CS/ECE 374: Algorithms & Models of Computation

Independent Sets in Trees and Graph Basics

Lecture 15

How to design DP algorithms

• Find a "smart" recursion (The hard part)

- Formulate the sub-problem
- so that the number of distinct subproblems is small; polynomial in the original problem size.

How to design DP algorithms

Find a "smart" recursion (The hard part)

- Formulate the sub-problem
- so that the number of distinct subproblems is small; polynomial in the original problem size.

2 Memoization

- Identify distinct subproblems
- Ochoose a memoization data structure
- 3 Identify dependencies and find a good evaluation order
- An iterative algorithm replacing recursive calls with array lookups

Which data structure?

So far our memoization uses multi-dimensional arrays:

- Fibonacci numbers, 1-D array
- Text segmentation, suffix, 1-D array
- Longest increasing subsequence, suffix+index, 2-D array
- Edit distance, two prefixes, 2-D array

Which data structure?

So far our memoization uses multi-dimensional arrays:

- Fibonacci numbers, 1-D array
- Text segmentation, suffix, 1-D array
- Longest increasing subsequence, suffix+index, 2-D array
- Edit distance, two prefixes, 2-D array

Not always true.

Part I

Maximum Weight Independent Set in Trees

Independent Set in a Graph

Definition

Given undirected graph G = (V, E) a subset of nodes $S \subseteq V$ is an independent set if there are no edges between nodes in S. That is, if $u, v \in S$ then $(u, v) \notin E$.

Some independent sets in graph above: $\{D\}, \{A, C\}, \{B, E, F\}$

(UIUC)

Input Graph G = (V, E) and weights $w(v) \ge 0$ for each $v \in V$

Goal Find maximum weight independent set in G

Input Graph G = (V, E) and weights $w(v) \ge 0$ for each $v \in V$

Goal Find maximum weight independent set in G

Some independent sets in graph above: $\{D\}, \{A, C\}, \{B, E, F\}$

Input Graph G = (V, E) and weights $w(v) \ge 0$ for each $v \in V$

Goal Find maximum weight independent set in G

Some independent sets in graph above: $\{D\}, \{A, C\}, \{B, E, F\}$ Maximum weight independent set in above graph: $\{B, D\}$

- Finding the largest independent set in an arbitrary graph is extremely hard
- the canonical NP-hard problem

Convert into a sequence of decision problems.

Convert into a sequence of decision problems.

- Number vertices as v_1, v_2, \ldots, v_n
- Decision problem: to include v_n or not

Convert into a sequence of decision problems.

- 1 Number vertices as v_1, v_2, \ldots, v_n
- Decision problem: to include v_n or not
- Try all possibilities and let the recursion fairy take care of the remaining decisions
- Sind recursively optimum solutions without v_n (recurse on $G v_n$) and with v_n (recurse on $G v_n N(v_n)$ & include v_n).

Convert into a sequence of decision problems.

- 1 Number vertices as v_1, v_2, \ldots, v_n
- Decision problem: to include v_n or not
- Try all possibilities and let the recursion fairy take care of the remaining decisions
- Find recursively optimum solutions without v_n (recurse on G v_n) and with v_n (recurse on G v_n N(v_n) & include v_n).
- If graph G is arbitrary there is no good ordering that resulted in a small number of subproblems.

- Finding the largest independent set in an arbitrary graph is extremely hard
- the canonical NP-hard problem

- Finding the largest independent set in an arbitrary graph is extremely hard
- the canonical NP-hard problem
- But in some special classes of graphs, we can find largest independent sets quickly
- when the input graph is a tree with n vertices, we can compute in O(n) time

Maximum Weight Independent Set in a Tree

Input Tree T = (V, E) and weights $w(v) \ge 0$ for each $v \in V$

Goal Find maximum weight independent set in T

Convert into a sequence of decision problems.

Convert into a sequence of decision problems.

- 1 Number vertices as v_1, v_2, \ldots, v_n
- Decision problem: to include v_n or not
- Try all possibilities and let the recursion fairy take care of the remaining decisions
- Find recursively optimum solutions without v_n (recurse on G v_n) and with v_n (recurse on G v_n N(v_n) & include v_n).
- If graph G is arbitrary there is no good ordering that resulted in a small number of subproblems.

Convert into a sequence of decision problems.

- **1** Number vertices as v_1, v_2, \ldots, v_n
- Decision problem: to include v_n or not
- Try all possibilities and let the recursion fairy take care of the remaining decisions
- Find recursively optimum solutions without v_n (recurse on G v_n) and with v_n (recurse on G v_n N(v_n) & include v_n).
- If graph G is arbitrary there is no good ordering that resulted in a small number of subproblems.

What is special about a tree?

T(u): subtree of **T** hanging at node **u OPT(u)**: max weighted independent set value in **T(u)**

OPT(u) =

T(u): subtree of T hanging at node uOPT(u): max weighted independent set value in T(u)

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

T(u): subtree of T hanging at node uOPT(u): max weighted independent set value in T(u)

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

Is it a smart recursion?

T(u): subtree of T hanging at node uOPT(u): max weighted independent set value in T(u)

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

Is it a smart recursion? How many distinct subproblems?

