CS/ECE 374: Algorithms \& Models of

Computation

Directed Graph, DAGs and Topological Sort

Lecture 16

Part I

Connectivity on Undirectd Graphs

Connectivity Problems on Undirected Graphs

Algorithmic Problems

(1) Given graph G and nodes u and v, is u connected to v ?
(2) Given \boldsymbol{G} and node \boldsymbol{u}, find all nodes that are connected to \boldsymbol{u}.

- Find all connected components of G.

Can be accomplished in $O(m+n)$ time using BFS or DFS. BFS and DFS are refinements of a basic search procedure which is good to understand on its own.

Basic Graph Search in Undirected Graphs

Given $G=(\boldsymbol{V}, \boldsymbol{E})$ and vertex $\boldsymbol{u} \in \boldsymbol{V}$. Let $\boldsymbol{n}=|\boldsymbol{V}|$.

Explore ($\boldsymbol{G}, \boldsymbol{u}$):

```
array Visited[1..n]
Initialize: Set Visited[i]= FALSE for 1\leqi\leqn
```

List: ToExplore, S
Add \boldsymbol{u} to ToExplore and to S, Visited $[u]=$ TRUE
while (ToExplore is non-empty) do
Remove node x from ToExplore
for each edge (x, y) in $\operatorname{Adj}(x)$ do
if (Visited $[y]==$ FALSE $)$
Visited $[y]=$ TRUE
Add y to ToExplore
Add \boldsymbol{y} to \boldsymbol{S}

Output S

Example

Properties of Basic Search

Proposition

$\operatorname{Explore}(G, u)$ terminates with $S=\operatorname{con}(u)$.

Properties of Basic Search

Proposition

$\operatorname{Explore}(G, u)$ terminates with $S=\operatorname{con}(u)$.

Proof Sketch.

- Once Visited[i] is set to TRUE it never changes. Hence a node is added only once to ToExplore. Thus algorithm terminates in at most \boldsymbol{n} iterations of while loop.

Properties of Basic Search

Proposition

$\operatorname{Explore}(G, u)$ terminates with $S=\operatorname{con}(u)$.

Proof Sketch.

- Once Visited[i] is set to TRUE it never changes. Hence a node is added only once to ToExplore. Thus algorithm terminates in at most \boldsymbol{n} iterations of while loop.
- If $v \in \operatorname{con}(u)$, then $v \in S$.
- If $v \notin \operatorname{con}(u)$, then $v \notin S$.
- Thus $S=\operatorname{con}(u)$ at termination.

Properties of Basic Search

Depth First Search (DFS): use stack data structure to implement the list ToExplore

```
ITERATIVEDFS(s):
    Push(s)
    while the stack is not empty
        v \leftarrow \mathrm { POP }
        if v}\mathrm{ is unmarked
        mark v
        for each edge vw
                        Push(w)
```


Properties of Basic Search

DFS and BFS are special case of BasicSearch.
(1) Depth First Search (DFS): use stack data structure to implement the list ToExplore
(2) Breadth First Search (BFS): use queue data structure to implementing the list ToExplore

Search Tree

One can create a natural search tree \boldsymbol{T} rooted at \boldsymbol{u} during search.
Explore ($\boldsymbol{G}, \boldsymbol{u}$):
array Visited[1..n]
Initialize: Set Visited[i]=FALSE for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$
List: ToExplore, S
Add u to ToExplore and to S, Visited $[u]=$ TRUE
Make tree \boldsymbol{T} with root as \boldsymbol{u}
while (ToExplore is non-empty) do
Remove node x from ToExplore for each edge (x, y) in $\operatorname{Adj}(x)$ do if (Visited $[y]==$ FALSE)

Visited $[y]=$ TRUE
Add y to ToExplore
Add \boldsymbol{y} to \boldsymbol{S}
Add \boldsymbol{y} to \boldsymbol{T} with \boldsymbol{x} as its parent
Output S
T is a spanning tree of con (u) rooted at \boldsymbol{u}

Spanning tree

A depth-first and breadth-first spanning tree.

Finding all connected components

Exercise: Modify Basic Search to find all connected components of a given graph G in $O(m+n)$ time.

Part II

Directed Graphs

Directed Graphs

Definition

A directed graph $G=(V, E)$ consists of
(1) set of vertices/nodes V and
(2) a set of edges/arcs

$$
E \subseteq V \times V
$$

An edge is an ordered pair of vertices. $(\boldsymbol{u}, \boldsymbol{v})$ different from $(\boldsymbol{v}, \boldsymbol{u})$.

Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:
(1) Road networks with one-way streets.
(2) Web-link graph: vertices are web-pages and there is an edge from page \boldsymbol{p} to page \boldsymbol{p}^{\prime} if \boldsymbol{p} has a link to \boldsymbol{p}^{\prime}. Web graphs used by Google with PageRank algorithm to rank pages.
(3) Dependency graphs in variety of applications: link from x to y if y depends on x. Make files for compiling programs.
(9) Program Analysis: functions/procedures are vertices and there is an edge from x to y if x calls y.

Directed Graph Representation

Graph $G=(V, E)$ with n vertices and m edges:
(1) Adjacency Matrix: $n \times n$ asymmetric matrix A. $A[u, v]=1$ if $(u, v) \in E$ and $A[u, v]=0$ if $(u, v) \notin E . A[u, v]$ is not same as $A[v, u]$.
(2) Adjacency Lists: for each node $\boldsymbol{u}, \operatorname{Out}(\boldsymbol{u})$ (also referred to as $\operatorname{Adj}(u))$ and $\operatorname{In}(u)$ store out-going edges and in-coming edges from u.

Default representation is adjacency lists.

A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected graphs easily extends to directed graphs.

Array of edges E

Array of adjacency lists

Directed Connectivity

Given a graph $G=(V, E)$:

A (directed) path is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $\mathbf{1} \leq i \leq k-1$. The length of the path is $k-1$ and the path is from v_{1} to v_{k}. By convention, a single node \boldsymbol{u} is a path of length $\mathbf{0}$.

Directed Connectivity

Given a graph $G=(V, E)$:

A vertex \boldsymbol{u} can reach \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v}.

Directed Connectivity

Given a graph $G=(V, E)$:

A vertex \boldsymbol{u} can reach \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v}.
Let $\operatorname{rch}(u)$ be the set of all vertices reachable from \boldsymbol{u}.

Directed Connectivity

Asymmetricity: D can reach B but B cannot reach D

Directed Connectivity

Asymmetricity: D can reach B but B cannot reach D

Questions:

(1) Is there a notion of connected components?
(2) How do we understand connectivity in directed graphs?

Connectivity and Strong Connected Components

Definition

Given a directed graph $\boldsymbol{G}, \boldsymbol{u}$ is strongly connected to \boldsymbol{v} if \boldsymbol{u} can reach \boldsymbol{v} and \boldsymbol{v} can reach \boldsymbol{u}. In other words $\boldsymbol{v} \in \operatorname{rch}(\boldsymbol{u})$ and $\boldsymbol{u} \in \operatorname{rch}(v)$.

Connectivity and Strong Connected Components

Definition

Given a directed graph $\boldsymbol{G}, \boldsymbol{u}$ is strongly connected to \boldsymbol{v} if \boldsymbol{u} can reach \boldsymbol{v} and \boldsymbol{v} can reach \boldsymbol{u}. In other words $\boldsymbol{v} \in \operatorname{rch}(u)$ and $\boldsymbol{u} \in \operatorname{rch}(v)$.

Define relation C where $\boldsymbol{u C v}$ if \boldsymbol{u} is (strongly) connected to \boldsymbol{v}.

Connectivity and Strong Connected Components

Definition

Given a directed graph $\boldsymbol{G}, \boldsymbol{u}$ is strongly connected to \boldsymbol{v} if \boldsymbol{u} can reach \boldsymbol{v} and \boldsymbol{v} can reach \boldsymbol{u}. In other words $\boldsymbol{v} \in \operatorname{rch}(u)$ and $\boldsymbol{u} \in \operatorname{rch}(v)$.

Define relation C where $\boldsymbol{u C v}$ if \boldsymbol{u} is (strongly) connected to \boldsymbol{v}.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Connectivity and Strong Connected Components

Definition

Given a directed graph $\boldsymbol{G}, \boldsymbol{u}$ is strongly connected to \boldsymbol{v} if \boldsymbol{u} can reach \boldsymbol{v} and \boldsymbol{v} can reach \boldsymbol{u}. In other words $\boldsymbol{v} \in \operatorname{rch}(u)$ and $\boldsymbol{u} \in \operatorname{rch}(v)$.

Define relation C where $\boldsymbol{u C v}$ if \boldsymbol{u} is (strongly) connected to \boldsymbol{v}.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C : strong connected components of G. They partition the vertices of G.
SCC($\boldsymbol{u})$: strongly connected component containing \boldsymbol{u}.

