CS/ECE 374: Algorithms & Models of Computation

Backtracking

Lecture 12

Divide and Conquer: Problem reduced to multiple independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median selection.

Backtracking

Part I

N Queens Problem

Definition

Place n queens on an $n \times n$ board so that no two queens are attacking each other.

Definition

Place n queens on an $n \times n$ board so that no two queens are attacking each other.

that is, no two queens are in the same row, same column, or same diagonal.

Definition

Place n queens on an $n \times n$ board so that no two queens are attacking each other.

that is, no two queens are in the same row, same column, or same diagonal.

(UIUC)

Brute-force algorithm:

Try all combinations of n positions.

Brute-force algorithm:

Try all combinations of n positions.

Methodical brute-force:

No two queens on the same row, so place a queen in one row at a time.

(UIUC)

Base case

- when any position in the row is attacked by a queen on an earlier row, recursion terminates.
- Or when all *n* queens are placed.

Base case

- when any position in the row is attacked by a queen on an earlier row, recursion terminates.
- Or when all *n* queens are placed.

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions

How do we redefine the problem to make recursion work?

How do we redefine the problem to make recursion work?

ullet The recursion does not solve the n-1 queens problem

How do we redefine the problem to make recursion work?

- ullet The recursion does not solve the n-1 queens problem
- We need to place the *r*-th queen so that it is not attacked by a queen on an earlier row

How do we redefine the problem to make recursion work?

- The recursion does not solve the n-1 queens problem
- We need to place the *r*-th queen so that it is not attacked by a queen on an earlier row
- The recursive subproblem:
 - Input = r 1 queens placed in earlier rows
 - Place the remaining n r + 1 queens, one on each row
 - Recurse by increasing *r*

 $\begin{array}{l} \underline{PLACEQUEENS(Q[1..n], r):} \\ \text{if } r = n + 1 \\ print Q[1..n] \\ \text{else} \\ \text{for } j \leftarrow 1 \text{ to } n \\ legal \leftarrow TRUE \\ \text{for } i \leftarrow 1 \text{ to } r - 1 \\ \text{if } (Q[i] = j) \text{ or } (Q[i] = j + r - i) \text{ or } (Q[i] = j - r + i) \\ legal \leftarrow FALSE \\ \text{if } legal \\ Q[r] \leftarrow j \\ PLACEQUEENS(Q[1..n], r + 1) \qquad \langle \langle \text{Recursion!} \rangle \rangle \end{array}$

Divide and Conquer: Problem reduced to multiple independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median selection.

Each sub-problem is a fraction smaller.

Divide and Conquer: Problem reduced to multiple independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median selection.

Each sub-problem is a fraction smaller.

Backtracking: A sequence of decision problems. Recursion tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to n-1.

Divide and Conquer: Problem reduced to multiple independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median selection.

Each sub-problem is a fraction smaller.

Backtracking: A sequence of decision problems. Recursion tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to n-1.

- e.g. $T(n) = n \cdot T(n-1)$, T(1) = n, hence $T(n) = O(n^n)$.
- e.g. $T(n) = 2 \cdot T(n-1) + O(1)$, hence $T(n) = O(2^n)$.

Part II

Text Segmentation

Problem

- Input A string $w \in \Sigma^*$ and access to a language $L \subseteq \Sigma^*$ via function IsStrInL(string x) that decides whether x is in L
 - Goal Decide if $w \in L^*$ using IsStrInL(string x) as a black box sub-routine

Problem

Input A string $w \in \Sigma^*$ and access to a language $L \subseteq \Sigma^*$ via function IsStrInL(string x) that decides whether x is in L

Goal Decide if $w \in L^*$ using IsStrInL(string x) as a black box sub-routine

Example

Suppose *L* is *English* and we have a procedure to check whether a string/word is in the *English* dictionary.

- Is the string "isthisanenglishsentence" in *English**?
- Is "stampstamp" in *English**?
- Is "zibzzzad" in English*?

Backtracking

• Changes the problem into a sequence of decision problems

Backtracking

• Changes the problem into a sequence of decision problems

BLUE	STEM	UNIT	ROBOT	HEARTHANDSATURNSPIN

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

BLUE	STEM	UNIT	ROBOT	HE	ARTHANDSATURNSPIN

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

BLUE	STEM	UNIT	ROBOT	HE	ARTHANDSATURNSPIN
BLUE	STEM	UNIT	ROBOT	HEAF	THANDSATURNSPIN

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

BLUE	STEM	UNIT	ROBOT	HE	A	ARTHANDSATURNSPIN	
BLUE	STEM	UNIT	ROBOT	HEAF	2	THANDSATURNSPIN	
BLUE	STEM	UNIT	ROBOT	HEAF	۲۲	HANDSATURNSPIN	

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

BLUE	STEM	UNIT	ROBOT	HE	AR	THANDSATURNSPIN
BLUE	STEM	UNIT	ROBOT	HEAF		THANDSATURNSPIN
DLUE	STEP	UNIT	NUDUT	HEAP		THANDSAT ORINSETIN
BLUE	STEM	UNIT	ROBOT	HEAF	RT	HANDSATURNSPIN
					-	
BLUE	STEM	UNIT	ROBOT	HEAF	RTH	ANDSATURNSPIN

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions

Only the suffix matters.

Only the suffix matters.

