
CS/ECE 374: Algorithms & Models of

Computation

Dynamic Programming
Lecture 13

(UIUC) CS/ECE 374 1 March 10, 2021 1 / 28



Recursion types

1 Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.

2 Backtracking: A sequence of decision problems. Recursion
tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to
n − 1.

3 Dynamic Programming: Smart recursion with memoization

(UIUC) CS/ECE 374 2 March 10, 2021 2 / 28



Recursion types

1 Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.

2 Backtracking: A sequence of decision problems. Recursion
tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to
n − 1.

3 Dynamic Programming: Smart recursion with memoization

(UIUC) CS/ECE 374 2 March 10, 2021 2 / 28



Part I

Fibonacci Numbers

(UIUC) CS/ECE 374 3 March 10, 2021 3 / 28



Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n − 1) + F (n − 2) and F (0) = 0,F (1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

1 F (n) = (φn − (1− φ)n)/
√

5 where φ is the golden ratio

(1 +
√

5)/2 ' 1.618.

2 limn→∞F (n + 1)/F (n) = φ

(UIUC) CS/ECE 374 4 March 10, 2021 4 / 28



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

(UIUC) CS/ECE 374 5 March 10, 2021 5 / 28



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

(UIUC) CS/ECE 374 5 March 10, 2021 5 / 28



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

(UIUC) CS/ECE 374 5 March 10, 2021 5 / 28



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Roughly same as F (n)

T (n) = Θ(φn)

The number of additions is exponential in n. Can we do better?
(UIUC) CS/ECE 374 5 March 10, 2021 5 / 28



Recursion Tree

(UIUC) CS/ECE 374 6 March 10, 2021 6 / 28



Memoization

The recursive algorithm is slow because it computes the same
Fibonacci numbers over and over.

Memoization

1 Write down the results of recursive calls and look them up later

2 An array F (n), where F (i) stores the result of Fib(i)
3 Evaluation order: From bottom up, i = 2 then i = 3 and so on

(UIUC) CS/ECE 374 7 March 10, 2021 7 / 28



Memoization

The recursive algorithm is slow because it computes the same
Fibonacci numbers over and over.

Memoization

1 Write down the results of recursive calls and look them up later

2 An array F (n), where F (i) stores the result of Fib(i)
3 Evaluation order: From bottom up, i = 2 then i = 3 and so on

(UIUC) CS/ECE 374 7 March 10, 2021 7 / 28



Memoization

The recursive algorithm is slow because it computes the same
Fibonacci numbers over and over.

Memoization

1 Write down the results of recursive calls and look them up later

2 An array F (n), where F (i) stores the result of Fib(i)

3 Evaluation order: From bottom up, i = 2 then i = 3 and so on

(UIUC) CS/ECE 374 7 March 10, 2021 7 / 28



Memoization

The recursive algorithm is slow because it computes the same
Fibonacci numbers over and over.

Memoization

1 Write down the results of recursive calls and look them up later

2 An array F (n), where F (i) stores the result of Fib(i)
3 Evaluation order: From bottom up, i = 2 then i = 3 and so on

(UIUC) CS/ECE 374 7 March 10, 2021 7 / 28



An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i ] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

(UIUC) CS/ECE 374 8 March 10, 2021 8 / 28



An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i ] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm?

O(n) additions.

(UIUC) CS/ECE 374 8 March 10, 2021 8 / 28



An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i ] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

(UIUC) CS/ECE 374 8 March 10, 2021 8 / 28



DP prunes recursion tree

(UIUC) CS/ECE 374 9 March 10, 2021 9 / 28



What is the difference?

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of distinct
sub-problems is polynomial in input size.

(UIUC) CS/ECE 374 10 March 10, 2021 10 / 28



Saving space

Do we need an array of n numbers? Not really.

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

prev2 = 0
prev1 = 1
for i = 2 to n do

temp = prev1 + prev2
prev2 = prev1
prev1 = temp

return prev1

(UIUC) CS/ECE 374 11 March 10, 2021 11 / 28



Dynamic Programming

Dynamic Programming: Smart recursion with memoization

Dynamic programming is not about filling tables. It is
about finding a smart recursion. First, find the correct
recursion.

Use memoization to avoid recomputation of common solutions,
hence optimizing running time and space.

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)
Figure out a way to order the computation of the sub-problems
starting from the base case.

Often an iterative algorithm with bottom up computation.

(UIUC) CS/ECE 374 12 March 10, 2021 12 / 28



Dynamic Programming

Dynamic Programming: Smart recursion with memoization

Dynamic programming is not about filling tables. It is
about finding a smart recursion. First, find the correct
recursion.

