CS/ECE 374: Algorithms \& Models of

Computation

More DP: Text Segmentation and Edit Distance

Lecture 14

How to design DP algorithms

(1) Find a "smart" recursion (The hard part)
(1) Formulate the sub-problem
(2) so that the number of distinct subproblems is small; polynomial in the original problem size.

How to design DP algorithms

(1) Find a "smart" recursion (The hard part)
(1) Formulate the sub-problem
(2) so that the number of distinct subproblems is small; polynomial in the original problem size.
(2) Memoization
(1) Identify distinct subproblems
(2) Choose a memoization data structure
(3) Identify dependencies and find a good evaluation order
(An iterative algorithm replacing recursive calls with array lookups

Part I

More Text Segmentation

A variation

Input A string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $L \subseteq \boldsymbol{\Sigma}^{*}$ via function IsStringinL(string x) that decides whether x is in L, and non-negative integer k
Goal Decide if $w \in L^{k}$ using IsStringinL(string x) as a black box sub-routine

Example

Suppose L is English and we have a procedure to check whether a string/word is in the English dictionary.

- Is the string "isthisanenglishsentence" in English?
- Is the string "isthisanenglishsentence" in English ${ }^{4}$?
- Is "asinineat" in English ${ }^{2}$?
- Is "asinineat" in English ${ }^{4}$?
- Is "zibzzzad" in English?

Recursive Solution

When is $w \in L^{k}$?

Recursive Solution

When is $w \in L^{k}$?
$k=0: w \in L^{k}$ iff $w=\epsilon$
$k=1: w \in L^{k}$ iff $w \in L$
$k>1: w \in L^{k}$ if $w=u v$ with $u \in L$ and $v \in L^{k-1}$

Recursive Solution

When is $w \in L^{k}$?
$k=0: w \in L^{k}$ iff $w=\epsilon$
$k=1: w \in L^{k}$ iff $w \in L$
$k>1: w \in L^{k}$ if $w=u v$ with $u \in L$ and $v \in L^{k-1}$
Assume w is stored in array $A[1 . . n]$
IsStringinLk(A[1..n], k):
If ($k=0$)

$$
\text { If }(\boldsymbol{n}=\mathbf{0}) \text { Output YES }
$$

Else Ouput NO
If ($k=1$)
Output IsStringinL($A[1 . . n])$
Else

$$
\begin{aligned}
& \text { For }(i=1 \text { to } n-1) \text { do } \\
& \text { If }(\text { IsStringinL }(A[1 . . i]) \text { and IsStringinLk }(A[i+1 . . n], k-1)) \\
& \text { Output YES }
\end{aligned}
$$

Analysis

IsStringinLk($A[1 . . n], k)$:
If ($k=0$)
If ($\boldsymbol{n}=\mathbf{0}$) Output YES
Else Ouput NO
If ($\boldsymbol{k}=1$)
Output IsStringinL($A[1 . . n])$
Else

$$
\text { For (} \boldsymbol{i}=\mathbf{1} \text { to } \boldsymbol{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n], $k-1)$) Output YES

Output NO

- How many distinct sub-problems are generated by IsStringinLk($A[1 . . n], k)$?

Analysis

IsStringinLk($A[1 . . n], k)$:
If ($k=0$)
If ($\boldsymbol{n}=\mathbf{0}$) Output YES
Else Ouput NO
If ($\boldsymbol{k}=1$)
Output IsStringinL($A[1 . . n])$
Else

$$
\text { For }(i=1 \text { to } n-1) \text { do }
$$

If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n], $k-1)$) Output YES

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], $k) ? O(n k)$

Analysis

IsStringinLk($A[1 . . n], k)$:
If ($k=0$)
If ($\boldsymbol{n}=\mathbf{0}$) Output YES
Else Ouput NO
If ($\boldsymbol{k}=1$)
Output IsStringinL($A[1 . . n])$
Else

$$
\text { For }(\boldsymbol{i}=\mathbf{1} \text { to } \boldsymbol{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n], $k-1)$) Output YES

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)? $O(n k)$
- How much space?