Strongly Connected Components: Example

Directed Graph Connectivity Problems

(1) Given G and nodes \boldsymbol{u} and \boldsymbol{v}, can \boldsymbol{u} reach \boldsymbol{v} ?
(2) Given G and \boldsymbol{u}, compute $\operatorname{rch}(\boldsymbol{u})$.
(0) Given G and \boldsymbol{u}, compute all \boldsymbol{v} that can reach \boldsymbol{u}, that is all \boldsymbol{v} such that $u \in \operatorname{rch}(v)$.
(0) Find the strongly connected component containing node \boldsymbol{u}, that is $\operatorname{SCC}(u)$.

- Is G strongly connected (a single strong component)?
- Compute all strongly connected components of G.

Basic Graph Search in Directed Graphs

Given $G=(\boldsymbol{V}, \boldsymbol{E})$ a directed graph and vertex $\boldsymbol{u} \in \boldsymbol{V}$. Let $n=|V|$.

Explore ($\boldsymbol{G}, \boldsymbol{u}$):
array Visited[1..n]
Initialize: Set Visited[i]=FALSE for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$
List: ToExplore, S
Add u to ToExplore and to S, Visited $[u]=$ TRUE Make tree \boldsymbol{T} with root as \boldsymbol{u} while (ToExplore is non-empty) do Remove node x from ToExplore for each edge (x, y) in $\operatorname{Adj}(x)$ do if ($\operatorname{Visited}[y]==$ FALSE $)$ Visited $[y]=$ TRUE
Add y to ToExplore Add y to S Add y to \boldsymbol{T} with edge (x, y)
Output S

Properties of Basic Search

Proposition

$\operatorname{Explore}(G, u)$ terminates with $S=r c h(u)$.

Properties of Basic Search

Proposition

$\operatorname{Explore}(G, u)$ terminates with $S=r c h(u)$.

Proposition

T is a search tree rooted at \boldsymbol{u} containing S with edges directed away from root to leaves.

Algorithms via Basic Search - I

(1) Given G and nodes u and v, can u reach v ?
(2) Given G and \boldsymbol{u}, compute $\operatorname{rch}(u)$.

Use Explore (G, u) to compute $\operatorname{rch}(u)$ in $O(n+m)$ time.

Algorithms via Basic Search - II

(1) Given G and \boldsymbol{u}, compute all \boldsymbol{v} that can reach \boldsymbol{u}, that is all \boldsymbol{v} such that $u \in \operatorname{rch}(v)$.

Algorithms via Basic Search - II

(1) Given G and \boldsymbol{u}, compute all \boldsymbol{v} that can reach \boldsymbol{u}, that is all \boldsymbol{v} such that $u \in \operatorname{rch}(v)$.

Naive: $O(n(n+m))$

Algorithms via Basic Search - II

(1) Given \boldsymbol{G} and \boldsymbol{u}, compute all \boldsymbol{v} that can reach \boldsymbol{u}, that is all \boldsymbol{v} such that $u \in \operatorname{rch}(v)$.
Naive: $O(n(n+m))$

Definition (Reverse graph.)

Given $G=(V, E), G^{r e v}$ is the graph with edge directions reversed $G^{\text {rev }}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$

Algorithms via Basic Search - II

(1) Given G and \boldsymbol{u}, compute all \boldsymbol{v} that can reach \boldsymbol{u}, that is all \boldsymbol{v} such that $u \in \operatorname{rch}(v)$.

Naive: $O(n(n+m))$

Definition (Reverse graph.)

Given $G=(V, E), G^{r e v}$ is the graph with edge directions reversed $G^{r e v}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$

Compute rch(u) in $G^{r e v}$!
(1) Running time: $O(n+m)$ to obtain $G^{\text {rev }}$ from G and $O(n+m)$ time to compute rch(u) via Basic Search.

Algorithms via Basic Search - III

$\operatorname{SCC}(G, u)=\{v \mid u$ is strongly connected to $v\}$

Algorithms via Basic Search - III

$\operatorname{SCC}(G, u)=\{v \mid u$ is strongly connected to $v\}$
(1) Find the strongly connected component containing node \boldsymbol{u}. That is, compute $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$.

Algorithms via Basic Search - III

$\operatorname{SCC}(G, u)=\{v \mid u$ is strongly connected to $v\}$
(1) Find the strongly connected component containing node \boldsymbol{u}. That is, compute $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$.
$\operatorname{SCC}(G, u)=\operatorname{rch}(G, u) \cap \operatorname{rch}\left(G^{\operatorname{rev}}, u\right)$

Algorithms via Basic Search - III

$\operatorname{SCC}(G, u)=\{v \mid u$ is strongly connected to $v\}$
(1) Find the strongly connected component containing node \boldsymbol{u}. That is, compute $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$.
$\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})=\operatorname{rch}(\boldsymbol{G}, \boldsymbol{u}) \cap \operatorname{rch}\left(\boldsymbol{G}^{\mathrm{rev}}, \boldsymbol{u}\right)$
Hence, $\operatorname{SCC}(G, u)$ can be computed with $\operatorname{Explore}(G, u)$ and Explore $\left(G^{r e v}, u\right)$. Total $O(n+m)$ time.

