dependence.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered only if it is a DAG.

Proof.

Suppose G is not a DAG and has a topological ordering \prec. G has a cycle $C=u_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}, \boldsymbol{u}_{1}$.
Then $\boldsymbol{u}_{1} \prec \boldsymbol{u}_{2} \prec \ldots \prec \boldsymbol{u}_{k} \prec \boldsymbol{u}_{1}$!
That is... $\boldsymbol{u}_{1} \prec \boldsymbol{u}_{1}$.
A contradiction (to \prec being an order).
Not possible to topologically order the vertices.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered if it is a DAG.

Proof.

Consider the following algorithm:
(1) Pick a source \boldsymbol{u}, output it.
(2) Remove \boldsymbol{u} and all edges out of \boldsymbol{u}.
(3) Repeat until graph is empty.

Exercise: prove this gives toplogical sort.
Exercise: show algorithm can be implemented in $O(m+n)$ time.

Topological Sort: Example

DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.
Question: What is a DAG with the largest number of distinct topological sorts for a given number \boldsymbol{n} of vertices?

Question: What is a DAG with the smallest number of distinct topological sorts for a given number n of vertices?

Part II

DFS in Undirected Graphs

DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

DFS(G)

```
for all u\inV(G) do
            Mark u as unvisited
            Set pred(u) to null
    T}\mathrm{ is set to Ø
    while \exists unvisited u do
        DFS(u)
    Output T
```


DFS (\boldsymbol{u})

Mark u as visited for each $u v$ in $\operatorname{Adj}(u)$ do if \boldsymbol{v} is not visited then add edge $\boldsymbol{u v}$ to \boldsymbol{T} set $\operatorname{pred}(\boldsymbol{v})$ to \boldsymbol{u} DFS(v)

Implemented using a global array Visited for all recursive calls. T is the search tree/forest.

Example

Edges classified into two types: $\boldsymbol{u v} \in E$ is a
(1) tree edge: belongs to T
(2) non-tree edge: does not belong to \boldsymbol{T}

Properties of DFS tree

Proposition

(1) T is a forest
(2) connected components of T are same as those of G.
(3) If $\boldsymbol{u v} \in E$ is a non-tree edge then, in T, either:
(1) \boldsymbol{u} is an ancestor of \boldsymbol{v}, or
(2) \boldsymbol{v} is an ancestor of \boldsymbol{u}.

Question: Why are there no cross-edges?

DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)

for all $u \in V(G)$ do
Mark u as unvisited
\boldsymbol{T} is set to \emptyset
time $=0$
while ヨunvisited \boldsymbol{u} do DFS(u)
Output \boldsymbol{T}

DFS (\boldsymbol{u})

```
Mark u as visited
pre(u) = ++time
for each uv in Out(u) do
    if v}\mathrm{ is not marked then
        add edge uv to T
        DFS(v)
```

$\operatorname{post}(u)=++$ time

Example

pre and post numbers

Node u is active in time interval $[\operatorname{pre}(u), \operatorname{post}(u)]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(u), \operatorname{post}(u)]$ and [pre(v), post(v)] are disjoint or one is contained in the other.

pre and post numbers

Node u is active in time interval $[\operatorname{pre}(u), \operatorname{post}(u)]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$ and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(u), \operatorname{post}(u)]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(\mathbf{u}), \operatorname{post}(\boldsymbol{u})]$ and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that $\operatorname{pre}(u)<\operatorname{pre}(v)$. Then \boldsymbol{v} visited after \boldsymbol{u}.

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(u), \operatorname{post}(u)]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(u), \operatorname{post}(u)]$ and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that $\operatorname{pre}(u)<\operatorname{pre}(v)$. Then \boldsymbol{v} visited after \boldsymbol{u}.
- If $\operatorname{DFS}(v)$ invoked before $\operatorname{DFS}(u)$ finished, $\operatorname{post}(v)<\operatorname{post}(u)$.

