Backtracking

Lecture 12
Recursion types

1. **Divide and Conquer**: Problem reduced to multiple independent sub-problems.
 Examples: Merge sort, quick sort, multiplication, median selection.

2. **Backtracking**
Part I

N Queens Problem
N Queens Problem

Definition

Place n queens on an $n \times n$ board so that no two queens are attacking each other.
N Queens Problem

Definition

Place n queens on an $n \times n$ board so that no two queens are attacking each other.

that is, no two queens are in the same row, same column, or same diagonal.
N Queens Problem

Definition

Place n queens on an $n \times n$ board so that no two queens are attacking each other. That is, no two queens are in the same row, same column, or same diagonal.
N Queens Problem

Brute-force algorithm:
Try all combinations of n positions.
Brute-force algorithm:
Try all combinations of n positions.

Methodical brute-force:
No two queens on the same row, so place a queen in one row at a time.
N Queens Problem
N Queens Problem

Base case

- when any position in the row is attacked by a queen on an earlier row, recursion terminates.
- Or when all n queens are placed.
N Queens Problem

Base case

- when any position in the row is attacked by a queen on an earlier row, recursion terminates.
- Or when all n queens are placed.

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions
N Queens Problem

How do we redefine the problem to make recursion work?
How do we redefine the problem to make recursion work?

- The recursion does not solve the $n - 1$ queens problem
How do we redefine the problem to make recursion work?

- The recursion does not solve the \(n - 1 \) queens problem
- We need to place the \(r \)-th queen so that it is not attacked by a queen on an earlier row
How do we redefine the problem to make recursion work?

- The recursion does not solve the \(n - 1 \) queens problem
- We need to place the \(r \)-th queen so that it is not attacked by a queen on an earlier row
- The recursive subproblem:
 - Input = \(r - 1 \) queens placed in earlier rows
 - Place the remaining \(n - r + 1 \) queens, one on each row
 - Recurse by increasing \(r \)
N Queens Problem

\[
\text{PLACEQUEENS}(Q[1..n], r):
\begin{align*}
\text{if } r &= n + 1 \\
& \quad \text{print } Q[1..n] \\
\text{else} & \\
& \quad \text{for } j \leftarrow 1 \text{ to } n \\
& \qquad \text{legal } \leftarrow \text{TRUE} \\
& \qquad \text{for } i \leftarrow 1 \text{ to } r - 1 \\
& \qquad \quad \text{if } (Q[i] = j) \text{ or } (Q[i] = j + r - i) \text{ or } (Q[i] = j - r + i) \\
& \qquad \qquad \text{legal } \leftarrow \text{FALSE} \\
& \qquad \text{if legal} \\
& \qquad \quad Q[r] \leftarrow j \\
& \quad \text{PLACEQUEENS}(Q[1..n], r + 1) \quad \text{〈Recursion!〉}
\end{align*}
\]
Recursion types

1 Divide and Conquer: Problem reduced to multiple independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median selection.

Each sub-problem is a fraction smaller.
Recursion types

1. **Divide and Conquer**: Problem reduced to multiple independent sub-problems.

 Examples: Merge sort, quick sort, multiplication, median selection.

 Each sub-problem is a fraction smaller.

2. **Backtracking**: A sequence of decision problems. Recursion tries all possibilities at each step.

 Each subproblem is only a constant smaller, e.g. from n to $n - 1$.
Recursion types

1. **Divide and Conquer**: Problem reduced to multiple independent sub-problems.

 Examples: Merge sort, quick sort, multiplication, median selection.

 Each sub-problem is a fraction smaller.

2. **Backtracking**: A sequence of decision problems. Recursion tries all possibilities at each step.

 Each subproblem is only a constant smaller, e.g. from \(n \) to \(n - 1 \).

 e.g. \(T(n) = n \cdot T(n - 1), \ T(1) = n \), hence \(T(n) = O(n^n) \).

 e.g. \(T(n) = 2 \cdot T(n - 1) + O(1) \), hence \(T(n) = O(2^n) \).
Part II

Text Segmentation
Problem

Input A string $w \in \Sigma^*$ and access to a language $L \subseteq \Sigma^*$ via function $\text{IsStrInL}(\text{string } x)$ that decides whether x is in L

Goal Decide if $w \in L^*$ using $\text{IsStrInL}(\text{string } x)$ as a black box sub-routine
Problem

Input A string $w \in \Sigma^*$ and access to a language $L \subseteq \Sigma^*$ via function $\text{IsStrInL}(\text{string } x)$ that decides whether x is in L

Goal Decide if $w \in L^*$ using $\text{IsStrInL}(\text{string } x)$ as a black box sub-routine

Example

Suppose L is English and we have a procedure to check whether a string/word is in the English dictionary.