Analysis

IsStringinLk($A[1 . . n], k)$:
If ($k=0$)
If ($\boldsymbol{n}=\mathbf{0}$) Output YES
Else Ouput NO
If ($\boldsymbol{k}=1$)
Output IsStringinL($A[1 . . n])$
Else

$$
\text { For }(\boldsymbol{i}=\mathbf{1} \text { to } \boldsymbol{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n], $k-1)$) Output YES

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)? $O(n k)$
- How much space? $O(n k)$

Analysis

IsStringinLk($A[1 . . n], k)$:

$$
\begin{aligned}
& \text { If }(\boldsymbol{k}=\mathbf{0}) \\
& \quad \text { If (} \boldsymbol{n}=\mathbf{0}) \text { Output YES } \\
& \quad \text { Else Ouput NO } \\
& \text { If (} \boldsymbol{k}=\mathbf{1}) \\
& \quad \text { Output IsStringinL(}(\boldsymbol{A}[\mathbf{1} . . n])
\end{aligned}
$$

Else

$$
\text { For (} \boldsymbol{i}=\mathbf{1} \text { to } \boldsymbol{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n], $k-1)$) Output YES

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)? $O(n k)$
- How much space? $O(n k)$
- Running time?

Analysis

IsStringinLk($A[1 . . n], k)$:

$$
\begin{aligned}
& \text { If }(\boldsymbol{k}=\mathbf{0}) \\
& \quad \text { If (} \boldsymbol{n}=\mathbf{0}) \text { Output YES } \\
& \quad \text { Else Ouput NO } \\
& \text { If }(\boldsymbol{k}=\mathbf{1}) \\
& \quad \text { Output IsStringinL(} \boldsymbol{A}[\mathbf{1} . . \boldsymbol{n}])
\end{aligned}
$$

Else

$$
\text { For (} \boldsymbol{i}=\mathbf{1} \text { to } \boldsymbol{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n], $k-1)$) Output YES

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)? $O(n k)$
- How much space? $O(n k)$
- Running time? $O\left(n^{2} k\right)$

Naming subproblems and recursive equation

$\operatorname{ISLk}(i, h)$: a boolean which is $\mathbf{1}$ if $\boldsymbol{A}[i . . n]$ is in $L^{h}, \mathbf{0}$ otherwise
Base case: $\operatorname{ISLk}(n+1,0)=1$ interpreting $A[n+1 . . n]$ as ϵ

Naming subproblems and recursive equation

$\operatorname{ISLk}(i, h)$: a boolean which is $\mathbf{1}$ if $A[i . . n]$ is in $L^{h}, \mathbf{0}$ otherwise
Base case: $\operatorname{ISLk}(n+1,0)=1$ interpreting $A[n+1 . . n]$ as ϵ
Recursive relation:

- ISLk $(i, h)=1$ if $\exists i<j \leq n+1$ such that $(\operatorname{ISLk}(j, h-1)=1$ and $\operatorname{IsStringinL}(A[i . .(j-1])=1)$
- $\operatorname{ISLk}(i, h)=\mathbf{0}$ otherwise

Alternately:
$\left.\operatorname{ISLk}(i, h)=\max _{i<j \leq n+1} \operatorname{ISLk}(j, h-1) \operatorname{IsStringinL}(A[i . .(j-1)])\right)$
Output: ISLk(1,k)

How to order bottom up computation?

Iterative Algorithm

```
IsStringinLstar-Iterative(A[1..n]) :
boolean ISLk[1.. \((n+1), \mathbf{0} . . . k]\)
\(\operatorname{ISLk}[n+1,0]=\) TRUE
for ( \(\boldsymbol{i}=1\) to \(n\) )
    \(\operatorname{ISLk}[i, 0]=F A L S E\)
for ( \(h=1\) to \(k\) )
    for ( \(\boldsymbol{i}=1\) to \(n\) )
        \(\operatorname{ISLk}[i, h]=F A L S E\)
        for ( \(j=i+1\) to \(n+1\) )
        If (ISLk[j,h-1] and IsStringinL( \(\boldsymbol{A}[\mathbf{i} . . j-1])\) )
                        ISLk \([i, h]=\) TRUE
                    Break
If (ISLk \([1, k]=1\) ) Output YES
Else Output NO
```

Running time: $O\left(n^{2} k\right)$. Space: $O(n k)$

Another variant

Question: What if we want to check if $w \in L^{i}$ for some $0 \leq i \leq k$? That is, is $w \in \cup_{i=0}^{k} L^{i}$?