Use memoization to avoid recomputation of common solutions,
hence optimizing running time and space.

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)
Figure out a way to order the computation of the sub-problems
starting from the base case.

Often an iterative algorithm with bottom up computation.

(UIUC) CS/ECE 374 12 March 10, 2021 12 / 28



Dynamic Programming

Dynamic Programming: Smart recursion with memoization

Dynamic programming is not about filling tables. It is
about finding a smart recursion. First, find the correct
recursion.

Use memoization to avoid recomputation of common solutions,
hence optimizing running time and space.

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)
Figure out a way to order the computation of the sub-problems
starting from the base case.

Often an iterative algorithm with bottom up computation.

(UIUC) CS/ECE 374 12 March 10, 2021 12 / 28



Dynamic Programming

Dynamic Programming: Smart recursion with memoization

Dynamic programming is not about filling tables. It is
about finding a smart recursion. First, find the correct
recursion.

Use memoization to avoid recomputation of common solutions,
hence optimizing running time and space.

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)
Figure out a way to order the computation of the sub-problems
starting from the base case.

Often an iterative algorithm with bottom up computation.

(UIUC) CS/ECE 374 12 March 10, 2021 12 / 28



Part II

Text Segmentation

(UIUC) CS/ECE 374 13 March 10, 2021 13 / 28



Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if w ∈ L∗ using IsStrInL(string x) as a black
box sub-routine

Example
Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English∗?
Is “stampstamp” in English∗?
Is “zibzzzad” in English∗?

(UIUC) CS/ECE 374 14 March 10, 2021 14 / 28



Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Let the recursion fairy make all remaining decisions

Only the suffix matters.

Base case

zero-length string

(UIUC) CS/ECE 374 15 March 10, 2021 15 / 28



Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Let the recursion fairy make all remaining decisions

Only the suffix matters.

Base case

zero-length string

(UIUC) CS/ECE 374 15 March 10, 2021 15 / 28



Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Let the recursion fairy make all remaining decisions

Only the suffix matters.

Base case

zero-length string

(UIUC) CS/ECE 374 15 March 10, 2021 15 / 28



Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i ]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Question: How many distinct sub-problems does
IsStrInLstar(A[1..n]) generate? O(n)

(UIUC) CS/ECE 374 16 March 10, 2021 16 / 28



Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i ]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Question: How many distinct sub-problems does
IsStrInLstar(A[1..n]) generate?

O(n)

(UIUC) CS/ECE 374 16 March 10, 2021 16 / 28



Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i ]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Question: How many distinct sub-problems does
IsStrInLstar(A[1..n]) generate? O(n)

(UIUC) CS/ECE 374 16 March 10, 2021 16 / 28



Naming subproblems

After seeing that number of subproblems is O(n) we name them to
help us understand the structure better.

ISL(i): a boolean which is 1 if A[i ..n] is in L∗, 0 otherwise

Base case: ISL(n + 1) = 1 interpreting A[n + 1..n] as ε

(UIUC) CS/ECE 374 17 March 10, 2021 17 / 28



Evaluate subproblems

Recursive relation:

ISL(i) = 1 if ∃i < j ≤ n + 1 such that (ISL(j) = 1 and
IsStrInL(A[i ..(j − 1)]) = 1)

ISL(i) = 0 otherwise

Alternatively: ISL(i) = maxi<j≤n+1 ISL(j)IsStrInL(A[i ..(j − 1]))

Output: ISL(1)

(UIUC) CS/ECE 374 18 March 10, 2021 18 / 28



Evaluate subproblems

Recursive relation:

ISL(i) = 1 if ∃i < j ≤ n + 1 such that (ISL(j) = 1 and
IsStrInL(A[i ..(j − 1)]) = 1)

ISL(i) = 0 otherwise

Alternatively: ISL(i) = maxi<j≤n+1 ISL(j)IsStrInL(A[i ..(j − 1]))
Output: ISL(1)

(UIUC) CS/ECE 374 18 March 10, 2021 18 / 28



Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i ] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j ] and IsStrInL(A[i ..j − 1]))
ISL[i ] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)

(UIUC) CS/ECE 374 19 March 10, 2021 19 / 28



Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i ] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j ] and IsStrInL(A[i ..j − 1]))
ISL[i ] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time:

O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)

(UIUC) CS/ECE 374 19 March 10, 2021 19 / 28



Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i ] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j ] and IsStrInL(A[i ..j − 1]))
ISL[i ] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)

(UIUC) CS/ECE 374 19 March 10, 2021 19 / 28



Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i ] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j ] and IsStrInL(A[i ..j − 1]))
ISL[i ] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space:

O(n)

(UIUC) CS/ECE 374 19 March 10, 2021 19 / 28



Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i ] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j ] and IsStrInL(A[i ..j − 1]))
ISL[i ] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)

(UIUC) CS/ECE 374 19 March 10, 2021 19 / 28



How to design DP algorithms

1 Find a “smart” recursion (The hard part)
1 Formulate the sub-problem
2 so that the number of distinct subproblems is small; polynomial

in the original problem size.