- Is the string “isthisanenglishsentence” in English^*?
- Is “stampstamp” in English^*?
- Is “zibzzzad” in English^*?
Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems

```
BLUE  STEM  UNIT  ROBOT
HEARTHANDSATURNSPIN
```
Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
Text Segmentation

Backtracking
- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

![Image of text segmentation with words arranged in a sequence: BLUE, STEM, UNIT, ROBOT, HE, ARTHANDSATURNSPIN]
Text Segmentation

Backtracking
- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

```
BLUE  STEM  UNIT  ROBOT  HE  ARTHANDSATURNSPIN
```

```
BLUE  STEM  UNIT  ROBOT  HEAR  THANDSATURNSPIN
```
Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

```
BLUE   STEM   UNIT   ROBOT   HE   ARTHANDSATURNSPIN

BLUE   STEM   UNIT   ROBOT   HEAR  THANDSATURNSPIN

BLUE   STEM   UNIT   ROBOT   HEART  HANDSATURNSPIN
```
Text Segmentation

Backtracking
- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

![Example of backtracking with text segmentation]

```
BLUE  STEM  UNIT  ROBOT  HEART  HANDSATURNSPIN
```

```
BLUE  STEM  UNIT  ROBOT  HEAR  HANDSATURNSPIN
```

```
BLUE  STEM  UNIT  ROBOT  HEART  HANDSATURNSPIN
```

```
BLUE  STEM  UNIT  ROBOT  HEARTH  HANDSATURNSPIN
```
Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions
Text segmentation

Only the suffix matters.

HEARTHANDSATURNSPIN
Text segmentation

Only the suffix matters.

HEARTHANDSATURNSPIN

Base case
- zero-length string
Assume w is stored in array $A[1..n]$

```
IsStringinLstar(A[1..n]):
    If ($n = 0$) Output YES
    If (IsStrInL(A[1..n]))
        Output YES
    Else
        For ($i = 1$ to $n - 1$) do
            If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
                Output YES
        EndFor
    EndIf
    Output NO
```
Part III

Longest Increasing Subsequence
Sequences

Definition

Sequence: an ordered list a_1, a_2, \ldots, a_n. **Length** of a sequence is number of elements in the list.
Sequences

Definition

Sequence: an ordered list \(a_1, a_2, \ldots, a_n\). **Length** of a sequence is number of elements in the list.

Definition

\(a_{i_1}, \ldots, a_{i_k}\) is a **subsequence** of \(a_1, \ldots, a_n\) if

\[1 \leq i_1 < i_2 < \ldots < i_k \leq n.\]
Sequences

Definition

Sequence: an ordered list a_1, a_2, \ldots, a_n. **Length** of a sequence is number of elements in the list.

Definition

a_{i_1}, \ldots, a_{i_k} is a **subsequence** of a_1, \ldots, a_n if $1 \leq i_1 < i_2 < \ldots < i_k \leq n$.

Definition

A sequence is **increasing** if $a_1 < a_2 < \ldots < a_n$. It is **non-decreasing** if $a_1 \leq a_2 \leq \ldots \leq a_n$. Similarly **decreasing** and **non-increasing**.
Sequences

Example...

Example

1. Sequence: 6, 3, 5, 2, 7, 8, 1, 9
2. Subsequence of above sequence: 5, 2, 1
Example

1. **Sequence:** 6, 3, 5, 2, 7, 8, 1, 9
2. **Subsequence of above sequence:** 5, 2, 1
3. **Increasing sequence:** 3, 5, 9, 17, 54
4. **Decreasing sequence:** 34, 21, 7, 5, 1
Sequences

Example...

1. Sequence: 6, 3, 5, 2, 7, 8, 1, 9
2. Subsequence of above sequence: 5, 2, 1
3. Increasing sequence: 3, 5, 9, 17, 54
4. Decreasing sequence: 34, 21, 7, 5, 1
5. Increasing subsequence of the first sequence: 2, 7, 9.
Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an *increasing subsequence* $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length
Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an increasing subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Example

1. Sequence: 6, 3, 5, 2, 7, 8, 1
2. Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
3. Longest increasing subsequence: 3, 5, 7, 8
Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for **LIS**?