Part II

Edit Distance and Sequence Alignment

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

What does nearness mean?
Question: Given two strings $x_{1} x_{2} \ldots x_{n}$ and $y_{1} y_{2} \ldots y_{m}$ what is a distance between them?

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

What does nearness mean?
Question: Given two strings $x_{1} x_{2} \ldots x_{n}$ and $y_{1} y_{2} \ldots y_{m}$ what is a distance between them?

Edit Distance: minimum number of "edits" to transform x into y.

Edit Distance

Definition

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between FOOD and MONEY is at most 4: $\underline{F O O D} \rightarrow$ MOQD \rightarrow MONOD \rightarrow MONED \rightarrow MONEY

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

F	O	O		D
M	O	N	E	Y

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once, and there is no "crossing": $\boldsymbol{i}<\boldsymbol{i}$ ' and \boldsymbol{i} is matched to j implies i^{\prime} is matched to $j^{\prime}>j$. In the above example, this is $M=\{(\mathbf{1}, \mathbf{1}),(\mathbf{2}, \mathbf{2}),(3,3),(4,5)\}$.

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once, and there is no "crossing": $\boldsymbol{i}<\boldsymbol{i}^{\prime}$ and \boldsymbol{i} is matched to j implies i^{\prime} is matched to $j^{\prime}>j$. In the above example, this is $M=\{(\mathbf{1}, \mathbf{1}),(2,2),(3,3),(4,5)\}$.
Cost of an alignment is the number of columns that do not contain the same letter twice.

Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an alignment of smallest cost.

Applications

(1) Spell-checkers and Dictionaries
(2) Unix diff
(3) DNA sequence alignment . . . but, we need a new metric

Similarity Metric

Definition

For two strings X and Y, the cost of alignment M is
(1) [Gap penalty] For each gap in the alignment, we incur a cost $\boldsymbol{\delta}$.
(2) [Mismatch cost] For each pair \boldsymbol{p} and \boldsymbol{q} that have been matched in M, we incur cost $\alpha_{p q}$; typically $\alpha_{p p}=0$.

Similarity Metric

Definition

For two strings X and Y, the cost of alignment M is
(1) [Gap penalty] For each gap in the alignment, we incur a cost δ.
(2) [Mismatch cost] For each pair \boldsymbol{p} and \boldsymbol{q} that have been matched in M, we incur cost $\alpha_{p q}$; typically $\alpha_{p p}=0$.
Edit distance is special case when $\delta=\alpha_{p q}=\mathbf{1}$.

An Example

Example

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|}
o & & c & u & r & r & a & n & c & e \\
o & c & c & u & r & r & e & n & c & e
\end{array} \quad \text { Cost }=\delta+\alpha_{a e}
$$

Alternative:

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l}
o & & c & u & r & r & & a & n & c & e \\
o & c & c & u & r & r & e & & n & c & e
\end{array} \quad \text { Cost }=3 \delta
$$

Or a really stupid solution (delete string, insert other string):

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l}
o & c & u & r & r & a & n & c & e & & & & & & & & & \\
& & & & &
\end{array}
$$

Cost $=19 \delta$.

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost $\mathbf{1}$ unit?

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost $\mathbf{1}$ unit?

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost $\mathbf{1}$ unit?

Sequence Alignment

Input Given two words \boldsymbol{X} and \boldsymbol{Y}, and gap penalty δ and
mismatch costs $\alpha_{\boldsymbol{p q}}$
Goal Find alignment of minimum cost

Edit distance

Basic observation

Let $X=\alpha x$ and $Y=\beta y$
α, β : strings.
x and y single characters.
Think about optimal edit distance between \boldsymbol{X} and \boldsymbol{Y} as alignment, and consider last column of alignment of the two strings:

α	x
β	y

or

αx	
β	y

Observation

Prefixes must have optimal alignment!

