
CS/ECE 374: Algorithms & Models of

Computation

Dynamic Programming

Lecture 13

(UIUC) CS/ECE 374 1 March 10, 2021 1 / 28

Recursion types

1 Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.
2 Backtracking: A sequence of decision problems. Recursion

tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to
n � 1.

3 Dynamic Programming: Smart recursion with memoization

(UIUC) CS/ECE 374 2 March 10, 2021 2 / 28

Recursion types

1 Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.
2 Backtracking: A sequence of decision problems. Recursion

tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to
n � 1.

3 Dynamic Programming: Smart recursion with memoization

(UIUC) CS/ECE 374 2 March 10, 2021 2 / 28

Part I

Fibonacci Numbers

(UIUC) CS/ECE 374 3 March 10, 2021 3 / 28

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n � 1) + F (n � 2) and F (0) = 0, F (1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

1 F (n) = (�n � (1 � �)n)/
p
5 where � is the golden ratio

(1 +
p
5)/2 ' 1.618.

2 limn!1F (n + 1)/F (n) = �

(UIUC) CS/ECE 374 4 March 10, 2021 4 / 28

Toni Ocn 1 2 Tci

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)

return 1

else

return Fib(n � 1) + Fib(n � 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n � 1) + T (n � 2) + 1 and T (0) = T (1) = 0

(UIUC) CS/ECE 374 5 March 10, 2021 5 / 28

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)

return 1

else

return Fib(n � 1) + Fib(n � 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n � 1) + T (n � 2) + 1 and T (0) = T (1) = 0

(UIUC) CS/ECE 374 5 March 10, 2021 5 / 28

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)

return 1

else

return Fib(n � 1) + Fib(n � 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n � 1) + T (n � 2) + 1 and T (0) = T (1) = 0

(UIUC) CS/ECE 374 5 March 10, 2021 5 / 28

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)

return 1

else

return Fib(n � 1) + Fib(n � 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n � 1) + T (n � 2) + 1 and T (0) = T (1) = 0

Roughly same as F (n)

T (n) = ⇥(�n
)

The number of additions is exponential in n. Can we do better?
(UIUC) CS/ECE 374 5 March 10, 2021 5 / 28

Recursion Tree

(UIUC) CS/ECE 374 6 March 10, 2021 6 / 28

Memoization

The recursive algorithm is slow because it computes the same
Fibonacci numbers over and over.

Memoization
1 Write down the results of recursive calls and look them up later
2 An array F (n), where F (i) stores the result of Fib(i)
3 Evaluation order: From bottom up, i = 2 then i = 3 and so on

(UIUC) CS/ECE 374 7 March 10, 2021 7 / 28

Memoization

The recursive algorithm is slow because it computes the same
Fibonacci numbers over and over.

Memoization
1 Write down the results of recursive calls and look them up later

2 An array F (n), where F (i) stores the result of Fib(i)
3 Evaluation order: From bottom up, i = 2 then i = 3 and so on

(UIUC) CS/ECE 374 7 March 10, 2021 7 / 28

Memoization

The recursive algorithm is slow because it computes the same
Fibonacci numbers over and over.

Memoization
1 Write down the results of recursive calls and look them up later
2 An array F (n), where F (i) stores the result of Fib(i)

3 Evaluation order: From bottom up, i = 2 then i = 3 and so on

(UIUC) CS/ECE 374 7 March 10, 2021 7 / 28

Memoization

The recursive algorithm is slow because it computes the same
Fibonacci numbers over and over.

Memoization
1 Write down the results of recursive calls and look them up later
2 An array F (n), where F (i) stores the result of Fib(i)
3 Evaluation order: From bottom up, i = 2 then i = 3 and so on

(UIUC) CS/ECE 374 7 March 10, 2021 7 / 28

An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then

return 1

F [0] = 0

F [1] = 1

for i = 2 to n do

F [i] = F [i � 1] + F [i � 2]

return F [n]

What is the running time of the algorithm? O(n) additions.

(UIUC) CS/ECE 374 8 March 10, 2021 8 / 28

An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then

return 1

F [0] = 0

F [1] = 1

for i = 2 to n do

F [i] = F [i � 1] + F [i � 2]

return F [n]

What is the running time of the algorithm?

O(n) additions.

(UIUC) CS/ECE 374 8 March 10, 2021 8 / 28

An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then

return 1

F [0] = 0

F [1] = 1

for i = 2 to n do

F [i] = F [i � 1] + F [i � 2]

return F [n]

What is the running time of the algorithm? O(n) additions.