LIS(*A[1..n]*):
Can we find a recursive algorithm for \textbf{LIS}?

\textbf{LIS}(\text{A}[1..n]):

1. Case 1: max without \text{A}[n] which is \text{LIS}(\text{A}[1..(n-1)])
Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

\textbf{LIS}(A[1..n]):

1. Case 1: max without \(A[n] \) which is \(\text{LIS}(A[1..(n-1)]) \)
2. Case 2: max among sequences that contain \(A[n] \) in which case recursion is
Can we find a recursive algorithm for LIS?

\(\text{LIS}(A[1..n]) : \)

1. Case 1: max without \(A[n] \) which is \(\text{LIS}(A[1..(n - 1)]) \)
2. Case 2: max among sequences that contain \(A[n] \) in which case recursion is not so clear.
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS($A[1..n]$):

1. Case 1: max without $A[n]$ which is $\text{LIS}(A[1..(n-1)])$
2. Case 2: max among sequences that contain $A[n]$ in which case recursion is not so clear.

Observation

For second case we want to find a subsequence in $A[1..(n-1)]$ that is restricted to numbers less than $A[n]$.
Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1. **Case 1:** max without A[n] which is LIS(A[1..(n − 1)])
2. **Case 2:** max among sequences that contain A[n] in which case recursion is not so clear.

Observation

For second case we want to find a subsequence in A[1..(n − 1)] that is restricted to numbers less than A[n]. This suggests that a more general problem is LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where each number in the sequence is less than x.
Recursive Approach

\textbf{LIS_smaller}(A[1..n], x) : length of longest increasing subsequence in \textbf{A[1..n]} with all numbers in subsequence less than \textit{x}

\begin{algorithm}
\textbf{LIS_smaller}(A[1..n], x):
 \begin{algorithmic}
 \State \textbf{if } (n = 0) \textbf{then } \textbf{return } 0
 \State \textbf{let } m = \textbf{LIS_smaller}(A[1..(n - 1)], x)
 \If{A[n] < x}
 \State m = max(m, 1 + \textbf{LIS_smaller}(A[1..(n - 1)], A[n]))
 \EndIf
 \EndAlgorithmic
\end{algorithm}

\textbf{Output} m

\textbf{LIS}(A[1..n]):
\begin{verbatim}
 return LIS_smaller(A[1..n], \infty)
\end{verbatim}
Part IV

From Backtracking to DP
Running time analysis of Text Segmentation

\textbf{IsStringInLstar}(A[1..n]):

\begin{itemize}
 \item If \((n = 0)\) Output YES
 \item If \((\text{IsStrInL}(A[1..n]))\)
 \hspace{1cm} Output YES
 \item Else
 \hspace{1cm} For \((i = 1\) to \(n - 1)\) do
 \hspace{1cm} If \((\text{IsStrInL}(A[1..i]) \text{ and } \text{IsStrInLstar}(A[i + 1..n]))\)
 \hspace{1cm} Output YES
\end{itemize}

Output NO
IsStringinLstar($A[1..n]$):
 If ($n = 0$) Output YES
 If ($\text{IsStrInL}(A[1..n])$)
 Output YES
 Else
 For ($i = 1$ to $n - 1$) do
 If ($\text{IsStrInL}(A[1..i])$ and $\text{IsStrInLstar}(A[i + 1..n])$)
 Output YES
 Output NO

$T(n) \leq O(n) + \sum_{i=1}^{n-1} T(i)$

Running time: $O(2^n)$
Running time analysis of Text Segmentation

\[T(n) \leq O(n) + \sum_{i=1}^{n-1} T(i) \]

Running time: \(O(2^n) \)

However, how many suffixes are there?
Running time analysis of Text Segmentation

\[T(n) \leq O(n) + \sum_{i=1}^{n-1} T(i) \]

Running time: \(O(2^n) \)

However, how many suffixes are there? \(O(n) \)
Running time analysis of Text Segmentation

\[T(n) \leq O(n) + \sum_{i=1}^{n-1} T(i) \]

Running time: \(O(2^n) \)

However, how many suffixes are there? \(O(n) \)

Different past decision can lead to the same suffix.