CS/ECE 374: Algorithms \& Models of Computation

Dynamic Programming

Lecture 13

Recursion types

(1) Divide and Conquer: Problem reduced to multiple independent sub-problems.
Examples: Merge sort, quick sort, multiplication, median selection.
Each sub-problem is a fraction smaller.
(2) Backtracking: A sequence of decision problems. Recursion tries all possibilities at each step.
Each subproblem is only a constant smaller, e.g. from \boldsymbol{n} to $\boldsymbol{n}-1$.

Recursion types

(1) Divide and Conquer: Problem reduced to multiple independent sub-problems.
Examples: Merge sort, quick sort, multiplication, median selection.
Each sub-problem is a fraction smaller.
(2) Backtracking: A sequence of decision problems. Recursion tries all possibilities at each step.
Each subproblem is only a constant smaller, e.g. from \boldsymbol{n} to $\boldsymbol{n}-1$.
(3) Dynamic Programming: Smart recursion with memoization

Part I

Fibonacci Numbers

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

$$
\begin{aligned}
F(n) & =F(n-1)+F(n-2) \text { and } F(0)=0, F(1)=1 . \\
& T(n)=O(n)+\sum_{i=1}^{-1} T(i)
\end{aligned}
$$

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!
(1) $F(n)=\left(\phi^{n}-(1-\phi)^{n}\right) / \sqrt{5}$ where ϕ is the golden ratio $(1+\sqrt{5}) / 2 \simeq 1.618$.
(2) $\lim _{n \rightarrow \infty} F(n+1) / F(n)=\phi$

Recursive Algorithm for Fibonacci Numbers

Question: Given \boldsymbol{n}, compute $\boldsymbol{F}(\boldsymbol{n})$.
$\operatorname{Fib}(n):$
if $(n=0)$
return 0
else if $(n=1)$
return 1
else
return $\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)$

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute $\boldsymbol{F}(\boldsymbol{n})$.
$\operatorname{Fib}(n):$

$$
\text { if }(n=0)
$$

return 0
else if $(n=1)$
return 1
else
return $\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)$
Running time? Let $\boldsymbol{T}(\boldsymbol{n})$ be the number of additions in $\operatorname{Fib}(n)$.

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute $F(n)$.
$\operatorname{Fib}(n):$

$$
\begin{aligned}
& \text { if }(n=0) \\
& \text { return } 0 \\
& \text { else if }(n=1) \\
& \text { return } 1 \\
& \text { else } \\
& \quad \text { return } \operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)
\end{aligned}
$$

Running time? Let $T(n)$ be the number of additions in $\operatorname{Fib}(n)$.

$$
T(n)=T(n-1)+T(n-2)+1 \text { and } T(0)=T(1)=0
$$

Recursive Algorithm for Fibonacci Numbers

Question: Given \boldsymbol{n}, compute $\boldsymbol{F}(\boldsymbol{n})$.
$\operatorname{Fib}(n):$

$$
\begin{aligned}
& \text { if }(n=0) \\
& \quad \text { return } 0 \\
& \text { else if }(n=1) \\
& \text { return } 1 \\
& \text { else } \\
& \quad \text { return } \operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)
\end{aligned}
$$

Running time? Let $T(n)$ be the number of additions in $\mathrm{Fib}(\mathrm{n})$.

$$
T(n)=T(n-1)+T(n-2)+1 \text { and } T(0)=T(1)=0
$$

Roughly same as $F(\boldsymbol{n})$

$$
T(n)=\Theta\left(\phi^{n}\right)
$$

The number of additions is exponential in \boldsymbol{n}. Can we do better?

Recursion Tree

Memoization

- The recursive algorithm is slow because it computes the same Fibonacci numbers over and over.

Memoization

- The recursive algorithm is slow because it computes the same Fibonacci numbers over and over.

Memoization
(1) Write down the results of recursive calls and look them up later

Memoization

- The recursive algorithm is slow because it computes the same Fibonacci numbers over and over.

Memoization

(1) Write down the results of recursive calls and look them up later
(2) An array $F(n)$, where $F(i)$ stores the result of $\operatorname{Fib}(i)$

Memoization

- The recursive algorithm is slow because it computes the same Fibonacci numbers over and over.

