
CS/ECE 374: Algorithms & Models of

Computation

Directed Graph, DAGs and
Topological Sort
Lecture 16

(UIUC) CS/ECE 374 1 March 23, 2021 1 / 41

Part I

Connectivity on Undirectd Graphs

(UIUC) CS/ECE 374 2 March 23, 2021 2 / 41

Connectivity Problems on Undirected Graphs

Algorithmic Problems
1 Given graph G and nodes u and v , is u connected to v?
2 Given G and node u, find all nodes that are connected to u.
3 Find all connected components of G .

Can be accomplished in O(m + n) time using BFS or DFS.
BFS and DFS are refinements of a basic search procedure which is
good to understand on its own.

(UIUC) CS/ECE 374 3 March 23, 2021 3 / 41

Basic Graph Search in Undirected Graphs

Given G = (V ,E) and vertex u 2 V . Let n = |V |.
Explore(G,u):

array Visited [1..n]
Initialize: Set Visited [i] = FALSE for 1 i n

List: ToExplore, S

Add u to ToExplore and to S, Visited [u] = TRUE

while (ToExplore is non-empty) do

Remove node x from ToExplore

for each edge (x, y) in Adj(x) do

if (Visited [y] == FALSE)

Visited [y] = TRUE

Add y to ToExplore

Add y to S

Output S

(UIUC) CS/ECE 374 4 March 23, 2021 4 / 41

011
l 2N

2M
04

Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u � V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

(UIUC) CS/ECE 374 5 March 23, 2021 5 / 41

ID toExplore
I

site.dz
z

Properties of Basic Search

Proposition
Explore(G , u) terminates with S = con(u).

Proof Sketch.
Once Visited [i] is set to TRUE it never changes. Hence a
node is added only once to ToExplore. Thus algorithm
terminates in at most n iterations of while loop.

If v 2 con(u), then v 2 S .

If v /2 con(u), then v /2 S .

Thus S = con(u) at termination.

(UIUC) CS/ECE 374 6 March 23, 2021 6 / 41

Properties of Basic Search

Proposition
Explore(G , u) terminates with S = con(u).

Proof Sketch.
Once Visited [i] is set to TRUE it never changes. Hence a
node is added only once to ToExplore. Thus algorithm
terminates in at most n iterations of while loop.

If v 2 con(u), then v 2 S .

If v /2 con(u), then v /2 S .

Thus S = con(u) at termination.

(UIUC) CS/ECE 374 6 March 23, 2021 6 / 41

Properties of Basic Search

Proposition
Explore(G , u) terminates with S = con(u).

Proof Sketch.
Once Visited [i] is set to TRUE it never changes. Hence a
node is added only once to ToExplore. Thus algorithm
terminates in at most n iterations of while loop.

If v 2 con(u), then v 2 S .

If v /2 con(u), then v /2 S .

Thus S = con(u) at termination.

(UIUC) CS/ECE 374 6 March 23, 2021 6 / 41

Properties of Basic Search

Depth First Search (DFS): use stack data structure to implement the
list ToExplore

(UIUC) CS/ECE 374 7 March 23, 2021 7 / 41

Properties of Basic Search

DFS and BFS are special case of BasicSearch.
1 Depth First Search (DFS): use stack data structure to

implement the list ToExplore

2 Breadth First Search (BFS): use queue data structure to
implementing the list ToExplore

(UIUC) CS/ECE 374 8 March 23, 2021 8 / 41

Search Tree

One can create a natural search tree T rooted at u during search.

Explore(G,u):

array Visited [1..n]
Initialize: Set Visited [i] = FALSE for 1 i n

List: ToExplore, S

Add u to ToExplore and to S, Visited [u] = TRUE

Make tree T with root as u

while (ToExplore is non-empty) do

Remove node x from ToExplore

for each edge (x, y) in Adj(x) do

if (Visited [y] == FALSE)

Visited [y] = TRUE

Add y to ToExplore

Add y to S

Add y to T with x as its parent

Output S

T is a spanning tree of con(u) rooted at u

(UIUC) CS/ECE 374 9 March 23, 2021 9 / 41

Spanning tree

A depth-first and breadth-first spanning tree.

(UIUC) CS/ECE 374 10 March 23, 2021 10 / 41

r

Finding all connected components

Exercise: Modify Basic Search to find all connected components of
a given graph G in O(m + n) time.

(UIUC) CS/ECE 374 11 March 23, 2021 11 / 41

I connected component 0 Mtn

Part II

Directed Graphs

(UIUC) CS/ECE 374 12 March 23, 2021 12 / 41

Directed Graphs

Definition
A directed graph G = (V ,E)
consists of

1 set of vertices/nodes V

and
2 a set of edges/arcs

E ✓ V ⇥ V .