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(u), \operatorname{post}(u)]$

Proposition

For any two nodes u and v, the two intervals $[\operatorname{pre}(u), \operatorname{post}(u)]$ and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u)<pre(v). Then v visited after \boldsymbol{u}.
- If DFS(v) invoked before $\operatorname{DFS}(u)$ finished, $\operatorname{post}(v)<\operatorname{post}(u)$.
- If $\operatorname{DFS}(v)$ invoked after $\operatorname{DFS}(u)$ finished, pre($v)>\operatorname{post}(u)$.

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(u), \operatorname{post}(u)]$

Proposition

For any two nodes u and v, the two intervals $[\operatorname{pre}(u), \operatorname{post}(u)]$ and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u)<pre(v). Then v visited after \boldsymbol{u}.
- If DFS(v) invoked before $\operatorname{DFS}(u)$ finished, $\operatorname{post}(v)<\operatorname{post}(u)$.
- If $\operatorname{DFS}(v)$ invoked after $\operatorname{DFS}(u)$ finished, pre($v)>\operatorname{post}(u)$.
pre and post numbers useful in several applications of DFS

Part III

DFS in Directed Graphs

DFS in Directed Graphs

DFS(G)

Mark all nodes \boldsymbol{u} as unvisited
\boldsymbol{T} is set to \emptyset
time $=0$
while there is an unvisited node \boldsymbol{u} do DFS(u)
Output T

DFS(u)

Mark u as visited
pre(u) $=++$ time
for each edge $(\boldsymbol{u}, \boldsymbol{v})$ in $\operatorname{Out}(\boldsymbol{u})$ do if \boldsymbol{v} is not visited add edge $(\boldsymbol{u}, \boldsymbol{v})$ to \boldsymbol{T} DFS(v)
$\operatorname{post}(u)=++$ time

Example

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(2) Edges added form a branching: a forest of out-trees. Output of $D F S(G)$ depends on the order in which vertices are considered.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(2) Edges added form a branching: a forest of out-trees. Output of $D F S(G)$ depends on the order in which vertices are considered.

- If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree \boldsymbol{T} rooted at \boldsymbol{u} and a vertex \boldsymbol{v} is in T if and only if $v \in \operatorname{rch}(u)$

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(2) Edges added form a branching: a forest of out-trees. Output of $D F S(G)$ depends on the order in which vertices are considered.

- If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree \boldsymbol{T} rooted at \boldsymbol{u} and a vertex \boldsymbol{v} is in T if and only if $v \in \operatorname{rch}(u)$
(1) For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(3) Edges added form a branching: a forest of out-trees. Output of $D F S(G)$ depends on the order in which vertices are considered.

- If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree \boldsymbol{T} rooted at \boldsymbol{u} and a vertex \boldsymbol{v} is in T if and only if $v \in \operatorname{rch}(u)$
(1) For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.
Note: Not obvious whether $\operatorname{DFS}(G)$ is useful in dir graphs but it is.

DFS Tree

Edges of \boldsymbol{G} can be classified with respect to the DFS tree \boldsymbol{T} as:
(1) Tree edges (x, y) that belong to T : $\operatorname{pre}(x)<\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{post}(x)$.
(2) A forward edge is a non-tree edges (x, y) such that $\operatorname{pre}(x)<\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{post}(x)$.

- A backward edge is a non-tree edge (x, y) such that $\operatorname{pre}(y)<\operatorname{pre}(x)<\operatorname{post}(x)<\operatorname{post}(y)$.
(1) A cross edge is a non-tree edges (x, y) such that $\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{pre}(x)<\operatorname{post}(x)$.

DFS Tree

Edges of \boldsymbol{G} can be classified with respect to the DFS tree \boldsymbol{T} as:
(1) Tree edges (x, y) that belong to T : $\operatorname{pre}(x)<\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{post}(x)$.
(2) A forward edge is a non-tree edges (x, y) such that $\operatorname{pre}(x)<\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{post}(x)$.
() A backward edge is a non-tree edge (x, y) such that $\operatorname{pre}(y)<\operatorname{pre}(x)<\operatorname{post}(x)<\operatorname{post}(y)$.
(1) A cross edge is a non-tree edges (x, y) such that $\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{pre}(x)<\operatorname{post}(x)$.

