
CS/ECE 374: Algorithms & Models of
Computation

Independent Sets in Trees
and Graph Basics
Lecture 15

(UIUC) CS/ECE 374 1 March 18, 2021 1 / 39

How to design DP algorithms

1 Find a “smart” recursion (The hard part)
1 Formulate the sub-problem

2 so that the number of distinct subproblems is small; polynomial

in the original problem size.

2 Memoization
1 Identify distinct subproblems

2 Choose a memoization data structure

3 Identify dependencies and find a good evaluation order

4 An iterative algorithm replacing recursive calls with array

lookups

(UIUC) CS/ECE 374 2 March 18, 2021 2 / 39

How to design DP algorithms

1 Find a “smart” recursion (The hard part)
1 Formulate the sub-problem

2 so that the number of distinct subproblems is small; polynomial

in the original problem size.

2 Memoization
1 Identify distinct subproblems

2 Choose a memoization data structure

3 Identify dependencies and find a good evaluation order

4 An iterative algorithm replacing recursive calls with array

lookups

(UIUC) CS/ECE 374 2 March 18, 2021 2 / 39

Which data structure?

So far our memoization uses multi-dimensional arrays:

Fibonacci numbers, 1-D array

Text segmentation, su�x, 1-D array

Longest increasing subsequence, su�x+index, 2-D array

Edit distance, two prefixes, 2-D array

Not always true.

(UIUC) CS/ECE 374 3 March 18, 2021 3 / 39

Which data structure?

So far our memoization uses multi-dimensional arrays:

Fibonacci numbers, 1-D array

Text segmentation, su�x, 1-D array

Longest increasing subsequence, su�x+index, 2-D array

Edit distance, two prefixes, 2-D array

Not always true.

(UIUC) CS/ECE 374 3 March 18, 2021 3 / 39

Part I

Maximum Weight Independent Set in
Trees

(UIUC) CS/ECE 374 4 March 18, 2021 4 / 39

Independent Set in a Graph

Definition
Given undirected graph G = (V ,E) a subset of nodes S ✓ V is an
independent set if there are no edges between nodes in S . That is, if
u, v 2 S then (u, v) 62 E .

A

B

C

DE

F

Some independent sets in graph above: {D}, {A,C}, {B,E , F}

(UIUC) CS/ECE 374 5 March 18, 2021 5 / 39

Maximum Weight Independent Set Problem

Input Graph G = (V ,E) and weights w(v) � 0 for each
v 2 V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Some independent sets in graph above: {D}, {A,C}, {B,E , F}
Maximum weight independent set in above graph: {B,D}

(UIUC) CS/ECE 374 6 March 18, 2021 6 / 39

Maximum Weight Independent Set Problem

Input Graph G = (V ,E) and weights w(v) � 0 for each
v 2 V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Some independent sets in graph above: {D}, {A,C}, {B,E , F}

Maximum weight independent set in above graph: {B,D}

(UIUC) CS/ECE 374 6 March 18, 2021 6 / 39

20 17 17

Maximum Weight Independent Set Problem

Input Graph G = (V ,E) and weights w(v) � 0 for each
v 2 V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Some independent sets in graph above: {D}, {A,C}, {B,E , F}
Maximum weight independent set in above graph: {B,D}

(UIUC) CS/ECE 374 6 March 18, 2021 6 / 39

25

Maximum Weight Independent Set Problem

Finding the largest independent set in an arbitrary graph is
extremely hard

the canonical NP-hard problem

(UIUC) CS/ECE 374 7 March 18, 2021 7 / 39

Backtracking

Convert into a sequence of decision problems.

1 Number vertices as v1, v2, . . . , vn

2 Decision problem: to include vn or not
3 Try all possibilities and let the recursion fairy take care of the

remaining decisions
4 Find recursively optimum solutions without vn (recurse on

G � vn) and with vn (recurse on G � vn � N(vn) & include
vn).

5 If graph G is arbitrary there is no good ordering that resulted in
a small number of subproblems.

(UIUC) CS/ECE 374 8 March 18, 2021 8 / 39

Backtracking

Convert into a sequence of decision problems.
1 Number vertices as v1, v2, . . . , vn

2 Decision problem: to include vn or not

3 Try all possibilities and let the recursion fairy take care of the
remaining decisions

4 Find recursively optimum solutions without vn (recurse on
G � vn) and with vn (recurse on G � vn � N(vn) & include
vn).