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⇥ V � V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

An edge is an ordered pair of vertices. (u, v) di↵erent from (v , u).

(UIUC) CS/ECE 374 13 March 23, 2021 13 / 41

Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:
1 Road networks with one-way streets.
2 Web-link graph: vertices are web-pages and there is an edge

from page p to page p
0 if p has a link to p

0. Web graphs used
by Google with PageRank algorithm to rank pages.

3 Dependency graphs in variety of applications: link from x to y if
y depends on x . Make files for compiling programs.

4 Program Analysis: functions/procedures are vertices and there is
an edge from x to y if x calls y .

(UIUC) CS/ECE 374 14 March 23, 2021 14 / 41

Directed Graph Representation

Graph G = (V ,E) with n vertices and m edges:

1 Adjacency Matrix: n ⇥ n asymmetric matrix A. A[u, v] = 1
if (u, v) 2 E and A[u, v] = 0 if (u, v) 62 E . A[u, v] is not
same as A[v , u].

2 Adjacency Lists: for each node u, Out(u) (also referred to as
Adj(u)) and In(u) store out-going edges and in-coming edges
from u.

Default representation is adjacency lists.

(UIUC) CS/ECE 374 15 March 23, 2021 15 / 41

undirectedf J directed
o

A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected graphs
easily extends to directed graphs.

Array of edges E

ej

information including end point indices

Array of adjacency lists

vi

List of edges (indices) that are incident to vi

(UIUC) CS/ECE 374 16 March 23, 2021 16 / 41

Directed Connectivity

Given a graph G = (V ,E):

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⇥ V � V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

A (directed) path is a sequence of distinct vertices v1, v2, . . . , vk

such that (vi , vi+1) 2 E for 1 i k � 1. The length of the
path is k � 1 and the path is from v1 to vk .
By convention, a single node u is a path of length 0.

(UIUC) CS/ECE 374 17 March 23, 2021 17 / 41

ACD v

ADC X

Directed Connectivity

Given a graph G = (V ,E):

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⇥ V � V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

A vertex u can reach v if there is a path from u to v .

Let rch(u) be the set of all vertices reachable from u.

(UIUC) CS/ECE 374 18 March 23, 2021 18 / 41

Directed Connectivity

Given a graph G = (V ,E):

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⇥ V � V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

A vertex u can reach v if there is a path from u to v .

Let rch(u) be the set of all vertices reachable from u.

(UIUC) CS/ECE 374 18 March 23, 2021 18 / 41

Directed Connectivity

Asymmetricity: D can reach B but B cannot reach D

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⇥ V � V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

Questions:
1 Is there a notion of connected components?
2 How do we understand connectivity in directed graphs?

(UIUC) CS/ECE 374 19 March 23, 2021 19 / 41

µ
DAB

Directed Connectivity

Asymmetricity: D can reach B but B cannot reach D

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⇥ V � V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

Questions:
1 Is there a notion of connected components?
2 How do we understand connectivity in directed graphs?

(UIUC) CS/ECE 374 19 March 23, 2021 19 / 41

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can reach
v and v can reach u. In other words v 2 rch(u) and u 2 rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and
transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.

(UIUC) CS/ECE 374 20 March 23, 2021 20 / 41

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can reach
v and v can reach u. In other words v 2 rch(u) and u 2 rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and
transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.

(UIUC) CS/ECE 374 20 March 23, 2021 20 / 41

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can reach
v and v can reach u. In other words v 2 rch(u) and u 2 rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and
transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.

(UIUC) CS/ECE 374 20 March 23, 2021 20 / 41

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can reach
v and v can reach u. In other words v 2 rch(u) and u 2 rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and
transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.

(UIUC) CS/ECE 374 20 March 23, 2021 20 / 41

Strongly Connected Components: Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⇥ V � V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

(UIUC) CS/ECE 374 21 March 23, 2021 21 / 41

t o F

f t

IBEIK H.CI
meta graph

1 THI

Directed Graph Connectivity Problems

1 Given G and nodes u and v , can u reach v?
2 Given G and u, compute rch(u).
3 Given G and u, compute all v that can reach u, that is all v

such that u 2 rch(v).
4 Find the strongly connected component containing node u, that

is SCC(u).
5 Is G strongly connected (a single strong component)?
6 Compute all strongly connected components of G .

(UIUC) CS/ECE 374 22 March 23, 2021 22 / 41

Basic Graph Search in Directed Graphs

Given G = (V ,E) a directed graph and vertex u 2 V . Let
n = |V |.