Memoization

(1) Write down the results of recursive calls and look them up later
(2) An array $F(n)$, where $F(i)$ stores the result of $\operatorname{Fib}(i)$
(3) Evaluation order: From bottom up, $i=2$ then $i=3$ and so on

An iterative algorithm for Fibonacci numbers

Fiblter (n) :

if $(n=0)$ then
return 0
if $(n=1)$ then
return 1
$F[0]=0$
$F[1]=1$
for $i=2$ to n do
$F[i]=F[i-1]+F[i-2]$
return $F[n]$

An iterative algorithm for Fibonacci numbers

Fiblter (n) :

$$
\begin{aligned}
& \text { if }(n=0) \text { then } \\
& \quad \text { return } 0 \\
& \text { if }(n=1) \text { then } \\
& \quad \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } i=2 \text { to } n \text { do } \\
& \quad F[i]=F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

What is the running time of the algorithm?

An iterative algorithm for Fibonacci numbers

Fiblter (n):

$$
\begin{aligned}
& \text { if }(n=0) \text { then } \\
& \quad \text { return } 0 \\
& \text { if }(n=1) \text { then } \\
& \quad \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } i=2 \text { to } n \text { do } \\
& \quad F[i]=F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

What is the running time of the algorithm? $O(n)$ additions.

DP prunes recursion tree

What is the difference?

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of distinct sub-problems is polynomial in input size.

Saving space

Do we need an array of \boldsymbol{n} numbers? Not really.
Fiblter (n):

$$
\left.\begin{array}{l}
\text { if }(n=0) \text { then } \\
\text { return } 0 \\
\text { if }(n=1) \text { then } \\
\quad \text { return } 1 \\
\text { prev } 2=0 \\
\text { prev } 1=1 \\
\text { for } i=2 \text { to } n \text { do } \\
\text { temp }=\text { prev } 1+\operatorname{prev} 2 \\
\operatorname{prev} 2=\operatorname{prev} 1 \\
\operatorname{prev} 1=\text { temp }
\end{array}\right\} \begin{aligned}
& \text { return prev1 }
\end{aligned}
$$

Dynamic Programming

Dynamic Programming: Smart recursion with memoization

Dynamic Programming

Dynamic Programming: Smart recursion with memoization

- Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct recursion.

Dynamic Programming

Dynamic Programming: Smart recursion with memoization

- Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct recursion.
- Use memoization to avoid recomputation of common solutions, hence optimizing running time and space.

Dynamic Programming

Dynamic Programming: Smart recursion with memoization

- Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct recursion.
- Use memoization to avoid recomputation of common solutions, hence optimizing running time and space.
- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- Figure out a way to order the computation of the sub-problems starting from the base case.
- Often an iterative algorithm with bottom up computation.

Part II

Text Segmentation

Problem

Input A string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function $\operatorname{IsStr} \operatorname{lnL}($ string $x)$ that decides whether x is in L

Goal Decide if $w \in L^{*}$ using IsStrlnL(string x) as a black box sub-routine

Example

Suppose L is English and we have a procedure to check whether a string/word is in the English dictionary.

- Is the string "isthisanenglishsentence" in English*?
- Is "stampstamp" in English*?
- Is "zibzzzad" in English*?

Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions

Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions

Only the suffix matters.

HEARTHANDSATURNSPIN

Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions

Only the suffix matters.

HEARTHANDSATURNSPIN

Base case

- zero-length string

Recursive Solution

Assume w is stored in array $A[1 . . n]$
IsStringinLstar(A[1..n]):

$$
\begin{aligned}
& \text { If }(\boldsymbol{n}=\mathbf{0}) \text { Output YES } \\
& \text { If (IsStrlnL(}(\boldsymbol{A}[\mathbf{1} . . \boldsymbol{n}]) \text {) } \\
& \text { Output YES } \\
& \text { Else } \\
& \text { For (} \boldsymbol{i}=\mathbf{1} \text { to } \boldsymbol{n}-\mathbf{1}) \text { do } \\
& \quad \text { If (IsStrInL(}(\boldsymbol{A}[1 . . i]) \text { and IsStrInLstar(A[i+1..n])) } \\
& \quad \text { Output YES }
\end{aligned}
$$

Output NO

Recursive Solution

Assume w is stored in array $A[1 . . n]$

IsStringinLstar(A[1..n]):

If ($\boldsymbol{n}=0$) Output YES
If (IsStrInL(A[1..n]))
Output YES
Else

$$
\begin{aligned}
\text { For } & (i=1 \text { to } n-1) \text { do } \\
\text { If } & \text { (IsStrlnL(} A[1 . . i]) \text { and IsStrInLstar(} A[i+1 . . n])) \\
& \text { Output YES }
\end{aligned}
$$

Output NO
Question: How many distinct sub-problems does IsStrInLstar($A[1 . . n])$ generate?