5 If graph G is arbitrary there is no good ordering that resulted in
a small number of subproblems.

(UIUC) CS/ECE 374 8 March 18, 2021 8 / 39

Backtracking

Convert into a sequence of decision problems.
1 Number vertices as v1, v2, . . . , vn

2 Decision problem: to include vn or not
3 Try all possibilities and let the recursion fairy take care of the

remaining decisions
4 Find recursively optimum solutions without vn (recurse on

G � vn) and with vn (recurse on G � vn � N(vn) & include
vn).

5 If graph G is arbitrary there is no good ordering that resulted in
a small number of subproblems.

(UIUC) CS/ECE 374 8 March 18, 2021 8 / 39

Backtracking

Convert into a sequence of decision problems.
1 Number vertices as v1, v2, . . . , vn

2 Decision problem: to include vn or not
3 Try all possibilities and let the recursion fairy take care of the

remaining decisions
4 Find recursively optimum solutions without vn (recurse on

G � vn) and with vn (recurse on G � vn � N(vn) & include
vn).

5 If graph G is arbitrary there is no good ordering that resulted in
a small number of subproblems.

(UIUC) CS/ECE 374 8 March 18, 2021 8 / 39

Maximum Weight Independent Set Problem

Finding the largest independent set in an arbitrary graph is
extremely hard

the canonical NP-hard problem

But in some special classes of graphs, we can find largest
independent sets quickly

when the input graph is a tree with n vertices, we can compute
in O(n) time

(UIUC) CS/ECE 374 9 March 18, 2021 9 / 39

Maximum Weight Independent Set Problem

Finding the largest independent set in an arbitrary graph is
extremely hard

the canonical NP-hard problem

But in some special classes of graphs, we can find largest
independent sets quickly

when the input graph is a tree with n vertices, we can compute
in O(n) time

(UIUC) CS/ECE 374 9 March 18, 2021 9 / 39

Maximum Weight Independent Set in a Tree

Input Tree T = (V ,E) and weights w(v) � 0 for each
v 2 V

Goal Find maximum weight independent set in T

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

(UIUC) CS/ECE 374 10 March 18, 2021 10 / 39

Backtracking

Convert into a sequence of decision problems.

1 Number vertices as v1, v2, . . . , vn

2 Decision problem: to include vn or not
3 Try all possibilities and let the recursion fairy take care of the

remaining decisions
4 Find recursively optimum solutions without vn (recurse on

G � vn) and with vn (recurse on G � vn � N(vn) & include
vn).

5 If graph G is arbitrary there is no good ordering that resulted in
a small number of subproblems.

What is special about a tree?

(UIUC) CS/ECE 374 11 March 18, 2021 11 / 39

Backtracking

Convert into a sequence of decision problems.
1 Number vertices as v1, v2, . . . , vn

2 Decision problem: to include vn or not
3 Try all possibilities and let the recursion fairy take care of the

remaining decisions
4 Find recursively optimum solutions without vn (recurse on

G � vn) and with vn (recurse on G � vn � N(vn) & include
vn).

5 If graph G is arbitrary there is no good ordering that resulted in
a small number of subproblems.

What is special about a tree?

(UIUC) CS/ECE 374 11 March 18, 2021 11 / 39

Backtracking

Convert into a sequence of decision problems.
1 Number vertices as v1, v2, . . . , vn

2 Decision problem: to include vn or not
3 Try all possibilities and let the recursion fairy take care of the

remaining decisions
4 Find recursively optimum solutions without vn (recurse on

G � vn) and with vn (recurse on G � vn � N(vn) & include
vn).

5 If graph G is arbitrary there is no good ordering that resulted in
a small number of subproblems.

What is special about a tree?