Explore(G,u):

array Visited [1..n]
Initialize: Set Visited [i] = FALSE for 1 i n

List: ToExplore, S

Add u to ToExplore and to S, Visited [u] = TRUE

Make tree T with root as u

while (ToExplore is non-empty) do

Remove node x from ToExplore

for each edge (x, y) in Adj(x) do

if (Visited [y] == FALSE)

Visited [y] = TRUE

Add y to ToExplore

Add y to S

Add y to T with edge (x, y)
Output S

(UIUC) CS/ECE 374 23 March 23, 2021 23 / 41

Properties of Basic Search

Proposition
Explore(G , u) terminates with S = rch(u).

Proposition
T is a search tree rooted at u containing S with edges directed away
from root to leaves.

(UIUC) CS/ECE 374 24 March 23, 2021 24 / 41

Properties of Basic Search

Proposition
Explore(G , u) terminates with S = rch(u).

Proposition
T is a search tree rooted at u containing S with edges directed away
from root to leaves.

(UIUC) CS/ECE 374 24 March 23, 2021 24 / 41

Algorithms via Basic Search - I

1 Given G and nodes u and v , can u reach v?
2 Given G and u, compute rch(u).

Use Explore(G , u) to compute rch(u) in O(n + m) time.

(UIUC) CS/ECE 374 25 March 23, 2021 25 / 41

Algorithms via Basic Search - II

1 Given G and u, compute all v that can reach u, that is all v
such that u 2 rch(v).

Naive: O(n(n + m))

Definition (Reverse graph.)
Given G = (V ,E), G

rev is the graph with edge directions reversed
G

rev = (V ,E 0) where E
0 = {(y , x) | (x, y) 2 E}

Compute rch(u) in G
rev !

1 Running time: O(n + m) to obtain G
rev from G and

O(n + m) time to compute rch(u) via Basic Search.

(UIUC) CS/ECE 374 26 March 23, 2021 26 / 41

Algorithms via Basic Search - II

1 Given G and u, compute all v that can reach u, that is all v
such that u 2 rch(v).

Naive: O(n(n + m))

Definition (Reverse graph.)
Given G = (V ,E), G

rev is the graph with edge directions reversed
G

rev = (V ,E 0) where E
0 = {(y , x) | (x, y) 2 E}

Compute rch(u) in G
rev !

1 Running time: O(n + m) to obtain G
rev from G and

O(n + m) time to compute rch(u) via Basic Search.

(UIUC) CS/ECE 374 26 March 23, 2021 26 / 41

Algorithms via Basic Search - II

1 Given G and u, compute all v that can reach u, that is all v
such that u 2 rch(v).

Naive: O(n(n + m))

Definition (Reverse graph.)
Given G = (V ,E), G

rev is the graph with edge directions reversed
G

rev = (V ,E 0) where E
0 = {(y , x) | (x, y) 2 E}

Compute rch(u) in G
rev !

1 Running time: O(n + m) to obtain G
rev from G and

O(n + m) time to compute rch(u) via Basic Search.

(UIUC) CS/ECE 374 26 March 23, 2021 26 / 41

Algorithms via Basic Search - II

1 Given G and u, compute all v that can reach u, that is all v
such that u 2 rch(v).

Naive: O(n(n + m))

Definition (Reverse graph.)
Given G = (V ,E), G

rev is the graph with edge directions reversed
G

rev = (V ,E 0) where E
0 = {(y , x) | (x, y) 2 E}

Compute rch(u) in G
rev !

1 Running time: O(n + m) to obtain G
rev from G and

O(n + m) time to compute rch(u) via Basic Search.

(UIUC) CS/ECE 374 26 March 23, 2021 26 / 41

Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}

1 Find the strongly connected component containing node u.
That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) \ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and
Explore(G rev , u). Total O(n + m) time.

(UIUC) CS/ECE 374 27 March 23, 2021 27 / 41

Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) \ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and
Explore(G rev , u). Total O(n + m) time.

(UIUC) CS/ECE 374 27 March 23, 2021 27 / 41

Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) \ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and
Explore(G rev , u). Total O(n + m) time.

(UIUC) CS/ECE 374 27 March 23, 2021 27 / 41

Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) \ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and
Explore(G rev , u). Total O(n + m) time.

(UIUC) CS/ECE 374 27 March 23, 2021 27 / 41

Algorithms via Basic Search - IV

1 Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G , u) = V .

(UIUC) CS/ECE 374 28 March 23, 2021 28 / 41

Algorithms via Basic Search - IV

1 Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G , u) = V .