Try all possibilities

Observation

Let $X=x_{1} x_{2} \cdots x_{m}$ and $Y=y_{1} y_{2} \cdots y_{n}$. If (m, n) are not matched then either the \boldsymbol{m} th position of \boldsymbol{X} remains unmatched or the nth position of Y remains unmatched.
(1) Case x_{m} and y_{n} are matched.
(1) Pay mismatch cost $\alpha_{x_{m} y_{n}}$ plus cost of aligning strings $x_{1} \cdots x_{m-1}$ and $y_{1} \cdots y_{n-1}$
(2) Case x_{m} is unmatched.
(1) Pay gap penalty plus cost of aligning $x_{1} \cdots x_{m-1}$ and $y_{1} \cdots y_{n}$
(3) Case y_{n} is unmatched.
(1) Pay gap penalty plus cost of aligning $\boldsymbol{x}_{\mathbf{1}} \cdots \boldsymbol{x}_{\boldsymbol{m}}$ and $\boldsymbol{y}_{\mathbf{1}} \cdots \boldsymbol{y}_{\boldsymbol{n}-\mathbf{1}}$

Recursive Algorithm

Assume X is stored in array $\boldsymbol{A}[\mathbf{1 . . m}]$ and Y is stored in $B[\mathbf{1 . . n}]$ Array COST stores cost of matching two chars. Thus $\operatorname{COST}[a, b]$ give the cost of matching character \boldsymbol{a} to character \boldsymbol{b}.

```
\(\operatorname{EDIST}(A[1 . . m], B[1 . . n])\)
If ( \(\boldsymbol{m}=\mathbf{0}\) ) return \(\boldsymbol{n} \boldsymbol{\delta}\)
If ( \(\boldsymbol{n}=\mathbf{0}\) ) return \(\boldsymbol{m} \boldsymbol{\delta}\)
\(m_{1}=\delta+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . . n])\)
\(\left.m_{2}=\delta+\operatorname{EDIST}(A[1 . . m], B[1 . .(n-1)])\right)\)
\(m_{3}=\operatorname{COST}[A[m], B[n]]+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . .(n-1)])\)
return \(\min \left(\boldsymbol{m}_{1}, \boldsymbol{m}_{2}, \boldsymbol{m}_{3}\right)\)
```


Recursive Algorithm

```
\(\operatorname{EDIST}(A[1 . . m], B[1 . . n])\)
    If ( \(\boldsymbol{m}=\mathbf{0}\) ) return \(\boldsymbol{n} \boldsymbol{\delta}\)
    If ( \(\boldsymbol{n}=\mathbf{0}\) ) return \(\boldsymbol{m} \boldsymbol{\delta}\)
    \(m_{1}=\delta+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . . n])\)
    \(\left.m_{2}=\delta+\operatorname{EDIST}(A[1 . . m], B[1 . .(n-1)])\right)\)
    \(m_{3}=\operatorname{COST}[A[m], B[n]]+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . .(n-1)])\)
    return \(\min \left(m_{1}, m_{2}, m_{3}\right)\)
```

- How many distinct sub-problems will $\operatorname{EDIST}(A[1 . . m], B[1 . . n])$ generate?

Recursive Algorithm

```
\(\operatorname{EDIST}(A[1 . . m], B[1 . . n])\)
    If ( \(\boldsymbol{m}=\mathbf{0}\) ) return \(\boldsymbol{n} \boldsymbol{\delta}\)
    If ( \(\boldsymbol{n}=\mathbf{0}\) ) return \(\boldsymbol{m} \boldsymbol{\delta}\)
    \(m_{1}=\delta+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . . n])\)
    \(\left.m_{2}=\delta+\operatorname{EDIST}(A[1 . . m], B[1 . .(n-1)])\right)\)
    \(m_{3}=\operatorname{COST}[A[m], B[n]]+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . .(n-1)])\)
    return \(\min \left(m_{1}, m_{2}, m_{3}\right)\)
```

- How many distinct sub-problems will $\operatorname{EDIST}(A[1 . . m], B[1 . . n])$ generate? $O(n m)$

Recursive Algorithm

```
\(\operatorname{EDIST}(A[1 . . m], B[1 . . n])\)
    If ( \(\boldsymbol{m}=\mathbf{0}\) ) return \(\boldsymbol{n} \boldsymbol{\delta}\)
    If ( \(\boldsymbol{n}=\mathbf{0}\) ) return \(\boldsymbol{m} \boldsymbol{\delta}\)
    \(m_{1}=\delta+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . . n])\)
    \(\left.m_{2}=\delta+\operatorname{EDIST}(A[1 . . m], B[1 . .(n-1)])\right)\)
    \(m_{3}=\operatorname{COST}[A[m], B[n]]+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . .(n-1)])\)
    return \(\min \left(m_{1}, m_{2}, m_{3}\right)\)
```

- How many distinct sub-problems will $\operatorname{EDIST}(A[1 . . m], B[1 . . n])$ generate? $O(n m)$
- What is the running time if we memoize recursion?