(UIUC) CS/ECE 374 8 March 10, 2021 8 / 28

DP prunes recursion tree

(UIUC) CS/ECE 374 9 March 10, 2021 9 / 28

What is the di↵erence?

Dynamic Programming:
Finding a recursion that can be e↵ectively/e�ciently memoized.

Leads to polynomial time algorithm if number of distinct
sub-problems is polynomial in input size.

(UIUC) CS/ECE 374 10 March 10, 2021 10 / 28

Saving space

Do we need an array of n numbers? Not really.

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then

return 1

prev2 = 0

prev1 = 1

for i = 2 to n do

temp = prev1 + prev2
prev2 = prev1
prev1 = temp

return prev1

(UIUC) CS/ECE 374 11 March 10, 2021 11 / 28

Dynamic Programming

Dynamic Programming: Smart recursion with memoization

Dynamic programming is not about filling tables. It is

about finding a smart recursion. First, find the correct

recursion.

Use memoization to avoid recomputation of common solutions,
hence optimizing running time and space.

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)
Figure out a way to order the computation of the sub-problems
starting from the base case.

Often an iterative algorithm with bottom up computation.

(UIUC) CS/ECE 374 12 March 10, 2021 12 / 28

Dynamic Programming

Dynamic Programming: Smart recursion with memoization

Dynamic programming is not about filling tables. It is

about finding a smart recursion. First, find the correct

recursion.

Use memoization to avoid recomputation of common solutions,
hence optimizing running time and space.

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)
Figure out a way to order the computation of the sub-problems
starting from the base case.

Often an iterative algorithm with bottom up computation.

(UIUC) CS/ECE 374 12 March 10, 2021 12 / 28

Dynamic Programming

Dynamic Programming: Smart recursion with memoization

Dynamic programming is not about filling tables. It is

about finding a smart recursion. First, find the correct

recursion.

Use memoization to avoid recomputation of common solutions,
hence optimizing running time and space.

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)
Figure out a way to order the computation of the sub-problems
starting from the base case.

Often an iterative algorithm with bottom up computation.

(UIUC) CS/ECE 374 12 March 10, 2021 12 / 28

Dynamic Programming

Dynamic Programming: Smart recursion with memoization

Dynamic programming is not about filling tables. It is

about finding a smart recursion. First, find the correct

recursion.

Use memoization to avoid recomputation of common solutions,
hence optimizing running time and space.

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)
Figure out a way to order the computation of the sub-problems
starting from the base case.

Often an iterative algorithm with bottom up computation.

(UIUC) CS/ECE 374 12 March 10, 2021 12 / 28

Part II

Text Segmentation

(UIUC) CS/ECE 374 13 March 10, 2021 13 / 28

Problem

Input A string w 2 ⌃
⇤ and access to a language L ✓ ⌃

⇤ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if w 2 L
⇤ using IsStrInL(string x) as a black

box sub-routine

Example
Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English
⇤?

Is “stampstamp” in English
⇤?

Is “zibzzzad” in English
⇤?

(UIUC) CS/ECE 374 14 March 10, 2021 14 / 28

Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Let the recursion fairy make all remaining decisions

Only the su�x matters.

Base case

zero-length string

(UIUC) CS/ECE 374 15 March 10, 2021 15 / 28

Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Let the recursion fairy make all remaining decisions

Only the su�x matters.

Base case

zero-length string

(UIUC) CS/ECE 374 15 March 10, 2021 15 / 28

Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Let the recursion fairy make all remaining decisions

Only the su�x matters.

Base case

zero-length string

(UIUC) CS/ECE 374 15 March 10, 2021 15 / 28

Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n � 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Question: How many distinct sub-problems does
IsStrInLstar(A[1..n]) generate? O(n)

(UIUC) CS/ECE 374 16 March 10, 2021 16 / 28

Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n � 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Question: How many distinct sub-problems does
IsStrInLstar(A[1..n]) generate?

O(n)

(UIUC) CS/ECE 374 16 March 10, 2021 16 / 28

Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n � 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Question: How many distinct sub-problems does
IsStrInLstar(A[1..n]) generate? O(n)

(UIUC) CS/ECE 374 16 March 10, 2021 16 / 28

Naming subproblems

After seeing that number of subproblems is O(n) we name them to
help us understand the structure better.

