CS/ECE 374: Algorithms \& Models of Computation

Backtracking

Lecture 12

Recursion types

(1) Divide and Conquer: Problem reduced to multiple independent sub-problems.
Examples: Merge sort, quick sort, multiplication, median selection.
(2) Backtracking

Part I

N Queens Problem

N Queens Problem

Definition

Place \boldsymbol{n} queens on an $\boldsymbol{n} \times \boldsymbol{n}$ board so that no two queens are attacking each other.

N Queens Problem

Definition

Place \boldsymbol{n} queens on an $\boldsymbol{n} \times \boldsymbol{n}$ board so that no two queens are attacking each other.
that is, no two queens are in the same row, same column, or same diagonal.

N Queens Problem

Definition

Place \boldsymbol{n} queens on an $\boldsymbol{n} \times \boldsymbol{n}$ board so that no two queens are attacking each other.
that is, no two queens are in the same row, same column, or same diagonal.

N Queens Problem

Brute-force algorithm:

Try all combinations of \boldsymbol{n} positions.

N Queens Problem

				睤			
						＊4\％	
			閶				
	年淮						
					楼		
		餜					

Brute－force algorithm：

Try all combinations of \boldsymbol{n} positions．

Methodical brute－force：

No two queens on the same row，so place a queen in one row at a time．

N Queens Problem

N Queens Problem

Base case

- when any position in the row is attacked by a queen on an earlier row, recursion terminates.
- Or when all \boldsymbol{n} queens are placed.

N Queens Problem

Base case

- when any position in the row is attacked by a queen on an earlier row, recursion terminates.
- Or when all \boldsymbol{n} queens are placed.

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions

N Queens Problem

How do we redefine the problem to make recursion work?

N Queens Problem

How do we redefine the problem to make recursion work?

- The recursion does not solve the $\boldsymbol{n} \mathbf{- 1}$ queens problem

N Queens Problem

How do we redefine the problem to make recursion work?

- The recursion does not solve the $\boldsymbol{n} \mathbf{- 1}$ queens problem
- We need to place the r-th queen so that it is not attacked by a queen on an earlier row

N Queens Problem

How do we redefine the problem to make recursion work?

- The recursion does not solve the $\boldsymbol{n} \mathbf{- 1}$ queens problem
- We need to place the r-th queen so that it is not attacked by a queen on an earlier row
- The recursive subproblem:
- Input $=r-1$ queens placed in earlier rows
- Place the remaining $\boldsymbol{n}-\boldsymbol{r}+\mathbf{1}$ queens, one on each row
- Recurse by increasing r

N Queens Problem

```
PlaceQueens(Q[1..n],r):
    if \(r=n+1\)
        print \(Q[1 . . n]\)
    else
        for \(j \leftarrow 1\) to \(n\)
            legal \(\leftarrow\) TRUE
            for \(i \leftarrow 1\) to \(r-1\)
            if \((Q[i]=j)\) or \((Q[i]=j+r-i)\) or \((Q[i]=j-r+i)\)
                    legal \(\leftarrow\) FALSE
            if legal
            \(Q[r] \leftarrow j\)
            PLAceQueens(Q[1..n],r+1) 〈《Recursion! !》
```


Recursion types

(1) Divide and Conquer: Problem reduced to multiple independent sub-problems.
Examples: Merge sort, quick sort, multiplication, median selection.

Each sub-problem is a fraction smaller.

Recursion types

(1) Divide and Conquer: Problem reduced to multiple independent sub-problems.
Examples: Merge sort, quick sort, multiplication, median selection.
Each sub-problem is a fraction smaller.
(2) Backtracking: A sequence of decision problems. Recursion tries all possibilities at each step.
Each subproblem is only a constant smaller, e.g. from \boldsymbol{n} to $\boldsymbol{n}-1$.

Recursion types

(1) Divide and Conquer: Problem reduced to multiple independent sub-problems.
Examples: Merge sort, quick sort, multiplication, median selection.
Each sub-problem is a fraction smaller.
(2) Backtracking: A sequence of decision problems. Recursion tries all possibilities at each step.
Each subproblem is only a constant smaller, e.g. from \boldsymbol{n} to $n-1$.
e.g. $T(n)=n \cdot T(n-1), T(1)=n$, hence $T(n)=O\left(n^{n}\right)$. e.g. $T(n)=2 \cdot T(n-1)+O(1)$, hence $T(n)=O\left(2^{n}\right)$.