Recursive Solution

Assume w is stored in array $A[1 . . n]$

IsStringinLstar(A[1..n]):

If ($\boldsymbol{n}=0$) Output YES
If (IsStrlnL(A[1..n]))
Output YES
Else

$$
\begin{aligned}
\text { For } & (i=1 \text { to } n-1) \text { do } \\
\text { If } & \text { (IsStrlnL(} A[1 . . i]) \text { and IsStrInLstar(} A[i+1 . . n])) \\
& \text { Output YES }
\end{aligned}
$$

Output NO
Question: How many distinct sub-problems does IsStrInLstar $(A[1 . . n])$ generate? $O(n)$

Naming subproblems

After seeing that number of subproblems is $O(n)$ we name them to help us understand the structure better.
$\operatorname{ISL}(i)$: a boolean which is $\mathbf{1}$ if $\boldsymbol{A}[\mathbf{i} . . n]$ is in $L^{*}, \mathbf{0}$ otherwise
Base case: $\operatorname{ISL}(n+1)=1$ interpreting $A[n+1 . . n]$ as ϵ

Evaluate subproblems

Recursive relation:

- $\operatorname{ISL}(i)=1$ if $\exists i<j \leq n+1$ such that $(\operatorname{ISL}(j)=1$ and $\operatorname{IsStrInL}(A[i . .(j-1)])=1)$
- ISL(i) $=0$ otherwise

Alternatively: $\operatorname{ISL}(i)=\max _{i<j \leq n+1} \operatorname{ISL}(j) \operatorname{lsStrInL}(A[i . .(j-1]))$

$$
1 \cdot 1=1
$$

Evaluate subproblems

Recursive relation:

- $\operatorname{ISL}(i)=1$ if $\exists i<j \leq n+1$ such that $(\operatorname{ISL}(j)=1$ and $\operatorname{IsStrInL}(A[i . .(j-1)])=1)$
- ISL(i) $=0$ otherwise

Alternatively: $\operatorname{ISL}(i)=\max _{i<j \leq n+1} \operatorname{ISL}(j) \operatorname{IsStrInL}(A[i . .(j-1]))$ Output: ISL(1)

Iterative Algorithm

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL[1..(n+1)]
    ISL[n+1] = TRUE
    for (i=n down to 1) \hookleftarrow
        ISL[i] = FALSE
        for (j=i+1 to n+1)<
        If (ISL[j] and IsStrInL(A[i..j - 1]))
                            TSL[i] = TRUE
                            Break
    If (ISL[1] = 1) Output YES
    Else Output NO
```


Iterative Algorithm

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL[1..(n+1)]
    ISL[n+1] = TRUE
    for (i=n down to 1)
        ISL[i] = FALSE
        for (j=i+1 to n+1)
        If (ISL[j] and IsStrInL(A[i..j - 1]))
                        ISL[i] = TRUE
                        Break
    If (ISL[1] = 1) Output YES
    Else Output NO
```

- Running time:

Iterative Algorithm

IsStringinLstar-Iterative($A[1 . . n])$:
boolean ISL[1.. $(n+1)]$
$\operatorname{ISL}[n+1]=$ TRUE
for ($\boldsymbol{i}=\boldsymbol{n}$ down to $\mathbf{1}$)
$I S L[i]=F A L S E$
for ($j=i+1$ to $n+1$)
If (ISL[j] and IsStrInL(A[i..j-1])) \leftarrow
$\operatorname{ISL}[i]=T R U E$
Break
If (ISL[1] = 1) Output YES
Else Output NO

- Running time: $O\left(n^{2}\right)$ (assuming call to IsStrlnL is $O(1)$ time) $\quad 1+2+\cdots+(n-1)=O\left(n^{2}\right)$