(UIUC) CS/ECE 374 11 March 18, 2021 11 / 39

Optimal substructure

(UIUC) CS/ECE 374 12 March 18, 2021 12 / 39

foot

child

grandchild

Optimal substructure

(UIUC) CS/ECE 374 12 March 18, 2021 12 / 39

Optimal substructure

T (u): subtree of T hanging at node u

OPT (u): max weighted independent set value in T (u)

OPT (u) =

max

(P
v child of u OPT (v),

w(u) +
P

v grandchild of u OPT (v)

Is it a smart recursion? How many distinct subproblems? O(n)

Base case: Reach a leaf of the tree

What data structure to memoize this recurrence? A tree

(UIUC) CS/ECE 374 13 March 18, 2021 13 / 39

Optimal substructure

T (u): subtree of T hanging at node u

OPT (u): max weighted independent set value in T (u)

OPT (u) = max

(P
v child of u OPT (v),

w(u) +
P

v grandchild of u OPT (v)

Is it a smart recursion? How many distinct subproblems? O(n)

Base case: Reach a leaf of the tree

What data structure to memoize this recurrence? A tree

(UIUC) CS/ECE 374 13 March 18, 2021 13 / 39

Optimal substructure

T (u): subtree of T hanging at node u

OPT (u): max weighted independent set value in T (u)

OPT (u) = max

(P
v child of u OPT (v),

w(u) +
P

v grandchild of u OPT (v)

Is it a smart recursion?

How many distinct subproblems? O(n)

Base case: Reach a leaf of the tree

What data structure to memoize this recurrence? A tree

(UIUC) CS/ECE 374 13 March 18, 2021 13 / 39

Optimal substructure

T (u): subtree of T hanging at node u

OPT (u): max weighted independent set value in T (u)

OPT (u) = max

(P
v child of u OPT (v),

w(u) +
P

v grandchild of u OPT (v)

Is it a smart recursion? How many distinct subproblems?

O(n)

Base case: Reach a leaf of the tree

What data structure to memoize this recurrence? A tree

(UIUC) CS/ECE 374 13 March 18, 2021 13 / 39

Optimal substructure

T (u): subtree of T hanging at node u

OPT (u): max weighted independent set value in T (u)

OPT (u) = max

(P
v child of u OPT (v),

w(u) +
P

v grandchild of u OPT (v)

Is it a smart recursion? How many distinct subproblems? O(n)

Base case: Reach a leaf of the tree

What data structure to memoize this recurrence? A tree

(UIUC) CS/ECE 374 13 March 18, 2021 13 / 39

Optimal substructure

T (u): subtree of T hanging at node u

OPT (u): max weighted independent set value in T (u)

OPT (u) = max

(P
v child of u OPT (v),

w(u) +
P

v grandchild of u OPT (v)

Is it a smart recursion? How many distinct subproblems? O(n)

Base case: Reach a leaf of the tree

What data structure to memoize this recurrence? A tree

(UIUC) CS/ECE 374 13 March 18, 2021 13 / 39

Optimal substructure

T (u): subtree of T hanging at node u

OPT (u): max weighted independent set value in T (u)

OPT (u) = max

(P
v child of u OPT (v),

w(u) +
P

v grandchild of u OPT (v)

Is it a smart recursion? How many distinct subproblems? O(n)

Base case: Reach a leaf of the tree

What data structure to memoize this recurrence?

A tree

(UIUC) CS/ECE 374 13 March 18, 2021 13 / 39

Optimal substructure

T (u): subtree of T hanging at node u

OPT (u): max weighted independent set value in T (u)

OPT (u) = max

(P
v child of u OPT (v),

w(u) +
P

v grandchild of u OPT (v)

Is it a smart recursion? How many distinct subproblems? O(n)

Base case: Reach a leaf of the tree

What data structure to memoize this recurrence? A tree

(UIUC) CS/ECE 374 13 March 18, 2021 13 / 39

Nae
x x Xx

Order of evaluation

1 Compute OPT (u) bottom up. To evaluate OPT (u) need to
have computed values of all children and grandchildren of u

2 What is an ordering of nodes of a tree T to achieve above?

Post-order traversal of a tree.

(UIUC) CS/ECE 374 14 March 18, 2021 14 / 39

Order of evaluation

1 Compute OPT (u) bottom up. To evaluate OPT (u) need to
have computed values of all children and grandchildren of u

2 What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.

(UIUC) CS/ECE 374 14 March 18, 2021 14 / 39

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

 P
vj child of vi

M[vj],
w(vi) +

P
vj grandchild of vi

M[vj]

!