(UIUC) CS/ECE 374 28 March 23, 2021 28 / 41

Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u

find S = SCC(G , u)
Remove S from G

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

(UIUC) CS/ECE 374 29 March 23, 2021 29 / 41

Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u

find S = SCC(G , u)
Remove S from G

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

(UIUC) CS/ECE 374 29 March 23, 2021 29 / 41

Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u

find S = SCC(G , u)
Remove S from G

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

(UIUC) CS/ECE 374 29 March 23, 2021 29 / 41

Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u

find S = SCC(G , u)
Remove S from G

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

(UIUC) CS/ECE 374 29 March 23, 2021 29 / 41

Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u

find S = SCC(G , u)
Remove S from G

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

(UIUC) CS/ECE 374 29 March 23, 2021 29 / 41

Structure of a Directed Graph

AB C

DE F

G H

Graph G

B,E , F

G H

A,C ,D

Graph of SCCs GSCC

Reminder
GSCC is created by collapsing every strong connected component to a
single vertex.

Proposition

For a directed graph G, its meta-graph GSCC is a DAG.

(UIUC) CS/ECE 374 30 March 23, 2021 30 / 41

t

Part III

Directed Acyclic Graphs

(UIUC) CS/ECE 374 31 March 23, 2021 31 / 41

Directed Acyclic Graphs

Definition
A directed graph G is a
directed acyclic graph
(DAG) if there is no directed
cycle in G. 1

2 3

4

(UIUC) CS/ECE 374 32 March 23, 2021 32 / 41

a

234 x

Sources and Sinks

source sink

1

2 3

4

Definition
1 A vertex u is a source if it has no in-coming edges.
2 A vertex u is a sink if it has no out-going edges.

(UIUC) CS/ECE 374 33 March 23, 2021 33 / 41

Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a
source and vk is a sink.
Suppose not. Then v1 has an incoming edge which either creates a
cycle or a longer path both of which are contradictions. Similarly if
vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.
2 G is a DAG if and only if each node is in its own strong

connected component.

Formal proofs: exercise.

(UIUC) CS/ECE 374 34 March 23, 2021 34 / 41

Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a
source and vk is a sink.

Suppose not. Then v1 has an incoming edge which either creates a
cycle or a longer path both of which are contradictions. Similarly if
vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.
2 G is a DAG if and only if each node is in its own strong

connected component.

Formal proofs: exercise.

(UIUC) CS/ECE 374 34 March 23, 2021 34 / 41

Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a
source and vk is a sink.
Suppose not. Then v1 has an incoming edge which either creates a
cycle or a longer path both of which are contradictions. Similarly if
vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.
2 G is a DAG if and only if each node is in its own strong

connected component.

Formal proofs: exercise.

(UIUC) CS/ECE 374 34 March 23, 2021 34 / 41

IT Vz V3

Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a
source and vk is a sink.
Suppose not. Then v1 has an incoming edge which either creates a
cycle or a longer path both of which are contradictions. Similarly if
vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.

2 G is a DAG if and only if each node is in its own strong
connected component.

Formal proofs: exercise.

(UIUC) CS/ECE 374 34 March 23, 2021 34 / 41

Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a
source and vk is a sink.
Suppose not. Then v1 has an incoming edge which either creates a
cycle or a longer path both of which are contradictions. Similarly if
vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.
2 G is a DAG if and only if each node is in its own strong

connected component.

Formal proofs: exercise.
(UIUC) CS/ECE 374 34 March 23, 2021 34 / 41

Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition
A topological ordering/topological sorting of G = (V ,E) is an
ordering � on V such that if (u, v) 2 E then u � v .

Informal equivalent definition:
One can order the vertices of the graph along a line (say the x-axis)
such that all edges are from left to right.

(UIUC) CS/ECE 374 35 March 23, 2021 35 / 41

DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered i↵ it is a DAG.

Need to show both directions.

(UIUC) CS/ECE 374 36 March 23, 2021 36 / 41

DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered if it is a DAG.

Proof.
Consider the following algorithm:

1 Pick a source u, output it.
2 Remove u and all edges out of u.
3 Repeat until graph is empty.

Exercise: prove this gives toplogical sort.

Exercise: show algorithm can be implemented in O(m + n) time.

(UIUC) CS/ECE 374 37 March 23, 2021 37 / 41

Topological Sort: Example

a b c

d e

f g

h

(UIUC) CS/ECE 374 38 March 23, 2021 38 / 41

a

b ca d e f g h

DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered only if it is a DAG.

Proof.
Suppose G is not a DAG and has a topological ordering �. G has a
cycle C = u1, u2, . . . , uk , u1.
Then u1 � u2 � . . . � uk � u1!
That is... u1 � u1.
A contradiction (to � being an order).
Not possible to topologically order the vertices.

(UIUC) CS/ECE 374 39 March 23, 2021 39 / 41

DAGs and Topological Sort

Note: A DAG G may have many di↵erent topological sorts.

Question: What is a DAG with the most number of distinct
topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct
topological sorts for a given number n of vertices?

(UIUC) CS/ECE 374 40 March 23, 2021 40 / 41