Iterative Algorithm

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL[1..(n+1)]
    ISL[n+1] = TRUE
    for (i=n down to 1)
        ISL[i] = FALSE
        for (j=i+1 to n+1)
        If (ISL[j] and IsStrInL(A[i..j - 1]))
                        ISL[i] = TRUE
                        Break
    If (ISL[1] = 1) Output YES
    Else Output NO
```

- Running time: $O\left(n^{2}\right)$ (assuming call to IsStrlnL is $O(1)$ time)
- Space:

Iterative Algorithm

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL[1..(n+1)]
    ISL[n+1] = TRUE
    for (i=n down to 1)
        ISL[i] = FALSE
        for (j=i+1 to n+1)
        If (ISL[j] and IsStrInL(A[i..j - 1]))
                        ISL[i] = TRUE
                        Break
    If (ISL[1] = 1) Output YES
    Else Output NO
```

- Running time: $O\left(n^{2}\right)$ (assuming call to IsStrlnL is $O(1)$ time)
- Space: $O(n)$

How to design DP algorithms

(1) Find a "smart" recursion (The hard part)
(1) Formulate the sub-problem
(2) so that the number of distinct subproblems is small; polynomial in the original problem size.

How to design DP algorithms

(1) Find a "smart" recursion (The hard part)
(1) Formulate the sub-problem
(2) so that the number of distinct subproblems is small; polynomial in the original problem size.
(2) Memoization
(1) Identify distinct subproblems
(2) Choose a memoization data structure
(3) Identify dependencies and find a good evaluation order
(1) An iterative algorithm replacing recursive calls with array lookups

Part III

Longest Increasing Subsequence

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Increasing subsequences: 6, 7, 8 and $3,5,7,8$ and 2,7 etc
(3) Longest increasing subsequence: $3,5,7,8$

Recursive Approach: Take 1

LIS: Longest increasing subsequence
Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[1 . . n]):$
(1) Case 1: Does not contain $A[n]$ in which case $\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . . n])=\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . .(\boldsymbol{n}-\mathbf{1})])$
(2) Case 2: contains $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{LIS}(\boldsymbol{A}[1 . . \boldsymbol{n}])$ is not so clear.

Recursive Approach: Take 1

LIS: Longest increasing subsequence
Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[1 . . n]):$
(1) Case 1: Does not contain $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . . \boldsymbol{n}])=\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . .(\boldsymbol{n}-\mathbf{1})])$
(2) Case 2: contains $A[n]$ in which case $\operatorname{LIS}(\boldsymbol{A}[\mathbf{1 . . n}])$ is not so clear.

Observation

For second case we want to find a subsequence in $A[1 . .(n-1)]$ that is restricted to numbers less than $A[n]$. This suggests that a more general problem is LIS_smaller $(\mathbf{A}[\mathbf{1} . . n], x)$ which gives the longest increasing subsequence in \boldsymbol{A} where each number in the sequence is less than x.

Recursive Approach

$\operatorname{LIS}(A[1 . . n])$: the length of longest increasing subsequence in A
LIS_smaller($A[1 . . n], x)$: length of longest increasing subsequence in $A[1 . . n]$ with all numbers in subsequence less than x

LIS_smaller (A[1..n], x):

if $(n=0)$ then return 0
$m=$ LIS_smaller (A[1..($n-1)], x)$
if $(A[n]<x)$ then

$$
m=\max (m, 1+\text { LIS_smaller }(A[1 . .(n-1)], A[n]))
$$

Output m

$\operatorname{LIS}(A[1 . . n])$:

return LIS_smaller ($\boldsymbol{A}[1 . . n], \infty)$

Recursive Approach

LIS_smaller (A[1..n], x):
if $(n=0)$ then return 0
$m=$ LIS_smaller(A[1..(n-1)], $x)$
if $(A[n]<x)$ then

$$
m=\max (m, 1+\text { LIS_smaller }(A[1 . .(n-1)], A[n]))
$$

Output m

$$
\operatorname{LIS}(A[1 . . n]):
$$

return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller($\boldsymbol{A}[1 . . n], \infty)$ generate?

Recursive Approach

LIS_smaller (A[1..n], x):
if $(n=0)$ then return 0
$m=$ LIS_smaller(A[1..(n-1)], $x)$
if $(A[n]<x)$ then

$$
m=\max (m, 1+\text { LIS_smaller }(A[1 . .(n-1)], A[n]))
$$

Output m

$$
\operatorname{LIS}(A[1 . . n]):
$$

return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$

Recursive Approach

LIS_smaller ($A[1 . . n], x)$:
if $(n=0)$ then return 0
$m=$ LIS_smaller $(A[1 . .(n-1)], x)$
if $(A[n]<x)$ then

$$
m=\max (m, 1+\text { LIS_smaller }(A[1 . .(n-1)], A[n]))
$$

Output m

$$
\operatorname{LIS}(A[1 . . n]):
$$

return LIS_smaller ($A[1 . . n], \infty)$

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion?