Recursive Algorithm

```
\(\operatorname{EDIST}(A[1 . . m], B[1 . . n])\)
    If ( \(\boldsymbol{m}=\mathbf{0}\) ) return \(\boldsymbol{n} \boldsymbol{\delta}\)
    If ( \(\boldsymbol{n}=\mathbf{0}\) ) return \(\boldsymbol{m} \boldsymbol{\delta}\)
    \(m_{1}=\delta+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . . n])\)
    \(\left.m_{2}=\delta+\operatorname{EDIST}(A[1 . . m], B[1 . .(n-1)])\right)\)
    \(m_{3}=\operatorname{COST}[A[m], B[n]]+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . .(n-1)])\)
    return \(\min \left(m_{1}, m_{2}, m_{3}\right)\)
```

- How many distinct sub-problems will $\operatorname{EDIST}(A[1 . . m], B[1 . . n])$ generate? $O(n m)$
- What is the running time if we memoize recursion? $O(n m)$ since each call takes $O(1)$ time to assemble the answers from to recursive calls and no other computation.

Recursive Algorithm

```
\(\operatorname{EDIST}(A[1 . . m], B[1 . . n])\)
    If ( \(\boldsymbol{m}=\mathbf{0}\) ) return \(\boldsymbol{n} \boldsymbol{\delta}\)
    If ( \(\boldsymbol{n}=\mathbf{0}\) ) return \(\boldsymbol{m} \boldsymbol{\delta}\)
    \(m_{1}=\delta+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . . n])\)
    \(\left.m_{2}=\delta+\operatorname{EDIST}(A[1 . . m], B[1 . .(n-1)])\right)\)
    \(m_{3}=\operatorname{COST}[A[m], B[n]]+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . .(n-1)])\)
    return \(\min \left(m_{1}, m_{2}, m_{3}\right)\)
```

- How many distinct sub-problems will $\operatorname{EDIST}(A[1 . . m], B[1 . . n])$ generate? $O(n m)$
- What is the running time if we memoize recursion? $O(n m)$ since each call takes $O(1)$ time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization?

Recursive Algorithm

```
\(\operatorname{EDIST}(A[1 . . m], B[1 . . n])\)
    If ( \(\boldsymbol{m}=\mathbf{0}\) ) return \(\boldsymbol{n} \boldsymbol{\delta}\)
    If ( \(\boldsymbol{n}=\mathbf{0}\) ) return \(\boldsymbol{m} \boldsymbol{\delta}\)
    \(m_{1}=\delta+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . . n])\)
    \(\left.m_{2}=\delta+\operatorname{EDIST}(A[1 . . m], B[1 . .(n-1)])\right)\)
    \(m_{3}=\operatorname{COST}[A[m], B[n]]+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . .(n-1)])\)
    return \(\min \left(m_{1}, m_{2}, m_{3}\right)\)
```

- How many distinct sub-problems will $\operatorname{EDIST}(A[1 . . m], B[1 . . n])$ generate? $O(n m)$
- What is the running time if we memoize recursion? $O(n m)$ since each call takes $O(1)$ time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization? $O(n m)$

Naming subproblems and recursive equation

After seeing that number of subproblems is $O(n m)$ we name them to help us understand the structure better.

Naming subproblems and recursive equation

After seeing that number of subproblems is $O(n m)$ we name them to help us understand the structure better.

Optimal Costs

Let $\operatorname{Opt}(i, j)$ be optimal cost of aligning $x_{1} \cdots x_{i}$ and $y_{1} \cdots y_{j}$. Then

$$
\operatorname{Opt}(i, j)=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1) \\
\delta+\operatorname{Opt}(i-1, j) \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
$$

Naming subproblems and recursive equation

After seeing that number of subproblems is $O(n m)$ we name them to help us understand the structure better.