ISL(i): a boolean which is 1 if A[i ..n] is in L
⇤, 0 otherwise

Base case: ISL(n + 1) = 1 interpreting A[n + 1..n] as ✏

(UIUC) CS/ECE 374 17 March 10, 2021 17 / 28

Evaluate subproblems

Recursive relation:

ISL(i) = 1 if 9i < j n + 1 such that (ISL(j) = 1 and
IsStrInL(A[i ..(j � 1)]) = 1)

ISL(i) = 0 otherwise

Alternatively: ISL(i) = maxi<jn+1 ISL(j)IsStrInL(A[i ..(j � 1]))

Output: ISL(1)

(UIUC) CS/ECE 374 18 March 10, 2021 18 / 28

I 1 1

Evaluate subproblems

Recursive relation:

ISL(i) = 1 if 9i < j n + 1 such that (ISL(j) = 1 and
IsStrInL(A[i ..(j � 1)]) = 1)

ISL(i) = 0 otherwise

Alternatively: ISL(i) = maxi<jn+1 ISL(j)IsStrInL(A[i ..(j � 1]))

Output: ISL(1)

(UIUC) CS/ECE 374 18 March 10, 2021 18 / 28

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]

ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j � 1]))

ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n
2
) (assuming call to IsStrInL is O(1)

time)

Space: O(n)

(UIUC) CS/ECE 374 19 March 10, 2021 19 / 28

je

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]

ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j � 1]))

ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time:

O(n
2
) (assuming call to IsStrInL is O(1)

time)

Space: O(n)

(UIUC) CS/ECE 374 19 March 10, 2021 19 / 28

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]

ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j � 1]))

ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n
2
) (assuming call to IsStrInL is O(1)

time)

Space: O(n)

(UIUC) CS/ECE 374 19 March 10, 2021 19 / 28

I 12T 1 n 1 0 NZ

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]

ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j � 1]))

ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n
2
) (assuming call to IsStrInL is O(1)

time)

Space:

O(n)

(UIUC) CS/ECE 374 19 March 10, 2021 19 / 28

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]

ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j � 1]))

ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n
2
) (assuming call to IsStrInL is O(1)

time)

Space: O(n)

(UIUC) CS/ECE 374 19 March 10, 2021 19 / 28

How to design DP algorithms

1 Find a “smart” recursion (The hard part)
1 Formulate the sub-problem
2 so that the number of distinct subproblems is small; polynomial

in the original problem size.

2 Memoization
1 Identify distinct subproblems
2 Choose a memoization data structure
3 Identify dependencies and find a good evaluation order
4 An iterative algorithm replacing recursive calls with array

lookups

(UIUC) CS/ECE 374 20 March 10, 2021 20 / 28

How to design DP algorithms

1 Find a “smart” recursion (The hard part)
1 Formulate the sub-problem
2 so that the number of distinct subproblems is small; polynomial

in the original problem size.

2 Memoization
1 Identify distinct subproblems
2 Choose a memoization data structure
3 Identify dependencies and find a good evaluation order
4 An iterative algorithm replacing recursive calls with array

lookups

(UIUC) CS/ECE 374 20 March 10, 2021 20 / 28

Part III

Longest Increasing Subsequence

(UIUC) CS/ECE 374 21 March 10, 2021 21 / 28

Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1
2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
3 Longest increasing subsequence: 3, 5, 7, 8

(UIUC) CS/ECE 374 22 March 10, 2021 22 / 28

Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1
2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
3 Longest increasing subsequence: 3, 5, 7, 8

(UIUC) CS/ECE 374 22 March 10, 2021 22 / 28

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n � 1)])
2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so

clear.

Observation
For second case we want to find a subsequence in A[1..(n � 1)]

that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

(UIUC) CS/ECE 374 23 March 10, 2021 23 / 28

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n � 1)])
2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so

clear.

Observation
For second case we want to find a subsequence in A[1..(n � 1)]

that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

(UIUC) CS/ECE 374 23 March 10, 2021 23 / 28

Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS smaller(A[1..n], x): length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0

m = LIS smaller(A[1..(n � 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n � 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],1)

(UIUC) CS/ECE 374 24 March 10, 2021 24 / 28

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0

m = LIS smaller(A[1..(n � 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n � 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],1)

How many distinct sub-problems will LIS smaller(A[1..n],1)

generate?

O(n
2
)

What is the running time if we memoize recursion? O(n
2
) since

each call takes O(1) time to assemble the answers from two
recursive calls and no other computation.