Part II

Text Segmentation

Problem

Input A string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function $\operatorname{IsStr} \operatorname{lnL}($ string $x)$ that decides whether x is in L
Goal Decide if $w \in L^{*}$ using IsStrlnL(string x) as a black box sub-routine

Problem

Input A string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function $\operatorname{IsStr} \operatorname{lnL}($ string $x)$ that decides whether x is in L

Goal Decide if $w \in L^{*}$ using IsStrlnL(string x) as a black box sub-routine

Example

Suppose L is English and we have a procedure to check whether a string/word is in the English dictionary.

- Is the string "isthisanenglishsentence" in English*?
- Is "stampstamp" in English*?
- Is "zibzzzad" in English*?

Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems

Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems

BLUE	STEM	UNIT	ROBOT	HEARTHANDSATURNSPIN

Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

BLUE	STEM	UNIT	ROBOT	HE	ARTHANDSATURNSPIN

Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

BLUE	STEM	UNIT	ROBOT	HE	ARTHANDSATURNSPIN

BLUE	STEM	UNIT	ROBOT	HEAR	THANDSATURNSPIN

Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

BLUE	STEM	UNIT	ROBOT	HE	ARTHANDSATURNSPIN

BLUE	STEM	UNIT	ROBOT	HEAR	THANDSATURNSPIN

BLUE	STEM	UNIT	ROBOT	HEART	HANDSATURNSPIN

Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

BLUE	STEM	UNIT	ROBOT	HE	ARTHANDSATURNSPIN

BLUE	STEM	UNIT	ROBOT	HEAR	THANDSATURNSPIN

Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions

Text segmentation

Only the suffix matters.

HEARTHANDSATURNSPIN

Text segmentation

Only the suffix matters.

HEARTHANDSATURNSPIN

Base case

- zero-length string

Recursive Solution

Assume w is stored in array $A[1 . . n]$
IsStringinLstar(A[1..n]):
If ($\boldsymbol{n}=\mathbf{0}$) Output YES
If (IsStrlnL(A[1..n]))
Output YES
Else

$$
\begin{aligned}
& \text { For }(i=1 \text { to } n-1) \text { do } \\
&\text { If }(\text { IsStrlnL(A[1..i]) and IsStrInLstar(} A[i+1 . . n])) \\
& \text { Output YES }
\end{aligned}
$$

Output NO

Part III

Longest Increasing Subsequence

Sequences

Definition

Sequence: an ordered list $a_{1}, a_{2}, \ldots, a_{n}$. Length of a sequence is number of elements in the list.

Sequences

Definition

Sequence: an ordered list $a_{1}, a_{2}, \ldots, a_{n}$. Length of a sequence is number of elements in the list.

Definition

$a_{i_{1}}, \ldots, a_{i_{k}}$ is a subsequence of a_{1}, \ldots, a_{n} if
$1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$.

Sequences

Definition

Sequence: an ordered list $a_{1}, a_{2}, \ldots, a_{n}$. Length of a sequence is number of elements in the list.

Definition

$a_{i_{1}}, \ldots, a_{i_{k}}$ is a subsequence of a_{1}, \ldots, a_{n} if
$1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq \boldsymbol{n}$.

Definition

A sequence is increasing if $a_{1}<a_{2}<\ldots<a_{n}$. It is non-decreasing if $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$. Similarly decreasing and non-increasing.

Sequences

Example...

Example

(1) Sequence: 6, 3, 5, 2, 7, 8, 1, 9
(2) Subsequence of above sequence: 5, 2, 1

Sequences

Example...

Example

(1) Sequence: 6, 3, 5, 2, 7, 8, 1, 9
(2) Subsequence of above sequence: 5, 2, 1
(3) Increasing sequence: $\mathbf{3 , 5 , 9 , 1 7 , 5 4}$
(0. Decreasing sequence: $34,21,7,5,1$

Sequences

Example...

Example

(1) Sequence: 6, 3, 5, 2, 7, 8, 1, 9
(2) Subsequence of above sequence: 5, 2, 1
(3) Increasing sequence: $\mathbf{3 , 5 , 9 , 1 7 , 5 4}$
(1) Decreasing sequence: $34,21,7,5,1$
(0) Increasing subsequence of the first sequence: 2,7,9.

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Increasing subsequences: 6, 7, 8 and $3,5,7,8$ and 2,7 etc
(3) Longest increasing subsequence: $3,5,7,8$

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[\mathbf{1 . . n]}):$

Recursive Approach: Take 1

LIS: Longest increasing subsequence
Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[\mathbf{1 . . n]}):$
(1) Case 1: \max without $A[n]$ which is $\operatorname{LIS}(A[1 . .(n-1)])$

Recursive Approach: Take 1

LIS: Longest increasing subsequence
Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[\mathbf{1 . . n]}):$
(1) Case 1: max without $A[n]$ which is $\operatorname{LIS}(A[1 . .(n-1)])$
(2) Case 2: max among sequences that contain $A[n]$ in which case recursion is

Recursive Approach: Take 1

LIS: Longest increasing subsequence
Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . . n]):$
(1) Case 1: max without $A[n]$ which is $\operatorname{LIS}(A[1 . .(n-1)])$
(2) Case 2: max among sequences that contain $A[\boldsymbol{n}]$ in which case recursion is not so clear.