Note what makes a backward edge special is $\operatorname{post}(x)<\operatorname{post}(y)$.

DFS Tree

Edges of \boldsymbol{G} can be classified with respect to the DFS tree \boldsymbol{T} as:
(1) Tree edges (x, y) that belong to T : $\operatorname{pre}(x)<\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{post}(x)$.
(2) A forward edge is a non-tree edges (x, y) such that $\operatorname{pre}(x)<\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{post}(x)$.
() A backward edge is a non-tree edge (x, y) such that $\operatorname{pre}(y)<\operatorname{pre}(x)<\operatorname{post}(x)<\operatorname{post}(y)$.
(1) A cross edge is a non-tree edges (x, y) such that $\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{pre}(x)<\operatorname{post}(x)$.

Note what makes a backward edge special is $\operatorname{post}(x)<\operatorname{post}(y)$. Also note both backward and cross edge have $\operatorname{pre}(y)<\operatorname{pre}(x)$.

Types of Edges

Cycles in graphs

Question: Given an undirected graph how do we check whether it has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and output one if it has one?

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in $\operatorname{DFS}(G)$.

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in $\operatorname{DFS}(G)$.

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in $\operatorname{DFS}(G)$.

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C=v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k} \rightarrow v_{1}$. Let v_{i} be first node in C visited in DFS.
All other nodes in C are descendants of v_{i} since they are reachable from v_{i}.
Therefore, $\left(v_{i-1}, v_{i}\right)$ (or $\left(v_{k}, v_{1}\right)$ if $\left.i=1\right)$ is a back edge.

An Edge in DAG

Proposition

If G is a DAG and post $(u)<\operatorname{post}(v)$, then (u, v) is not in G. i.e., for all edges (u, v) in a DAG, post(u) $>\operatorname{post}(v)$.

An Edge in DAG

Proposition

If G is a DAG and post $(u)<\operatorname{post}(v)$, then (u, v) is not in G. i.e., for all edges $(\boldsymbol{u}, \boldsymbol{v})$ in a DAG, post(u) $>\operatorname{post}(v)$.

Proof.

Assume post $(\boldsymbol{u})<\operatorname{post}(\boldsymbol{v})$ and $(\boldsymbol{u}, \boldsymbol{v})$ is an edge in G. We derive a contradiction. One of two cases holds from DFS property.

- Case 1: $[\operatorname{pre}(u), \operatorname{post}(u)]$ is contained in $[\operatorname{pre}(v), \operatorname{post}(v)]$. Implies that \boldsymbol{u} is explored during $\operatorname{DFS}(v)$ and hence is a descendent of \boldsymbol{v}. Edge $(\boldsymbol{u}, \boldsymbol{v})$ implies a cycle in G but G is assumed to be DAG!
- Case 2: $[\operatorname{pre}(u), \operatorname{post}(u)]$ is disjoint from $[\operatorname{pre}(v), \operatorname{post}(v)]$. This cannot happen since \boldsymbol{v} would be explored from \boldsymbol{u}.

Using DFS...

to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

Using DFS...

to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:
(1) Compute DFS(G)
(2) If there is a back edge $e=(v, u)$ then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).

Using DFS...

to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:
(1) Compute DFS(G)
(2) If there is a back edge $e=(v, u)$ then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
(3) Otherwise output nodes in decreasing post-visit order.

Using DFS...

to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:
(1) Compute DFS(G)
(2) If there is a back edge $e=(v, u)$ then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
(0) Otherwise output nodes in decreasing post-visit order. Note: no need to sort, $\operatorname{DFS}(G)$ can output nodes in this order.

Algorithm runs in $O(n+m)$ time.

Example

Part IV

DAGs, DFS and SCC in Linear Time

Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G=(V, E)$, output all its strong connected components.

Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G=(V, E)$, output all its strong connected components.