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T

Running time:
1 Naive bound: O(n2) since each M[vi] evaluation may take

O(n) time and there are n evaluations.
2 Better bound: O(n). A value M[vj] is accessed only by its

parent and grand parent.

(UIUC) CS/ECE 374 15 March 18, 2021 15 / 39

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

 P
vj child of vi

M[vj],
w(vi) +

P
vj grandchild of vi

M[vj]

!

return M[vn] (* Note: vn is the root of T *)

Space:

O(n) to store the value at each node of T

Running time:
1 Naive bound: O(n2) since each M[vi] evaluation may take

O(n) time and there are n evaluations.
2 Better bound: O(n). A value M[vj] is accessed only by its

parent and grand parent.

(UIUC) CS/ECE 374 15 March 18, 2021 15 / 39

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

 P
vj child of vi

M[vj],
w(vi) +

P
vj grandchild of vi

M[vj]

!

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T

Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

(UIUC) CS/ECE 374 15 March 18, 2021 15 / 39

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

 P
vj child of vi

M[vj],
w(vi) +

P
vj grandchild of vi

M[vj]

!

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T

Running time:
1 Naive bound: O(n2) since each M[vi] evaluation may take

O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

(UIUC) CS/ECE 374 15 March 18, 2021 15 / 39

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

 P
vj child of vi

M[vj],
w(vi) +

P
vj grandchild of vi

M[vj]

!

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T

Running time:
1 Naive bound: O(n2) since each M[vi] evaluation may take

O(n) time and there are n evaluations.
2 Better bound: O(n). A value M[vj] is accessed only by its

parent and grand parent.

(UIUC) CS/ECE 374 15 March 18, 2021 15 / 39

Part II

Graph Basics

(UIUC) CS/ECE 374 16 March 18, 2021 16 / 39

Why Graphs?

1 Many important and useful optimization problems are graph
problems

2 Two levels of resolution:
1 Classic graph algorithms

2 How to model a problem as a graph problem and solve it using

the classic algorithms

(UIUC) CS/ECE 374 17 March 18, 2021 17 / 39

Why Graphs?

1 Many important and useful optimization problems are graph
problems

2 Two levels of resolution:

1 Classic graph algorithms

2 How to model a problem as a graph problem and solve it using

the classic algorithms

(UIUC) CS/ECE 374 17 March 18, 2021 17 / 39

Why Graphs?

1 Many important and useful optimization problems are graph
problems

2 Two levels of resolution:
1 Classic graph algorithms

2 How to model a problem as a graph problem and solve it using

the classic algorithms

(UIUC) CS/ECE 374 17 March 18, 2021 17 / 39

Example: Medieval road network

(UIUC) CS/ECE 374 18 March 18, 2021 18 / 39

Example: Modeling Problems as Search

State Space Search
Many search problems can be modeled as search on a graph.
The trick is figuring out what the vertices and edges are.

Missionaries and Cannibals

Three missionaries, three cannibals, one boat, one river

Boat carries two people, must have at least one person

Must all get across

At no time can cannibals outnumber missionaries

How is this a graph search problem?
What are the vertices?
What are the edges?

(UIUC) CS/ECE 374 19 March 18, 2021 19 / 39

Example: Missionaries and Cannibals Graph

(UIUC) CS/ECE 374 20 March 18, 2021 20 / 39

to k

m
k

Graph

Definition
An undirected (simple) graph
G = (V ,E) is a 2-tuple:

1 V is a set of vertices (also referred
to as nodes)

2 E is a set of edges where each edge
e 2 E is a set of the form {u, v}
with u, v 2 V and u 6= v .

Example
In figure, G = (V ,E) where V = {1, 2, 3, 4, 5, 6, 7, 8} and
E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7},
{3, 8}, {4, 5}, {5, 6}, {7, 8}}.

(UIUC) CS/ECE 374 21 March 18, 2021 21 / 39

Notation and Convention

Graph is just a way of encoding pairwise relationships.