T(u): subtree of T hanging at node uOPT(u): max weighted independent set value in T(u)

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

Is it a smart recursion? How many distinct subproblems? O(n)

T(u): subtree of T hanging at node uOPT(u): max weighted independent set value in T(u)

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

Is it a smart recursion? How many distinct subproblems? O(n)

Base case: Reach a leaf of the tree

T(u): subtree of T hanging at node uOPT(u): max weighted independent set value in T(u)

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

Is it a smart recursion? How many distinct subproblems? O(n)

Base case: Reach a leaf of the tree

What data structure to memoize this recurrence?

T(u): subtree of T hanging at node uOPT(u): max weighted independent set value in T(u)

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

Is it a smart recursion? How many distinct subproblems? O(n)

Base case: Reach a leaf of the tree

What data structure to memoize this recurrence? A tree

Order of evaluation

- Compute OPT(u) bottom up. To evaluate OPT(u) need to have computed values of all children and grandchildren of u
- What is an ordering of nodes of a tree T to achieve above?

Order of evaluation

- Compute OPT(u) bottom up. To evaluate OPT(u) need to have computed values of all children and grandchildren of u
- What is an ordering of nodes of a tree *T* to achieve above? Post-order traversal of a tree.

$$\begin{aligned} \mathsf{MIS-Tree}(T): \\ & \text{Let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of T} \\ & \text{for } i = 1 \text{ to } n \text{ do} \\ & M[v_i] = \max \begin{pmatrix} \sum_{v_j \text{ child of } v_i} M[v_j], \\ & w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{pmatrix} \\ & \text{return } M[v_n] \text{ (* Note: } v_n \text{ is the root of } T \text{ *)} \end{aligned}$$

Space:

 $\begin{aligned} \mathsf{MIS-Tree}(T): \\ & \text{Let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of T} \\ & \text{for } i = 1 \text{ to } n \text{ do} \\ & \mathcal{M}[v_i] = \max \begin{pmatrix} \sum_{v_j \text{ child of } v_i} \mathcal{M}[v_j], \\ & w(v_i) + \sum_{v_j \text{ grandchild of } v_i} \mathcal{M}[v_j] \end{pmatrix} \\ & \text{return } \mathcal{M}[v_n] \text{ (* Note: } v_n \text{ is the root of } T \text{ *)} \end{aligned}$

Space: O(n) to store the value at each node of TRunning time:

 $\begin{aligned} \mathsf{MIS-Tree}(T): \\ & \text{Let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of T} \\ & \text{for } i = 1 \text{ to } n \text{ do} \\ & M[v_i] = \max \begin{pmatrix} \sum_{v_j \text{ child of } v_i} M[v_j], \\ & w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{pmatrix} \\ & \text{return } M[v_n] \text{ (* Note: } v_n \text{ is the root of } T \text{ *)} \end{aligned}$

Space: O(n) to store the value at each node of TRunning time:

• Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.

 $\begin{aligned} \mathsf{MIS-Tree}(T): \\ & \text{Let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of T} \\ & \text{for } i = 1 \text{ to } n \text{ do} \\ & M[v_i] = \max \begin{pmatrix} \sum_{v_j \text{ child of } v_i} M[v_j], \\ & w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{pmatrix} \\ & \text{return } M[v_n] \text{ (* Note: } v_n \text{ is the root of } T \text{ *)} \end{aligned}$

Space: O(n) to store the value at each node of TRunning time:

- Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are *n* evaluations.
- 2 Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

(UIUC)

Part II

Graph Basics

Why Graphs?

Many important and useful optimization problems are graph problems

Why Graphs?

- Many important and useful optimization problems are graph problems
- 2 Two levels of resolution:

Why Graphs?

- Many important and useful optimization problems are graph problems
- Two levels of resolution:
 - Classic graph algorithms
 - One of the second se

Example: Medieval road network

Example: Modeling Problems as Search

State Space Search

Many search problems can be modeled as search on a graph. The trick is figuring out what the vertices and edges are.

Missionaries and Cannibals

- Three missionaries, three cannibals, one boat, one river
- Boat carries two people, must have at least one person
- Must all get across
- At no time can cannibals outnumber missionaries

How is this a graph search problem? What are the vertices? What are the edges?

Example: Missionaries and Cannibals Graph

goal

Graph

Definition

An undirected (simple) graph

G = (V, E) is a 2-tuple:

- V is a set of vertices (also referred to as nodes)
- 2 E is a set of edges where each edge $e \in E$ is a set of the form $\{u, v\}$ with $u, v \in V$ and $u \neq v$.

Example

In figure, G = (V, E) where $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}.$

Notation and Convention

Graph is just a way of encoding pairwise relationships.

Notation and Convention

Graph is just a way of encoding pairwise relationships.

Notation

An edge in an undirected graphs is an *unordered* pair of nodes and hence it is a set. Conventionally we use (u, v) for $\{u, v\}$ when it is clear from the context that the graph is undirected.