Straightforward algorithm:
Mark all vertices in \boldsymbol{V} as not visited. for each vertex $\boldsymbol{u} \in \boldsymbol{V}$ not visited yet do find $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$ the strong component of \boldsymbol{u} :

Compute $\operatorname{rch}(G, u)$ using $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{u})$
Compute $\operatorname{rch}\left(\boldsymbol{G}^{\mathbf{r e v}}, \boldsymbol{u}\right)$ using $\operatorname{DFS}\left(\boldsymbol{G}^{\text {rev }}, \boldsymbol{u}\right)$ $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u}) \Leftarrow \operatorname{rch}(\boldsymbol{G}, \boldsymbol{u}) \cap \operatorname{rch}\left(\boldsymbol{G}^{\mathrm{rev}}, \boldsymbol{u}\right)$ $\forall \boldsymbol{u} \in \operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$: Mark \boldsymbol{u} as visited.

Running time: $O(n(n+m))$

Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G=(V, E)$, output all its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited.
for each vertex }\boldsymbol{u}\in\boldsymbol{V}\mathrm{ not visited yet do
    find }\operatorname{SCC}(\boldsymbol{G},\boldsymbol{u})\mathrm{ the strong component of }\boldsymbol{u}\mathrm{ :
Compute rch(G,u) using DFS(G,u)
Compute rch(G}\mp@subsup{\boldsymbol{G}}{}{\mathbf{rev}},\boldsymbol{u})\mathrm{ using DFS(G)
SCC}(\boldsymbol{G},\boldsymbol{u})\Leftarrow\operatorname{rch}(\boldsymbol{G},\boldsymbol{u})\cap\operatorname{rch}(\mp@subsup{G}{}{\textrm{rev}},\boldsymbol{u}
\forallu\in\operatorname{SCC}(\boldsymbol{G},\boldsymbol{u}): Mark u}\mathrm{ as visited.
```

Running time: $O(n(n+m))$
Is there an $O(n+m)$ time algorithm?

Graph of SCCs

Graph G

Meta-graph of SCCs

Let $S_{1}, S_{2}, \ldots S_{k}$ be the strong connected components (i.e., SCCs) of G . The graph of SCCs is $\mathrm{G}^{\mathrm{SCC}}$
(1) Vertices are $S_{1}, S_{2}, \ldots S_{k}$
(2) There is an edge $\left(S_{i}, S_{j}\right)$ if there is some $\boldsymbol{u} \in S_{i}$ and $v \in S_{j}$ such that (u, v) is an edge in G.

Structure of a Directed Graph

Graph G

Graph of SCCs G ${ }^{\text {SCC }}$

Reminder

$\mathrm{G}^{\mathrm{SCC}}$ is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

SCCs and DAGs

Proposition

For any graph G, the graph $G^{S C C}$ has no directed cycle.

Proof.

If $G^{\text {SCC }}$ has a cycle $S_{1}, S_{2}, \ldots, S_{k}$ then $S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ should be in the same SCC in G . Formal details: exercise.

Linear-time Algorithm for SCCs: Ideas

 Exploit structure of meta-graph...
Wishful Thinking Algorithm

(1) Let u be a vertex in a sink SCC of $G^{S C C}$
(2) Do $\operatorname{DFS}(u)$ to compute $\operatorname{SCC}(u)$
(3) Remove $\operatorname{SCC}(u)$ and repeat

Linear-time Algorithm for SCCs: Ideas

 Exploit structure of meta-graph...
Wishful Thinking Algorithm

(1) Let \boldsymbol{u} be a vertex in a sink SCC of $G^{\text {SCC }}$
(2) Do $\operatorname{DFS}(u)$ to compute $\operatorname{SCC}(u)$
(3) Remove $\operatorname{SCC}(\boldsymbol{u})$ and repeat

Justification

(1) DFS($\boldsymbol{u})$ only visits vertices (and edges) in $\operatorname{SCC}(\boldsymbol{u})$

Linear-time Algorithm for SCCs: Ideas

 Exploit structure of meta-graph...
Wishful Thinking Algorithm

(1) Let \boldsymbol{u} be a vertex in a sink SCC of $G^{S C C}$
(2) Do $\operatorname{DFS}(u)$ to compute $\operatorname{SCC}(u)$
(3) Remove $\operatorname{SCC}(\boldsymbol{u})$ and repeat

Justification

(1) DFS($\boldsymbol{u})$ only visits vertices (and edges) in $\operatorname{SCC}(\boldsymbol{u})$