Optimal Costs

Let $\operatorname{Opt}(i, j)$ be optimal cost of aligning $x_{1} \cdots x_{i}$ and $y_{1} \cdots y_{j}$. Then

$$
\operatorname{Opt}(i, j)=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1) \\
\delta+\operatorname{Opt}(i-1, j) \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
$$

Base Cases: $\operatorname{Opt}(i, 0)=\delta \cdot i$ and $\operatorname{Opt}(0, j)=\delta \cdot j$

How to order bottom up computation?

Base case: $\operatorname{Opt}(i, 0)=\delta \cdot i$ and $\operatorname{Opt}(0, j)=\delta \cdot j$
Recursive relation: Fill in row by row (or column by column)

Removing Recursion to obtain Iterative Algorithm

```
int M[0..m][0..n]
Initialize all entries of M[i][j] to \infty
return EDIST(A[1..m],B[1..n])
```

$\operatorname{EDIST}(A[1 . . m], B[1 . . n])$
int $M[0 . . m][0 . . n]$
for $i=1$ to m do $M[i, 0]=i \delta$
for $j=1$ to n do $M[0, j]=j \delta$
for $i=1$ to m do
for $j=1$ to n do

$$
M[i][j]=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+M[i-1][j-1] \\
\delta+M[i-1][j] \\
\delta+M[i][j-1]
\end{array}\right.
$$

Removing Recursion to obtain Iterative Algorithm

```
int M[0..m][0..n]
Initialize all entries of M[i][j] to \infty
return EDIST(A[1..m],B[1..n])
```

$\operatorname{EDIST}(A[1 . . m], B[1 . . n])$
int $M[0 . . m][0 . . n]$
for $i=1$ to m do $M[i, 0]=i \delta$
for $j=1$ to n do $M[0, j]=j \delta$
for $i=1$ to m do
for $j=1$ to n do

$$
M[i][j]=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+M[i-1][j-1] \\
\delta+M[i-1][j] \\
\delta+M[i][j-1]
\end{array}\right.
$$

Running time: $O(n m)$
Space: $O(n m)$

Sequence Alignment in Practice

(1) Typically the DNA sequences that are aligned are about $\mathbf{1 0}^{\mathbf{5}}$ letters long!
(2) So about $10^{\mathbf{1 0}}$ operations and $\mathbf{1 0}^{\mathbf{1 0}}$ bytes needed
(3) The killer is the 10 GB storage

- Can we reduce space requirements?

Optimizing Space

(1) Recall

$$
M(i, j)=\min \left\{\begin{array}{l}
\alpha_{x_{i^{\prime}} y_{j}}+M(i-1, j-1) \\
\delta+M(i-1, j) \\
\delta+M(i, j-1)
\end{array}\right.
$$

(2) Entries in j th column only depend on $(j-1)$ st column and earlier entries in j th column
(0) Only store the current column and the previous column reusing space; $N(\boldsymbol{i}, \mathbf{0})$ stores $M(i, j-\mathbf{1})$ and $N(i, \mathbf{1})$ stores $M(i, j)$

Computing in column order to save space

Figure: $\mathbf{M}(\boldsymbol{i}, \boldsymbol{j})$ only depends on previous column values. Keep only two columns and compute in column order.

Space Efficient Algorithm

$$
\begin{aligned}
& \text { for all } i \text { do } N[i, 0]=i \delta \\
& \text { for } j=1 \text { to } n \text { do } \\
& N[0,1]=j \delta \text { (* corresponds to } M(0, j) *) \\
& \text { for } i=1 \text { to } m \text { do } \\
& \qquad N[i, 1]=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+N[i-1,0] \\
\delta+N[i-1,1] \\
\delta+N[i, 0]
\end{array}\right. \\
& \text { for } i=1 \text { to } m \text { do } \\
& \quad \text { Copy } N[i, 0]=N[i, 1]
\end{aligned}
$$

Analysis

Running time is $O(m n)$ and space used is $O(2 m)=O(m)$

Which data structure?

So far our memoization uses multi-dimensional arrays:

- Fibonacci numbers, 1-D array
- Text segmentation, suffix, 1-D array
- Longest increasing subsequence, suffix+index, 2-D array
- Edit distance, two prefixes, 2-D array

Which data structure?

So far our memoization uses multi-dimensional arrays:

- Fibonacci numbers, 1-D array
- Text segmentation, suffix, 1-D array
- Longest increasing subsequence, suffix+index, 2-D array
- Edit distance, two prefixes, 2-D array

Not always true.