Algorithms via Basic Search - IV

(1) Is G strongly connected?

Algorithms via Basic Search - IV

(1) Is G strongly connected?

Pick arbitrary vertex \boldsymbol{u}. Check if $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})=\boldsymbol{V}$.

Algorithms via Basic Search - V

(1) Find all strongly connected components of G.

Algorithms via Basic Search - V

(1) Find all strongly connected components of G.

```
While G is not empty do
    Pick arbitrary node u
    find S = SCC(G,u)
    Remove S from G
```


Algorithms via Basic Search - V

(1) Find all strongly connected components of G.

```
While G is not empty do
    Pick arbitrary node u
    find S = SCC(G,u)
    Remove S from G
```


Algorithms via Basic Search - V

(1) Find all strongly connected components of G.

```
While G is not empty do
    Pick arbitrary node u
    find S = SCC(G,u)
    Remove S from G
```

Running time: $O(n(n+m))$.

Algorithms via Basic Search - V

(1) Find all strongly connected components of G.

```
While G is not empty do
    Pick arbitrary node u
    find S = SCC(G,u)
    Remove S from G
```

Running time: $O(n(n+m))$.
Question: Can we do it in $O(n+m)$ time?

Structure of a Directed Graph

Graph G

Graph of SCCs G ${ }^{\text {SCC }}$

Reminder

$\mathrm{G}^{\mathrm{SCC}}$ is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph $G^{S C C}$ is a DAG.

Part III

Directed Acyclic Graphs

Directed Acyclic Graphs

Definition

A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.

Sources and Sinks

Definition

(1) A vertex \boldsymbol{u} is a source if it has no in-coming edges.
(2) A vertex \boldsymbol{u} is a sink if it has no out-going edges.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a longest path in G. Claim that $v_{\mathbf{1}}$ is a source and v_{k} is a sink.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a longest path in G. Claim that $v_{\mathbf{1}}$ is a source and v_{k} is a sink.
Suppose not. Then $\boldsymbol{v}_{\mathbf{1}}$ has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if $\boldsymbol{v}_{\boldsymbol{k}}$ has an outgoing edge.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a longest path in G. Claim that v_{1} is a source and v_{k} is a sink.
Suppose not. Then $\boldsymbol{v}_{\mathbf{1}}$ has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if $\boldsymbol{v}_{\boldsymbol{k}}$ has an outgoing edge.
(1) G is a DAG if and only if $G^{\text {rev }}$ is a DAG.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a longest path in G. Claim that v_{1} is a source and v_{k} is a sink.
Suppose not. Then $\boldsymbol{v}_{\mathbf{1}}$ has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if $\boldsymbol{v}_{\boldsymbol{k}}$ has an outgoing edge.
(1) G is a DAG if and only if $G^{\text {rev }}$ is a DAG.
(2) G is a DAG if and only if each node is in its own strong connected component.
Formal proofs: exercise.

Topological Ordering/Sorting

Topological Ordering of G

Graph G

Definition

A topological ordering/topological sorting of $G=(V, E)$ is an ordering \prec on V such that if $(\boldsymbol{u}, \boldsymbol{v}) \in E$ then $\boldsymbol{u} \prec \boldsymbol{v}$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered iff it is a DAG.
Need to show both directions.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered if it is a DAG.

Proof.

Consider the following algorithm:
(1) Pick a source \boldsymbol{u}, output it.
(2) Remove \boldsymbol{u} and all edges out of \boldsymbol{u}.
(3) Repeat until graph is empty.

Exercise: prove this gives toplogical sort.
Exercise: show algorithm can be implemented in $O(m+n)$ time.

Topological Sort: Example

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered only if it is a DAG.

Proof.

Suppose G is not a DAG and has a topological ordering \prec. G has a cycle $C=u_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}, \boldsymbol{u}_{1}$.
Then $\boldsymbol{u}_{1} \prec \boldsymbol{u}_{2} \prec \ldots \prec \boldsymbol{u}_{k} \prec \boldsymbol{u}_{1}$!
That is... $\boldsymbol{u}_{1} \prec \boldsymbol{u}_{1}$.
A contradiction (to \prec being an order).
Not possible to topologically order the vertices.

DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.
Question: What is a DAG with the most number of distinct topological sorts for a given number \boldsymbol{n} of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number \boldsymbol{n} of vertices?