Notation
An edge in an undirected graphs is an unordered pair of nodes and
hence it is a set. Conventionally we use (u, v) for {u, v} when it is
clear from the context that the graph is undirected.

1 u and v are the end points of an edge {u, v}

(UIUC) CS/ECE 374 22 March 18, 2021 22 / 39

Notation and Convention

Graph is just a way of encoding pairwise relationships.

Notation
An edge in an undirected graphs is an unordered pair of nodes and
hence it is a set. Conventionally we use (u, v) for {u, v} when it is
clear from the context that the graph is undirected.

1 u and v are the end points of an edge {u, v}

(UIUC) CS/ECE 374 22 March 18, 2021 22 / 39

Graph Representation I

Adjacency Matrix
Represent G = (V ,E) with n vertices and m edges using a n ⇥ n

adjacency matrix A where
1 A[i , j] = A[j , i] = 1 if {i , j} 2 E and A[i , j] = A[j , i] = 0

if {i , j} 62 E .

2 Advantage: can check if {i , j} 2 E in O(1) time
3 Disadvantage: needs ⌦(n2) space even when m ⌧ n

2

(UIUC) CS/ECE 374 23 March 18, 2021 23 / 39

0 1,9 o'o
o

n n any
dense

m OCn sparse

Graph Representation I

Adjacency Matrix
Represent G = (V ,E) with n vertices and m edges using a n ⇥ n

adjacency matrix A where
1 A[i , j] = A[j , i] = 1 if {i , j} 2 E and A[i , j] = A[j , i] = 0

if {i , j} 62 E .
2 Advantage: can check if {i , j} 2 E in O(1) time

3 Disadvantage: needs ⌦(n2) space even when m ⌧ n
2

(UIUC) CS/ECE 374 23 March 18, 2021 23 / 39

Graph Representation I

Adjacency Matrix
Represent G = (V ,E) with n vertices and m edges using a n ⇥ n

adjacency matrix A where
1 A[i , j] = A[j , i] = 1 if {i , j} 2 E and A[i , j] = A[j , i] = 0

if {i , j} 62 E .
2 Advantage: can check if {i , j} 2 E in O(1) time
3 Disadvantage: needs ⌦(n2) space even when m ⌧ n

2

(UIUC) CS/ECE 374 23 March 18, 2021 23 / 39

Graph Representation II

Adjacency Lists
Represent G = (V ,E) with n vertices and m edges using adjacency
lists:

1 For each u 2 V , Adj(u) = {v | {u, v} 2 E}, that is
neighbors of u. Sometimes Adj(u) is the list of edges incident
to u.

2 Advantage: space is O(m + n)
3 Disadvantage: cannot “easily” determine in O(1) time whether

{i , j} 2 E

1 By sorting each list, one can achieve O(log n) time

2 By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are
represented using plain vanilla (unsorted) adjacency lists.

(UIUC) CS/ECE 374 24 March 18, 2021 24 / 39

Graph Representation II

Adjacency Lists
Represent G = (V ,E) with n vertices and m edges using adjacency
lists:

1 For each u 2 V , Adj(u) = {v | {u, v} 2 E}, that is
neighbors of u. Sometimes Adj(u) is the list of edges incident
to u.

2 Advantage: space is O(m + n)

3 Disadvantage: cannot “easily” determine in O(1) time whether
{i , j} 2 E

1 By sorting each list, one can achieve O(log n) time

2 By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are
represented using plain vanilla (unsorted) adjacency lists.

(UIUC) CS/ECE 374 24 March 18, 2021 24 / 39

Graph Representation II

Adjacency Lists
Represent G = (V ,E) with n vertices and m edges using adjacency
lists:

1 For each u 2 V , Adj(u) = {v | {u, v} 2 E}, that is
neighbors of u. Sometimes Adj(u) is the list of edges incident
to u.

2 Advantage: space is O(m + n)
3 Disadvantage: cannot “easily” determine in O(1) time whether

{i , j} 2 E

1 By sorting each list, one can achieve O(log n) time

2 By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are
represented using plain vanilla (unsorted) adjacency lists.

(UIUC) CS/ECE 374 24 March 18, 2021 24 / 39

Graph Representation II

Adjacency Lists
Represent G = (V ,E) with n vertices and m edges using adjacency
lists:

1 For each u 2 V , Adj(u) = {v | {u, v} 2 E}, that is
neighbors of u. Sometimes Adj(u) is the list of edges incident
to u.