• u and v are the end points of an edge $\{u, v\}$

Adjacency Matrix

Represent G = (V, E) with *n* vertices and *m* edges using a $n \times n$ adjacency matrix *A* where

• A[i,j] = A[j,i] = 1 if $\{i,j\} \in E$ and A[i,j] = A[j,i] = 0if $\{i,j\} \notin E$.

Adjacency Matrix

Represent G = (V, E) with *n* vertices and *m* edges using a $n \times n$ adjacency matrix *A* where

- A[i,j] = A[j,i] = 1 if $\{i,j\} \in E$ and A[i,j] = A[j,i] = 0if $\{i,j\} \notin E$.
- 2 Advantage: can check if $\{i, j\} \in E$ in O(1) time

Adjacency Matrix

Represent G = (V, E) with *n* vertices and *m* edges using a $n \times n$ adjacency matrix *A* where

- A[i,j] = A[j,i] = 1 if $\{i,j\} \in E$ and A[i,j] = A[j,i] = 0if $\{i,j\} \notin E$.
- 2 Advantage: can check if $\{i, j\} \in E$ in O(1) time
- 3 Disadvantage: needs $\Omega(n^2)$ space even when $m \ll n^2$

Adjacency Lists

Represent G = (V, E) with *n* vertices and *m* edges using adjacency lists:

For each u ∈ V, Adj(u) = {v | {u, v} ∈ E}, that is neighbors of u. Sometimes Adj(u) is the list of edges incident to u.

Adjacency Lists

Represent G = (V, E) with *n* vertices and *m* edges using adjacency lists:

- For each u ∈ V, Adj(u) = {v | {u, v} ∈ E}, that is neighbors of u. Sometimes Adj(u) is the list of edges incident to u.
- Advantage: space is O(m + n)

Adjacency Lists

Represent G = (V, E) with *n* vertices and *m* edges using adjacency lists:

- For each u ∈ V, Adj(u) = {v | {u, v} ∈ E}, that is neighbors of u. Sometimes Adj(u) is the list of edges incident to u.
- 2 Advantage: space is O(m + n)
- 3 Disadvantage: cannot "easily" determine in O(1) time whether $\{i, j\} \in E$
 - By sorting each list, one can achieve $O(\log n)$ time
 - **2** By hashing "appropriately", one can achieve O(1) time

Adjacency Lists

Represent G = (V, E) with *n* vertices and *m* edges using adjacency lists:

- For each u ∈ V, Adj(u) = {v | {u, v} ∈ E}, that is neighbors of u. Sometimes Adj(u) is the list of edges incident to u.
- 2 Advantage: space is O(m + n)
- 3 Disadvantage: cannot "easily" determine in O(1) time whether $\{i, j\} \in E$
 - By sorting each list, one can achieve $O(\log n)$ time
 - **2** By hashing "appropriately", one can achieve O(1) time

Note: In this class we will assume that by default, graphs are represented using plain vanilla (unsorted) adjacency lists.

(UIUC)

A Concrete Representation

- Assume vertices are numbered arbitrarily as $\{1, 2, \ldots, n\}$.
- Edges are numbered arbitrarily as $\{1, 2, \ldots, m\}$.
- Edges stored in an array/list of size *m*. *E*[*j*] is *j*'th edge with info on end points which are integers in range 1 to *n*.
- Array Adj of size n for adjacency lists. Adj[i] points to adjacency list of vertex i. Adj[i] is a list of edge indices in range 1 to m.

A Concrete Representation

(UIUC)

Connectivity Problems

Algorithmic Problems

- **1** Given graph **G** and nodes **u** and **v**, is **u** connected to v?
- 2 Given G and node u, find all nodes that are connected to u.
- **③** Find all connected components of G.

Given a graph G = (V, E):

A path is a sequence of *distinct* vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k - 1$. The length of the path is k - 1 (the number of edges in the path) and the path is from v_1 to v_k . Note: a single vertex u is a path of length 0.

(UIUC)

Given a graph G = (V, E):

A cycle is a sequence of *distinct* vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k - 1$ and $\{v_1, v_k\} \in E$. Single vertex not a cycle according to this definition.

Given a graph G = (V, E):

A vertex \boldsymbol{u} is connected to \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v} .

Given a graph G = (V, E):

A vertex \boldsymbol{u} is connected to \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v} .

The connected component of u, con(u), is the set of all vertices connected to u.

Define a relation C on $V \times V$ as uCv if u is connected to v

- In undirected graphs, connectivity is a reflexive, symmetric, and transitive relation. Connected components are the equivalence classes.
- Graph is connected if only one connected component.

Connectivity Problems on Undirected Graphs

Algorithmic Problems

- **1** Given graph **G** and nodes **u** and **v**, is **u** connected to v?
- Q Given G and node u, find all nodes that are connected to u.
- Solution \mathbf{S} Find all connected components of G.

Connectivity Problems on Undirected Graphs

Algorithmic Problems

- Given graph G and nodes u and v, is u connected to v?
- Q Given G and node u, find all nodes that are connected to u.
- **③** Find all connected components of G.

Can be accomplished in O(m + n) time using **BFS** or **DFS**. **BFS** and **DFS** are refinements of a basic search procedure which is good to understand on its own.