How much space for memoization? O(n
2
)

(UIUC) CS/ECE 374 25 March 10, 2021 25 / 28

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0

m = LIS smaller(A[1..(n � 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n � 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],1)

How many distinct sub-problems will LIS smaller(A[1..n],1)

generate? O(n
2
)

What is the running time if we memoize recursion? O(n
2
) since

each call takes O(1) time to assemble the answers from two
recursive calls and no other computation.

How much space for memoization? O(n
2
)

(UIUC) CS/ECE 374 25 March 10, 2021 25 / 28

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0

m = LIS smaller(A[1..(n � 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n � 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],1)

How many distinct sub-problems will LIS smaller(A[1..n],1)

generate? O(n
2
)

What is the running time if we memoize recursion?

O(n
2
) since

each call takes O(1) time to assemble the answers from two
recursive calls and no other computation.

How much space for memoization? O(n
2
)

(UIUC) CS/ECE 374 25 March 10, 2021 25 / 28

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0

m = LIS smaller(A[1..(n � 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n � 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],1)

How many distinct sub-problems will LIS smaller(A[1..n],1)

generate? O(n
2
)

What is the running time if we memoize recursion? O(n
2
) since

each call takes O(1) time to assemble the answers from two
recursive calls and no other computation.

How much space for memoization? O(n
2
)

(UIUC) CS/ECE 374 25 March 10, 2021 25 / 28

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0

m = LIS smaller(A[1..(n � 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n � 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],1)

How many distinct sub-problems will LIS smaller(A[1..n],1)

generate? O(n
2
)

What is the running time if we memoize recursion? O(n
2
) since

each call takes O(1) time to assemble the answers from two
recursive calls and no other computation.

How much space for memoization?

O(n
2
)

(UIUC) CS/ECE 374 25 March 10, 2021 25 / 28

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0

m = LIS smaller(A[1..(n � 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n � 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],1)

How many distinct sub-problems will LIS smaller(A[1..n],1)

generate? O(n
2
)

What is the running time if we memoize recursion? O(n
2
) since

each call takes O(1) time to assemble the answers from two
recursive calls and no other computation.

How much space for memoization? O(n
2
)

(UIUC) CS/ECE 374 25 March 10, 2021 25 / 28

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n
2
) we name them to

help us understand the structure better. For notational ease we add
1 at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i] among
numbers less than A[j] (defined only for i < j)

(UIUC) CS/ECE 374 26 March 10, 2021 26 / 28

How to order bottom up computation?

C
S

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Base case: LIS(0, j) = 0 for 1 j n + 1

Recursive relation:

LIS(i , j) = LIS(i � 1, j) if A[i] > A[j]

LIS(i , j) = max{LIS(i � 1, j), 1 + LIS(i � 1, i)} if A[i] A[j]

(UIUC) CS/ECE 374 27 March 10, 2021 27 / 28

How to order bottom up computation?

C
S

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Base case: LIS(0, j) = 0 for 1 j n + 1

Recursive relation:

LIS(i , j) = LIS(i � 1, j) if A[i] > A[j]

LIS(i , j) = max{LIS(i � 1, j), 1 + LIS(i � 1, i)} if A[i] A[j]

(UIUC) CS/ECE 374 27 March 10, 2021 27 / 28

O U O O O O O O

How to order bottom up computation?

C
S

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Base case: LIS(0, j) = 0 for 1 j n + 1

Recursive relation:

LIS(i , j) = LIS(i � 1, j) if A[i] > A[j]

LIS(i , j) = max{LIS(i � 1, j), 1 + LIS(i � 1, i)} if A[i] A[j]

(UIUC) CS/ECE 374 27 March 10, 2021 27 / 28

k

How to order bottom up computation?

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1

C
S

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

(UIUC) CS/ECE 374 28 March 10, 2021 28 / 28

63 5 2 78 I

O O O O O O O O

6 O O O 1 I O l
3 1 01 I O l
5 02 20 2
2
7 3 03
8 04
I 4

Iterative algorithm

LIS-Iterative(A[1..n]):
A[n + 1] = 1
int LIS[0..n, 1..n + 1]

for (j = 1 to n + 1) do

LIS[0, j] = 0

for (i = 1 to n) do

for (j = i + 1 to n)
If (A[i] > A[j]) LIS[i , j] = LIS[i � 1, j]
Else LIS[i , j] = max{LIS[i � 1, j], 1 + LIS[i � 1, i]}

Return LIS[n, n + 1]

Running time: O(n
2
)

Space: O(n
2
)

(UIUC) CS/ECE 374 29 March 10, 2021 29 / 28