2 Advantage: space is O(m + n)
3 Disadvantage: cannot “easily” determine in O(1) time whether

{i , j} 2 E

1 By sorting each list, one can achieve O(log n) time

2 By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are
represented using plain vanilla (unsorted) adjacency lists.

(UIUC) CS/ECE 374 24 March 18, 2021 24 / 39

A Concrete Representation

Assume vertices are numbered arbitrarily as {1, 2, . . . , n}.
Edges are numbered arbitrarily as {1, 2, . . . ,m}.
Edges stored in an array/list of size m. E [j] is j ’th edge with
info on end points which are integers in range 1 to n.

Array Adj of size n for adjacency lists. Adj [i] points to
adjacency list of vertex i . Adj [i] is a list of edge indices in
range 1 to m.

(UIUC) CS/ECE 374 25 March 18, 2021 25 / 39

A Concrete Representation

Array of edges E

ej

information including end point indices

Array of adjacency lists

vi

List of edges (indices) that are incident to vi

(UIUC) CS/ECE 374 26 March 18, 2021 26 / 39

Connectivity Problems

Algorithmic Problems
1 Given graph G and nodes u and v , is u connected to v?
2 Given G and node u, find all nodes that are connected to u.
3 Find all connected components of G .

(UIUC) CS/ECE 374 27 March 18, 2021 27 / 39

Connectivity on Undirected Graphs

Given a graph G = (V ,E):

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u � V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

A path is a sequence of distinct vertices v1, v2, . . . , vk such that
{vi , vi+1} 2 E for 1 i k � 1. The length of the path is k � 1
(the number of edges in the path) and the path is from v1 to vk .
Note: a single vertex u is a path of length 0.

(UIUC) CS/ECE 374 28 March 18, 2021 28 / 39

135238
138
12538

Connectivity on Undirected Graphs

Given a graph G = (V ,E):

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u � V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

A cycle is a sequence of distinct vertices v1, v2, . . . , vk such that
{vi , vi+1} 2 E for 1 i k � 1 and {v1, vk} 2 E . Single vertex
not a cycle according to this definition.

(UIUC) CS/ECE 374 29 March 18, 2021 29 / 39

132

Connectivity on Undirected Graphs

Given a graph G = (V ,E):

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u � V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

A vertex u is connected to v if there is a path from u to v .

The connected component of u, con(u), is the set of all vertices
connected to u.

(UIUC) CS/ECE 374 30 March 18, 2021 30 / 39

17

19

Connectivity on Undirected Graphs

Given a graph G = (V ,E):

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u � V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

A vertex u is connected to v if there is a path from u to v .

The connected component of u, con(u), is the set of all vertices
connected to u.

(UIUC) CS/ECE 374 30 March 18, 2021 30 / 39

Connectivity on Undirected Graphs

Define a relation C on V ⇥ V as uCv if
u is connected to v

1 In undirected graphs, connectivity is
a reflexive, symmetric, and transitive
relation. Connected components are
the equivalence classes.

2 Graph is connected if only one
connected component.

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u � V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug
(UIUC) CS/ECE 374 31 March 18, 2021 31 / 39

Connectivity Problems on Undirected Graphs

Algorithmic Problems
1 Given graph G and nodes u and v , is u connected to v?
2 Given G and node u, find all nodes that are connected to u.
3 Find all connected components of G .

Can be accomplished in O(m + n) time using BFS or DFS.
BFS and DFS are refinements of a basic search procedure which is
good to understand on its own.

(UIUC) CS/ECE 374 32 March 18, 2021 32 / 39

Connectivity Problems on Undirected Graphs

Algorithmic Problems
1 Given graph G and nodes u and v , is u connected to v?
2 Given G and node u, find all nodes that are connected to u.
3 Find all connected components of G .

Can be accomplished in O(m + n) time using BFS or DFS.
BFS and DFS are refinements of a basic search procedure which is
good to understand on its own.

(UIUC) CS/ECE 374 32 March 18, 2021 32 / 39