2 Memoization
1 Identify distinct subproblems
2 Choose a memoization data structure
3 Identify dependencies and find a good evaluation order
4 An iterative algorithm replacing recursive calls with array

lookups

(UIUC) CS/ECE 374 20 March 10, 2021 20 / 28



How to design DP algorithms

1 Find a “smart” recursion (The hard part)
1 Formulate the sub-problem
2 so that the number of distinct subproblems is small; polynomial

in the original problem size.

2 Memoization
1 Identify distinct subproblems
2 Choose a memoization data structure
3 Identify dependencies and find a good evaluation order
4 An iterative algorithm replacing recursive calls with array

lookups

(UIUC) CS/ECE 374 20 March 10, 2021 20 / 28



Part III

Longest Increasing Subsequence

(UIUC) CS/ECE 374 21 March 10, 2021 21 / 28



Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8

(UIUC) CS/ECE 374 22 March 10, 2021 22 / 28



Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8

(UIUC) CS/ECE 374 22 March 10, 2021 22 / 28



Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])
2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so

clear.

Observation
For second case we want to find a subsequence in A[1..(n − 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

(UIUC) CS/ECE 374 23 March 10, 2021 23 / 28



Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])
2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so

clear.

Observation
For second case we want to find a subsequence in A[1..(n − 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

(UIUC) CS/ECE 374 23 March 10, 2021 23 / 28



Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS smaller(A[1..n], x): length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

(UIUC) CS/ECE 374 24 March 10, 2021 24 / 28



Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate?

O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from two
recursive calls and no other computation.

How much space for memoization? O(n2)

(UIUC) CS/ECE 374 25 March 10, 2021 25 / 28



Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from two
recursive calls and no other computation.

How much space for memoization? O(n2)

(UIUC) CS/ECE 374 25 March 10, 2021 25 / 28



Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion?

O(n2) since
each call takes O(1) time to assemble the answers from two
recursive calls and no other computation.

How much space for memoization? O(n2)

(UIUC) CS/ECE 374 25 March 10, 2021 25 / 28



Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from two
recursive calls and no other computation.

How much space for memoization? O(n2)

(UIUC) CS/ECE 374 25 March 10, 2021 25 / 28



Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from two
recursive calls and no other computation.

How much space for memoization?

O(n2)

(UIUC) CS/ECE 374 25 March 10, 2021 25 / 28



Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from two
recursive calls and no other computation.

How much space for memoization? O(n2)

(UIUC) CS/ECE 374 25 March 10, 2021 25 / 28



Naming subproblems and recursive equation

After seeing that number of subproblems is O(n2) we name them to
help us understand the structure better. For notational ease we add
∞ at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i ] among
numbers less than A[j ] (defined only for i < j)

(UIUC) CS/ECE 374 26 March 10, 2021 26 / 28



How to order bottom up computation?

C
S 

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i ] > A[j ]

LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if A[i ] ≤ A[j ]

(UIUC) CS/ECE 374 27 March 10, 2021 27 / 28



How to order bottom up computation?

C
S 

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1

Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i ] > A[j ]

LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if A[i ] ≤ A[j ]

(UIUC) CS/ECE 374 27 March 10, 2021 27 / 28



How to order bottom up computation?

C
S 

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i ] > A[j ]

LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if A[i ] ≤ A[j ]

(UIUC) CS/ECE 374 27 March 10, 2021 27 / 28



How to order bottom up computation?

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1

C
S 

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

(UIUC) CS/ECE 374 28 March 10, 2021 28 / 28



Iterative algorithm

LIS-Iterative(A[1..n]):
A[n + 1] =∞
int LIS[0..n, 1..n + 1]
for (j = 1 to n + 1) do

LIS[0, j ] = 0

for (i = 1 to n) do

for (j = i + 1 to n)
If (A[i ] > A[j ]) LIS[i , j ] = LIS[i − 1, j ]
Else LIS[i , j ] = max{LIS[i − 1, j ], 1 + LIS[i − 1, i ]}

Return LIS[n, n + 1]

Running time: O(n2)
Space: O(n2)

(UIUC) CS/ECE 374 29 March 10, 2021 29 / 28


	Fibonacci Numbers
	Text Segmentation
	Longest Increasing Subsequence
	Longest Increasing Subsequence