Recursive Approach

LIS_smaller (A[1..n], x):
if $(n=0)$ then return 0
$m=$ LIS_smaller(A[1..(n-1)], $x)$
if $(A[n]<x)$ then

$$
m=\max (m, 1+\text { LIS_smaller }(A[1 . .(n-1)], A[n]))
$$

Output m

$\operatorname{LIS}(A[1 . . n])$:

return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $O(1)$ time to assemble the answers from two recursive calls and no other computation.

Recursive Approach

LIS_smaller (A[1..n], x):
if $(n=0)$ then return 0
$m=$ LIS_smaller(A[1..(n-1)], $x)$
if $(A[n]<x)$ then

$$
m=\max (m, 1+\text { LIS_smaller }(A[1 . .(n-1)], A[n]))
$$

Output m

$\operatorname{LIS}(A[1 . . n])$:

return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $O(1)$ time to assemble the answers from two recursive calls and no other computation.
- How much space for memoization?

Recursive Approach

LIS_smaller (A[1..n], x):
if $(n=0)$ then return 0
$m=$ LIS_smaller(A[1..(n-1)], $x)$
if $(A[n]<x)$ then

$$
m=\max (m, 1+\text { LIS_smaller }(A[1 . .(n-1)], A[n]))
$$

Output m

$\operatorname{LIS}(A[1 . . n])$:

return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $O(1)$ time to assemble the answers from two recursive calls and no other computation.
- How much space for memoization? $O\left(n^{2}\right)$

Naming subproblems and recursive equation

After seeing that number of subproblems is $O\left(n^{2}\right)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position $\boldsymbol{n}+\mathbf{1}$)
$\operatorname{LIS}(\boldsymbol{i}, \boldsymbol{j})$: length of longest increasing sequence in $\boldsymbol{A}[1 . . \boldsymbol{i}]$ among numbers less than $A[j]$ (defined only for $i<j$)

How to order bottom up computation?

How to order bottom up computation?

Base case: $\operatorname{LIS}(\mathbf{0}, \boldsymbol{j})=\mathbf{0}$ for $\mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}+\mathbf{1}$

How to order bottom up computation?

Base case: $\operatorname{LIS}(\mathbf{0}, \boldsymbol{j})=\mathbf{0}$ for $\mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}+\mathbf{1}$
Recursive relation:

- $\operatorname{LIS}(\boldsymbol{i}, \boldsymbol{j})=\operatorname{LIS}(\boldsymbol{i}-\mathbf{1}, \boldsymbol{j})$ if $\boldsymbol{A}[\boldsymbol{i}]>\boldsymbol{A}[\boldsymbol{j}]$
- $\operatorname{LIS}(\boldsymbol{i}, \boldsymbol{j})=\max \{\operatorname{LIS}(i-1, j), 1+\operatorname{LIS}(i-1, i)\}$ if $A[i] \leq A[j]$

How to order bottom up computation?
Sequence: $A[1 . .7]=6,3,5,2,7,8,1$

Iterative algorithm

LIS-Iterative (A [1..n]) :

$$
\begin{aligned}
& A[n+1]=\infty \\
& \text { int } \operatorname{LIS}[0 . . n, 1 . . n+1] \\
& \text { for }(j=1 \text { to } n+1) \text { do } \\
& \quad \operatorname{LIS}[0, j]=0 \\
& \text { for }(i=1 \text { to } n) \text { do } \\
& \quad \text { for }(j=i+1 \text { to } n) \\
& \quad \text { If }(A[i]>A[j]) \operatorname{LIS}[i, j]=\operatorname{LIS}[i-1, j] \\
& \quad \operatorname{Else} \operatorname{LIS}[i, j]=\max \{\operatorname{LIS}[i-1, j], 1+\operatorname{LIS}[i-1, i]\}
\end{aligned}
$$

Return $\operatorname{LIS}[n, n+1]$
Running time: $O\left(n^{2}\right)$
Space: $O\left(n^{2}\right)$

