CS/ECE 374: Algorithms & Models of Computation

Dynamic Programming

Lecture 13

Divide and Conquer: Problem reduced to multiple independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median selection.

Each sub-problem is a fraction smaller.

Backtracking: A sequence of decision problems. Recursion tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to n-1.

Divide and Conquer: Problem reduced to multiple independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median selection.

Each sub-problem is a fraction smaller.

Backtracking: A sequence of decision problems. Recursion tries all possibilities at each step. Each subproblem is only a constant smaller, e.g. from n to

n – 1.

Opposite Dynamic Programming: Smart recursion with memoization

Part I

Fibonacci Numbers

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

$$F(n) = F(n-1) + F(n-2) \text{ and } F(0) = 0, F(1) = 1.$$

$$\neg f(n) = 0(n) + \sum_{i=1}^{k-1} T(i)$$

These numbers have many interesting and amazing properties. A journal *The Fibonacci Quarterly*!

- $F(n) = (\phi^n (1 \phi)^n)/\sqrt{5}$ where ϕ is the golden ratio $(1 + \sqrt{5})/2 \simeq 1.618$.
- 2 $\lim_{n\to\infty} F(n+1)/F(n) = \phi$

Question: Given n, compute F(n).

Question: Given n, compute F(n).

Running time? Let T(n) be the number of additions in Fib(n).

Question: Given n, compute F(n).

Running time? Let T(n) be the number of additions in Fib(n).

T(n) = T(n-1) + T(n-2) + 1 and T(0) = T(1) = 0

Question: Given n, compute F(n).

Running time? Let T(n) be the number of additions in Fib(n).

T(n) = T(n-1) + T(n-2) + 1 and T(0) = T(1) = 0

Roughly same as F(n)

(UIUC)

 $T(n) = \Theta(\phi^n)$

5

The number of additions is exponential in *n*. Can we do better?

CS/ECE 374

Recursion Tree

Memoization

• The recursive algorithm is slow because it computes the same Fibonacci numbers over and over.

• The recursive algorithm is slow because it computes the same Fibonacci numbers over and over.

Memoization

• Write down the results of recursive calls and look them up later

• The recursive algorithm is slow because it computes the same Fibonacci numbers over and over.

Memoization

- Write down the results of recursive calls and look them up later
- 2 An array F(n), where F(i) stores the result of Fib(i)

• The recursive algorithm is slow because it computes the same Fibonacci numbers over and over.

Memoization

- Write down the results of recursive calls and look them up later
- 2 An array F(n), where F(i) stores the result of Fib(i)
- Solution order: From bottom up, i = 2 then i = 3 and so on

An iterative algorithm for Fibonacci numbers

An iterative algorithm for Fibonacci numbers

What is the running time of the algorithm?

An iterative algorithm for Fibonacci numbers

What is the running time of the algorithm? O(n) additions.

DP prunes recursion tree

Finding a recursion that can be *effectively/efficiently* memoized.

Leads to polynomial time algorithm if number of distinct sub-problems is polynomial in input size.

Saving space

Do we need an array of *n* numbers? Not really.

```
Fiblter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    prev^2 = 0
    prev1 = 1
    for i = 2 to n do
        temp = prev1 + prev2
        prev2 = prev1
        prev1 = temp
    return prev1
```


Dynamic Programming: Smart recursion with memoization

Dynamic Programming: Smart recursion with memoization

• Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct recursion.

Dynamic Programming: Smart recursion with memoization

- Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct recursion.
- Use **memoization** to avoid recomputation of common solutions, hence optimizing running time and space.

Dynamic Programming: Smart recursion with memoization

- Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct recursion.
- Use **memoization** to avoid recomputation of common solutions, hence optimizing running time and space.
 - First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
 - Figure out a way to order the computation of the sub-problems starting from the base case.
- Often an *iterative* algorithm with *bottom up* computation.

Part II

Text Segmentation

Problem

Input A string $w \in \Sigma^*$ and access to a language $L \subseteq \Sigma^*$ via function IsStrInL(string x) that decides whether x is in L

Goal Decide if $w \in L^*$ using IsStrInL(string x) as a black box sub-routine

Example

Suppose *L* is *English* and we have a procedure to check whether a string/word is in the *English* dictionary.

- Is the string *"isthisanenglishsentence"* in *English**?
- Is "stampstamp" in *English**?
- Is "zibzzzad" in *English**?

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions

Only the suffix matters.

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions

Only the suffix matters.