Recursive Approach: Take 1

LIS: Longest increasing subsequence
Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[1 . . n]):$
(1) Case 1: max without $A[n]$ which is $\operatorname{LIS}(A[1 . .(n-1)])$
(2) Case 2: max among sequences that contain $\boldsymbol{A}[\boldsymbol{n}]$ in which case recursion is not so clear.

Observation

For second case we want to find a subsequence in $A[1 . .(n-1)]$ that is restricted to numbers less than $A[n]$.

Recursive Approach: Take 1

LIS: Longest increasing subsequence
Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[1 . . n]):$
(1) Case 1: max without $A[n]$ which is $\operatorname{LIS}(A[1 . .(n-1)])$
(2) Case 2: max among sequences that contain $A[\boldsymbol{n}]$ in which case recursion is not so clear.

Observation

For second case we want to find a subsequence in $A[1 . .(n-1)]$ that is restricted to numbers less than $A[n]$. This suggests that a more general problem is LIS_smaller $(\mathbf{A}[\mathbf{1} . . n], x)$ which gives the longest increasing subsequence in \boldsymbol{A} where each number in the sequence is less than x.

Recursive Approach

LIS_smaller($A[1 . . n], x)$: length of longest increasing subsequence in $A[1 . . n]$ with all numbers in subsequence less than x

LIS_smaller (A[1..n], x) :
if $(n=0)$ then return 0
$m=$ LIS_smaller $(A[1 . .(n-1)], x)$
if $(A[n]<x)$ then $m=\max \left(m, 1+\operatorname{LIS} _\right.$smaller $\left.(A[1 . .(n-1)], A[n])\right)$
Output m

$$
\begin{aligned}
& \text { LIS }(A[1 . . n]): \\
& \text { return LIS_smaller }(A[1 . . n], \infty)
\end{aligned}
$$

Part IV

From Backtracking to DP

Running time analysis of Text Segmentation

IsStringinLstar(A[1..n]):

If ($\boldsymbol{n}=0$) Output YES
If (IsStrlnL(A[1..n]))
Output YES
Else

$$
\begin{aligned}
& \text { For }(i=1 \text { to } n-1) \text { do } \\
& \text { If }(\operatorname{lsStrlnL}(A[1 . . i]) \text { and IsStrInLstar }(A[i+1 . . n])) \\
& \text { Output YES }
\end{aligned}
$$

Output NO

Running time analysis of Text Segmentation

IsStringinLstar(A[1..n]):

```
    If (n=0) Output YES
```

 If (IsStrInL(A[1..n]))
 Output YES
 Else

$$
\begin{aligned}
& \text { For }(i=1 \text { to } n-1) \text { do } \\
&\text { If (IsStrlnL(A[1..i]) and IsStrlnLstar }(A[i+1 . . n])) \\
& \text { Output YES }
\end{aligned}
$$

Output NO

Running time: $O\left(2^{n}\right)$

$$
\begin{array}{ll}
T(n) \leq O(n)+\sum_{i=1}^{n-1} T(i) & =n \\
O\left(n^{2}\right) \square 1 / 2
\end{array}
$$

Running time analysis of Text Segmentation

$$
T(n) \leq O(n)+\sum_{i=1}^{n-1} T(i)
$$

Running time: $O\left(2^{n}\right)$

HEARTHANDSATURNSPIN

However, how many suffixes are there?

Running time analysis of Text Segmentation

$$
T(n) \leq O(n)+\sum_{i=1}^{n-1} T(i)
$$

Running time: $O\left(2^{n}\right)$

HEARTHANDSATURNSPIN

However, how many suffixes are there? $O(n)$

Running time analysis of Text Segmentation

$$
T(n) \leq O(n)+\sum_{i=1}^{n-1} T(i)
$$

Running time: $O\left(2^{n}\right)$

HEARTHANDSATURNSPIN

However, how many suffixes are there? $O(n)$
Different past decision can lead to the same suffix.

BLUE	STEM	UNIT	ROBOT	HEARTHANDSATURNSPIN
BLUEST EMU NITRO BOT HEARTHANDSATURNSPIN				