(2) ... since there are no edges coming out a sink!
(3)
(4)

Linear-time Algorithm for SCCs: Ideas

 Exploit structure of meta-graph...
Wishful Thinking Algorithm

(1) Let \boldsymbol{u} be a vertex in a sink SCC of $G^{\text {SCC }}$
(2) Do $\operatorname{DFS}(u)$ to compute $\operatorname{SCC}(u)$
(3) Remove $\operatorname{SCC}(\boldsymbol{u})$ and repeat

Justification

(1) DFS($\boldsymbol{u})$ only visits vertices (and edges) in $\operatorname{SCC}(\boldsymbol{u})$
(2) ... since there are no edges coming out a sink!
(3) $\operatorname{DFS}(u)$ takes time proportional to size of $\operatorname{SCC}(u)$
(4)

Linear-time Algorithm for SCCs: Ideas

 Exploit structure of meta-graph...
Wishful Thinking Algorithm

(1) Let u be a vertex in a sink SCC of $G^{S C C}$
(2) Do $\operatorname{DFS}(u)$ to compute $\operatorname{SCC}(u)$
(3) Remove $\operatorname{SCC}(u)$ and repeat

Justification

(3) DFS(u) only visits vertices (and edges) in $\operatorname{SCC}(u)$
(3) ... since there are no edges coming out a sink!

- $\operatorname{DFS}(u)$ takes time proportional to size of $\operatorname{SCC}(u)$
- Therefore, total time $O(n+m)$!

Big Challenge(s)

How do we find a vertex in a sink SCC of $\mathrm{G}^{\mathrm{SCC}}$?

Big Challenge(s)

How do we find a vertex in a sink SCC of $\mathrm{G}^{\text {SCC }}$?
Can we obtain an implicit topological sort of $\mathrm{G}^{\text {SCC }}$ without computing $\mathrm{G}^{\mathrm{SCC}}$?

Big Challenge(s)

How do we find a vertex in a sink SCC of $\mathrm{G}^{\mathrm{SCC}}$?
Can we obtain an implicit topological sort of $\mathrm{G}^{\text {SCC }}$ without computing $\mathrm{G}^{\mathrm{SCC}}$?

There is no easy way to find a node in a sink SCC, but there is a way to find a node in a source SCC.

Big Challenge(s)

How do we find a vertex in a sink SCC of $\mathrm{G}^{\text {SCC }}$?
Can we obtain an implicit topological sort of $\mathrm{G}^{\text {SCC }}$ without computing $\mathrm{G}^{\mathrm{SCC}}$?

There is no easy way to find a node in a sink SCC, but there is a way to find a node in a source SCC.
Then we can find a node in the source SCC of the the reversal of $\mathrm{G}^{\mathrm{SCC}}$!

Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of $G^{\text {SCC }}$.

Proof.

The SCCs of G^{rev} are the same as those of G . Formal proof as exercise.

How to linearize SCCs

Proposition

If C and C^{\prime} are SCC , and there is an edge from a node in C to a node in C^{\prime}, then the highest post number in C is bigger than the highest post number in C^{\prime}.

How to linearize SCCs

Proposition

If C and C^{\prime} are SCC, and there is an edge from a node in C to a node in C^{\prime}, then the highest post number in C is bigger than the highest post number in C^{\prime}.

Proof

Consider two cases.
(1) Case 1: DFS visits C first.

How to linearize SCCs

Proposition

If C and C^{\prime} are SCC, and there is an edge from a node in C to a node in C^{\prime}, then the highest post number in C is bigger than the highest post number in C^{\prime}.

Proof

Consider two cases.
(1) Case 1: DFS visits C first. then all the vertices will be traversed. The first node visited in C will have the highest post number.

How to linearize SCCs

Proposition

If C and C^{\prime} are SCC , and there is an edge from a node in C to a node in C^{\prime}, then the highest post number in C is bigger than the highest post number in C^{\prime}.

Proof

Consider two cases.
(1) Case 1: DFS visits C first. then all the vertices will be traversed. The first node visited in C will have the highest post number.