Base case

zero-length string

Recursive Solution

Assume w is stored in array A[1...n]

```
IsStringinLstar(A[1..n]):

If (n = 0) Output YES

If (IsStrInL(A[1..n]))

Output YES

Else

For (i = 1 to n - 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))

Output YES

Output NO
```

Recursive Solution

Assume *w* is stored in array *A*[1..*n*]

```
IsStringinLstar(A[1..n]):

If (n = 0) Output YES

If (IsStrInL(A[1..n]))

Output YES

Else

For (i = 1 to n - 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))

Output YES

Output NO
```

Question: How many distinct sub-problems does **IsStrInLstar**(*A*[1..*n*]) generate?

Recursive Solution

Assume w is stored in array A[1...n]

```
IsStringinLstar(A[1..n]):

If (n = 0) Output YES

If (IsStrInL(A[1..n]))

Output YES

Else

For (i = 1 to n - 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))

Output YES

Output NO
```

Question: How many distinct sub-problems does IsStrInLstar(A[1..n]) generate? O(n)

Naming subproblems

After seeing that number of subproblems is O(n) we name them to help us understand the structure better.

ISL(*i***)**: a boolean which is 1 if **A**[*i*..*n*] is in **L***, **0** otherwise

Base case: ISL(n + 1) = 1 interpreting A[n + 1...n] as ϵ

Evaluate subproblems

Recursive relation:

- ISL(i) = 1 if $\exists i < j \le n+1$ such that (ISL(j) = 1 and ISStrInL(A[i..(j-1)]) = 1)
- ISL(i) = 0 otherwise

Alternatively: $ISL(i) = \max_{i < j \le n+1} ISL(j) IsStrInL(A[i..(j - 1]))$

Evaluate subproblems

Recursive relation:

- ISL(i) = 1 if $\exists i < j \le n+1$ such that (ISL(j) = 1 and IsStrInL(A[i..(j-1)]) = 1)
- ISL(i) = 0 otherwise

Alternatively: $ISL(i) = \max_{i < j \le n+1} ISL(j) IsStrInL(A[i..(j - 1]))$ Output: ISL(1)

Iterative Algorithm


```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL[1..(n+1)]
    ISL[n+1] = TRUE
    for (i = n \text{ down to } 1)
         ISL[i] = FALSE
         for (i = i + 1 \text{ to } n + 1)
                   If (ISL[j] \text{ and } IsStrInL(A[i.j-1]))
                       ISL[i] = TRUE
                       Break
    If (|SL[1] = 1) Output YES
    Else Output NO
```

• Running time:

• Running time: $O(n^2)$ (assuming call to IsStrInL is O(1)time) $/+2 + - + (n - 1) = O(n^2)$

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL[1..(n+1)]
    ISL[n+1] = TRUE
    for (i = n \text{ down to } 1)
         ISL[i] = FALSE
         for (i = i + 1 \text{ to } n + 1)
                   If (ISL[j] \text{ and } IsStrInL(A[i.j-1]))
                       ISL[i] = TRUE
                       Break
    If (|SL[1] = 1) Output YES
    Else Output NO
```

Running time: O(n²) (assuming call to IsStrInL is O(1) time)

• Space:

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL[1..(n+1)]
    ISL[n+1] = TRUE
    for (i = n \text{ down to } 1)
         ISL[i] = FALSE
         for (i = i + 1 \text{ to } n + 1)
                   If (ISL[j] \text{ and } IsStrInL(A[i.j-1]))
                       ISL[i] = TRUE
                       Break
    If (|SL[1] = 1) Output YES
    Else Output NO
```

Running time: O(n²) (assuming call to IsStrInL is O(1) time)

• Space: *O*(*n*)

How to design DP algorithms

• Find a "smart" recursion (The hard part)

- Formulate the sub-problem
- so that the number of distinct subproblems is small; polynomial in the original problem size.

How to design DP algorithms

Find a "smart" recursion (The hard part)

- Formulate the sub-problem
- so that the number of distinct subproblems is small; polynomial in the original problem size.

2 Memoization

- Identify distinct subproblems
- Ochoose a memoization data structure
- 3 Identify dependencies and find a good evaluation order
- An iterative algorithm replacing recursive calls with array lookups

Part III

Longest Increasing Subsequence

Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n Goal Find an **increasing subsequence** $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n Goal Find an **increasing subsequence** $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Example

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8

Recursive Approach: Take 1 LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(**A[1..***n*]):

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Recursive Approach: Take 1 LIS: Longest increasing subsequence

Can we find a recursive algorithm for $\ensuremath{\mathbf{LIS}}\xspace?$

LIS(**A[1..***n*]):

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation

For second case we want to find a subsequence in A[1..(n-1)] that is restricted to numbers less than A[n]. This suggests that a more general problem is LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where each number in the sequence is less than x.