Base case

• zero-length string

Recursive Solution

Assume w is stored in array A[1...n]

```
IsStringinLstar(A[1..n]):

If (n = 0) Output YES

If (IsStrlnL(A[1..n]))

Output YES

Else

For (i = 1 \text{ to } n - 1) do

If (IsStrlnL(A[1..i]) and IsStrlnLstar(A[i + 1..n]))

Output YES

Output NO
```

Part III

Longest Increasing Subsequence

Definition

Sequence: an ordered list a_1, a_2, \ldots, a_n . Length of a sequence is number of elements in the list.

Definition

Sequence: an ordered list a_1, a_2, \ldots, a_n . Length of a sequence is number of elements in the list.

Definition

 a_{i_1}, \ldots, a_{i_k} is a subsequence of a_1, \ldots, a_n if $1 \le i_1 < i_2 < \ldots < i_k \le n$.

Definition

Sequence: an ordered list a_1, a_2, \ldots, a_n . Length of a sequence is number of elements in the list.

Definition

 a_{i_1}, \ldots, a_{i_k} is a **subsequence** of a_1, \ldots, a_n if $1 \le i_1 < i_2 < \ldots < i_k \le n$.

Definition

A sequence is **increasing** if $a_1 < a_2 < \ldots < a_n$. It is **non-decreasing** if $a_1 \leq a_2 \leq \ldots \leq a_n$. Similarly **decreasing** and **non-increasing**.

19

- Sequence: 6, 3, 5, 2, 7, 8, 1, 9
- Subsequence of above sequence: 5, 2, 1

- Sequence: 6, 3, 5, 2, 7, 8, 1, 9
- Subsequence of above sequence: 5, 2, 1
- Increasing sequence: 3, 5, 9, 17, 54
- Decreasing sequence: 34, 21, 7, 5, 1

- Sequence: 6, 3, 5, 2, 7, 8, 1, 9
- Subsequence of above sequence: 5, 2, 1
- Increasing sequence: 3, 5, 9, 17, 54
- Decreasing sequence: 34, 21, 7, 5, 1
- Increasing subsequence of the first sequence: 2, 7, 9.

Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n Goal Find an **increasing subsequence** $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n Goal Find an **increasing subsequence** $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(**A[1..***n*]):

Can we find a recursive algorithm for LIS?

LIS(**A[1..***n*]):

• Case 1: max without A[n] which is LIS(A[1..(n-1)])

Can we find a recursive algorithm for LIS?

- LIS(**A[1..***n*]):
 - Case 1: max without A[n] which is LIS(A[1..(n-1)])
 - Case 2: max among sequences that contain A[n] in which case recursion is

Can we find a recursive algorithm for LIS?

- LIS(**A[1..***n*]):
 - Case 1: max without A[n] which is LIS(A[1..(n-1)])
 - Case 2: max among sequences that contain A[n] in which case recursion is not so clear.

Can we find a recursive algorithm for LIS?

- LIS(**A[1..***n*]):
 - Case 1: max without A[n] which is LIS(A[1..(n-1)])
 - Case 2: max among sequences that contain A[n] in which case recursion is not so clear.

Observation

For second case we want to find a subsequence in A[1..(n-1)] that is restricted to numbers less than A[n].

Can we find a recursive algorithm for LIS?

- LIS(**A[1..***n*]):
 - Case 1: max without A[n] which is LIS(A[1..(n-1)])
 - Case 2: max among sequences that contain A[n] in which case recursion is not so clear.

Observation

For second case we want to find a subsequence in A[1..(n-1)] that is restricted to numbers less than A[n]. This suggests that a more general problem is LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where each number in the sequence is less than x.

Recursive Approach

LIS_smaller(A[1..n], x) : length of longest increasing subsequence in A[1..n] with all numbers in subsequence less than x

 $LIS_smaller(A[1..n], x): \\ if (n = 0) then return 0 \\ m = LIS_smaller(A[1..(n - 1)], x) \\ if (A[n] < x) then \\ m = max(m, 1 + LIS_smaller(A[1..(n - 1)], A[n])) \\ Output m$

LIS(A[1..n]): return LIS_smaller($A[1..n], \infty$)

Part IV

From Backtracking to DP


```
IsStringinLstar(A[1..n]):
    If (n = 0) Output YES
    If (IsStrinL(A[1..n]))
        Output YES
    Else
        For (i = 1 \text{ to } n - 1) do
        If (IsStrinL(A[1..i]) and IsStrinLstar(A[i + 1..n]))
            Output YES
    Output NO
```

```
IsStringinLstar(A[1..n]):
    If (n = 0) Output YES
    If (IsStrInL(A[1..n]))
        Output YES
    Else
        For (i = 1 \text{ to } n - 1) do
        If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
             Output YES
    Output NO
```

$$T(n) \leq O(n) + \sum_{i=1}^{n-1} T(i)$$

Running time: $O(2^n)$

$$T(n) \leq O(n) + \sum_{i=1}^{n-1} T(i)$$

Running time: $O(2^n)$

HEARTHANDSATURNSPIN

However, how many suffixes are there?

$$T(n) \leq O(n) + \sum_{i=1}^{n-1} T(i)$$

Running time: $O(2^n)$

HEARTHANDSATURNSPIN

However, how many suffixes are there? O(n)

26

$$T(n) \leq O(n) + \sum_{i=1}^{n-1} T(i)$$

Running time: $O(2^n)$

HEARTHANDSATURNSPIN

However, how many suffixes are there? O(n)

Different past decision can lead to the same suffix.

BLUE	S	TEM	UNIT	UNIT ROBOT		HEARTHANDSATURNSPIN
BLUEST		EMU	NITR	NITRO		HEARTHANDSATURNSPIN

26

CS/ECE 374