
CS/ECE 374: Algorithms & Models of

Computation

Dynamic Programming
Lecture 13

(UIUC) CS/ECE 374 1 March 10, 2021 1 / 28



Recursion types

1 Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.

2 Backtracking: A sequence of decision problems. Recursion
tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to
n − 1.

3 Dynamic Programming: Smart recursion with memoization
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Part I

Fibonacci Numbers
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Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n − 1) + F (n − 2) and F (0) = 0,F (1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

1 F (n) = (φn − (1− φ)n)/
√

5 where φ is the golden ratio

(1 +
√

5)/2 ' 1.618.

2 limn→∞F (n + 1)/F (n) = φ
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0
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Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Roughly same as F (n)

T (n) = Θ(φn)

The number of additions is exponential in n. Can we do better?
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Recursion Tree

(UIUC) CS/ECE 374 6 March 10, 2021 6 / 28



Memoization

The recursive algorithm is slow because it computes the same
Fibonacci numbers over and over.

Memoization

1 Write down the results of recursive calls and look them up later

2 An array F (n), where F (i) stores the result of Fib(i)
3 Evaluation order: From bottom up, i = 2 then i = 3 and so on
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An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i ] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.
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DP prunes recursion tree
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What is the difference?

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of distinct
sub-problems is polynomial in input size.
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Saving space

Do we need an array of n numbers? Not really.

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

prev2 = 0
prev1 = 1
for i = 2 to n do

temp = prev1 + prev2
prev2 = prev1
prev1 = temp

return prev1
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Dynamic Programming

Dynamic Programming: Smart recursion with memoization

Dynamic programming is not about filling tables. It is
about finding a smart recursion. First, find the correct
recursion.

Use memoization to avoid recomputation of common solutions,
hence optimizing running time and space.

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)
Figure out a way to order the computation of the sub-problems
starting from the base case.

Often an iterative algorithm with bottom up computation.
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Part II

Text Segmentation
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Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if w ∈ L∗ using IsStrInL(string x) as a black
box sub-routine

Example
Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English∗?
Is “stampstamp” in English∗?
Is “zibzzzad” in English∗?
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Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Let the recursion fairy make all remaining decisions

Only the suffix matters.

Base case

zero-length string
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Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i ]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Question: How many distinct sub-problems does
IsStrInLstar(A[1..n]) generate? O(n)
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Naming subproblems

After seeing that number of subproblems is O(n) we name them to
help us understand the structure better.

ISL(i): a boolean which is 1 if A[i ..n] is in L∗, 0 otherwise

Base case: ISL(n + 1) = 1 interpreting A[n + 1..n] as ε
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Evaluate subproblems

Recursive relation:

ISL(i) = 1 if ∃i < j ≤ n + 1 such that (ISL(j) = 1 and
IsStrInL(A[i ..(j − 1)]) = 1)

ISL(i) = 0 otherwise

Alternatively: ISL(i) = maxi<j≤n+1 ISL(j)IsStrInL(A[i ..(j − 1]))

Output: ISL(1)
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Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i ] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j ] and IsStrInL(A[i ..j − 1]))
ISL[i ] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)
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How to design DP algorithms

1 Find a “smart” recursion (The hard part)
1 Formulate the sub-problem
2 so that the number of distinct subproblems is small; polynomial

in the original problem size.

2 Memoization
1 Identify distinct subproblems
2 Choose a memoization data structure
3 Identify dependencies and find a good evaluation order
4 An iterative algorithm replacing recursive calls with array

lookups
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Part III

Longest Increasing Subsequence
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8
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Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])
2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so

clear.

Observation
For second case we want to find a subsequence in A[1..(n − 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .
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Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS smaller(A[1..n], x): length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)
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Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
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Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate?

O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from two
recursive calls and no other computation.

How much space for memoization? O(n2)
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Naming subproblems and recursive equation

After seeing that number of subproblems is O(n2) we name them to
help us understand the structure better. For notational ease we add
∞ at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i ] among
numbers less than A[j ] (defined only for i < j)
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How to order bottom up computation?

C
S 

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i ] > A[j ]

LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if A[i ] ≤ A[j ]
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How to order bottom up computation?

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1

C
S 

37
4

For i<j

1 2 3 4 n+1

0
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3

n

i

j
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Iterative algorithm

LIS-Iterative(A[1..n]):
A[n + 1] =∞
int LIS[0..n, 1..n + 1]
for (j = 1 to n + 1) do

LIS[0, j ] = 0

for (i = 1 to n) do

for (j = i + 1 to n)
If (A[i ] > A[j ]) LIS[i , j ] = LIS[i − 1, j ]
Else LIS[i , j ] = max{LIS[i − 1, j ], 1 + LIS[i − 1, i ]}

Return LIS[n, n + 1]

Running time: O(n2)
Space: O(n2)
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