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS_smaller(A[1..n], x): length of longest increasing subsequence in A[1..n] with all numbers in subsequence less than x

> LIS_smaller(A[1..n], x): if (n = 0) then return 0 $m = LIS_smaller(A[1..(n - 1)], x)$ if (A[n] < x) then $m = max(m, 1 + LIS_smaller(A[1..(n - 1)], A[n]))$ Output m

LIS_smaller(A[1..n], x): if (n = 0) then return 0 $m = LIS_smaller(A[1..(n - 1)], x))$ if (A[n] < x) then $m = max(m, 1 + LIS_smaller(A[1..(n - 1)], A[n]))$ Output m

> LIS(A[1..n]): return LIS_smaller($A[1..n], \infty$)

 How many distinct sub-problems will LIS_smaller(A[1..n],∞) generate?

LIS_smaller(A[1..n], x): if (n = 0) then return 0 $m = LIS_smaller(A[1..(n - 1)], x))$ if (A[n] < x) then $m = max(m, 1 + LIS_smaller(A[1..(n - 1)], A[n]))$ Output m

> LIS(A[1..n]): return LIS_smaller($A[1..n], \infty$)

• How many distinct sub-problems will LIS_smaller($A[1..n], \infty$) generate? $O(n^2)$

LIS(A[1..n]): return LIS_smaller($A[1..n], \infty$)

- How many distinct sub-problems will LIS_smaller($A[1..n], \infty$) generate? $O(n^2)$
- What is the running time if we memoize recursion?

LIS_smaller(A[1..n], x): if (n = 0) then return 0 $m = LIS_smaller(A[1..(n - 1)], x))$ if (A[n] < x) then $m = max(m, 1 + LIS_smaller(A[1..(n - 1)], A[n]))$ Output m

> LIS(A[1..n]): return LIS_smaller($A[1..n], \infty$)

- How many distinct sub-problems will LIS_smaller($A[1..n], \infty$) generate? $O(n^2)$
- What is the running time if we memoize recursion? $O(n^2)$ since each call takes O(1) time to assemble the answers from two recursive calls and no other computation.

(UIUC)

25

LIS_smaller(A[1..n], x): if (n = 0) then return 0 $m = LIS_smaller(A[1..(n - 1)], x)$ if (A[n] < x) then $m = max(m, 1 + LIS_smaller(A[1..(n - 1)], A[n]))$ Output m

> LIS(A[1..n]): return LIS_smaller($A[1..n], \infty$)

- How many distinct sub-problems will LIS_smaller($A[1..n], \infty$) generate? $O(n^2)$
- What is the running time if we memoize recursion? O(n²) since each call takes O(1) time to assemble the answers from two recursive calls and no other computation.
- How much space for memoization?

$$\begin{split} & \mathsf{LIS_smaller}(A[1..n], x): \\ & \text{if } (n = 0) \text{ then return } 0 \\ & m = \mathsf{LIS_smaller}(A[1..(n - 1)], x)) \\ & \text{if } (A[n] < x) \text{ then} \\ & m = max(m, 1 + \mathsf{LIS_smaller}(A[1..(n - 1)], A[n])) \\ & \text{Output } m \end{split}$$

LIS(A[1..n]): return LIS_smaller($A[1..n], \infty$)

- How many distinct sub-problems will LIS_smaller($A[1..n], \infty$) generate? $O(n^2)$
- What is the running time if we memoize recursion? O(n²) since each call takes O(1) time to assemble the answers from two recursive calls and no other computation.
- How much space for memoization? $O(n^2)$

```
(UIUC)
```

Naming subproblems and recursive equation

After seeing that number of subproblems is $O(n^2)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position n + 1)

LIS(i, j): length of longest increasing sequence in A[1..i] among numbers less than A[j] (defined only for i < j)

(UIUC)

Base case: LIS(0, j) = 0 for $1 \le j \le n + 1$

Base case: LIS(0, j) = 0 for $1 \le j \le n + 1$ Recursive relation:

• LIS(i,j) = LIS(i-1,j) if A[i] > A[j]

• $LIS(i,j) = max\{LIS(i-1,j), 1 + LIS(i-1,i)\}$ if $A[i] \le A[j]$

(UIUC)

```
LIS-Iterative(A[1..n]):
     A[n+1] = \infty
     int LIS[0...n, 1...n + 1]
     for (i = 1 \text{ to } n + 1) do
           LIS[0, i] = 0
     for (i = 1 \text{ to } n) do
           for (\mathbf{i} = \mathbf{i} + 1 \text{ to } \mathbf{n})
                If (A[i] > A[j]) LIS[i, j] = LIS[i - 1, j]
                Else LIS[i, j] = \max\{LIS[i - 1, j], 1 + LIS[i - 1, i]\}
     Return LIS[n, n + 1]
```

Running time: $O(n^2)$ Space: $O(n^2)$

(UIUC)