(2) Case 2: DFS visits C^{\prime} first.

How to linearize SCCs

Proposition

If C and C^{\prime} are SCC , and there is an edge from a node in C to a node in C^{\prime}, then the highest post number in C is bigger than the highest post number in C^{\prime}.

Proof

Consider two cases.
(1) Case 1: DFS visits C first. then all the vertices will be traversed. The first node visited in C will have the highest post number.
(2) Case 2: DFS visits C^{\prime} first. then DFS will stop after visiting all nodes in C^{\prime} but before seeing any of C.

How to linearize SCCs

Proposition

The node that receives the highest post number in DFS must lie in a source SCC.

How to linearize SCCs

Proposition

The node that receives the highest post number in DFS must lie in a source SCC.

In other words, the SCCs are topologically sorted by arranging them in decreasing order of their highest post number.

How to linearize SCCs

Proposition

The node that receives the highest post number in DFS must lie in a source SCC.

In other words, the SCCs are topologically sorted by arranging them in decreasing order of their highest post number.

A generalization of topological sort for DAGs.

Linear Time Algorithm

...for computing the strong connected components in G

do DFS($\left.G^{\text {rev }}\right)$ and output vertices in decreasing post order. Mark all nodes as unvisited
for each \boldsymbol{u} in the computed order do
if \boldsymbol{u} is not visited then
DFS(u)
Let S_{u} be the nodes reached by \boldsymbol{u}
Output S_{u} as a strong connected component
Remove S_{u} from G

Theorem

Algorithm runs in time $O(m+n)$ and correctly outputs all the SCCs of G.

Linear Time Algorithm: An Example - Initial steps

Graph G:

DFS of reverse graph:

Reverse graph $G^{\text {rev }}$:

Pre/Post DFS numbering of reverse graph:

$\xrightarrow{[13,16]} \xrightarrow{[14,15]}$

Linear Time Algorithm: An Example

Removing connected components: 1

Original graph G with rev post numbers:

Do DFS from vertex G remove it.

SCC computed:
\{ G \}

Linear Time Algorithm: An Example

Removing connected components: 2

Do DFS from vertex G remove it.

SCC computed:
\{G\}

Do DFS from vertex \boldsymbol{H}, remove it.

SCC computed:
$\{G\},\{H\}$

Linear Time Algorithm: An Example

Removing connected components: 3

Do DFS from vertex \boldsymbol{H}, remove it.

SCC computed:
$\{G\},\{H\}$

Do DFS from vertex B
Remove visited vertices: $\{F, B, E\}$.

SCC computed:
$\{G\},\{H\},\{F, B, E\}$

Linear Time Algorithm: An Example

Removing connected components: 4

Do DFS from vertex F
Remove visited vertices: $\{F, B, E\}$.

SCC computed: $\{G\},\{H\},\{F, B, E\}$

Do DFS from vertex \boldsymbol{A}
Remove visited vertices:
$\{A, C, D\}$.

SCC computed:
$\{G\},\{H\},\{F, B, E\},\{A, C, D\}$

Linear Time Algorithm: An Example

Final result

SCC computed:
$\{G\},\{H\},\{F, B, E\},\{A, C, D\}$
Which is the correct answer!

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

- Is the problem solvable when G is strongly connected?
- Is the problem solvable when G is a DAG?
- If the above two are feasible then is the problem solvable in a general directed graph G by considering the meta graph $G^{S C C}$?

Take away Points

(1) Given a directed graph G, its SCCs and the associated acyclic meta-graph $\mathrm{G}^{\text {SCC }}$ give a structural decomposition of G that should be kept in mind.
(2) There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
(3) DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).

