Backtracking

Lecture 12
Recursion types

1. **Divide and Conquer**: Problem reduced to multiple independent sub-problems.
 Examples: Merge sort, quick sort, multiplication, median selection.

2. **Backtracking**
Part I

N Queens Problem
N Queens Problem

Definition
Place n queens on an $n \times n$ board so that no two queens are attacking each other.
N Queens Problem

Defintion

Place n queens on an $n \times n$ board so that no two queens are attacking each other.

that is, no two queens are in the same row, same column, or same diagonal.
N Queens Problem

Definition

Place n queens on an $n \times n$ board so that no two queens are attacking each other.

that is, no two queens are in the same row, same column, or same diagonal.
N Queens Problem

Brute-force algorithm:
Try all combinations of n positions.
N Queens Problem

Brute-force algorithm:
Try all combinations of n positions.

Methodical brute-force:
No two queens on the same row, so place a queen in one row at a time.
N Queens Problem
N Queens Problem

Base case

- when any position in the row is attacked by a queen on an earlier row, recursion terminates.
- Or when all n queens are placed.
N Queens Problem

Base case
- when any position in the row is attacked by a queen on an earlier row, recursion terminates.
- Or when all n queens are placed.

Backtracking
- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions
N Queens Problem

How do we redefine the problem to make recursion work?
N Queens Problem

How do we redefine the problem to make recursion work?

- The recursion does not solve the \(n - 1 \) queens problem.
How do we redefine the problem to make recursion work?

- The recursion does not solve the $n - 1$ queens problem.
- We need to place the r-th queen so that it is not attacked by a queen on an earlier row.
N Queens Problem

How do we redefine the problem to make recursion work?

- The recursion does not solve the $n - 1$ queens problem
- We need to place the r-th queen so that it is not attacked by a queen on an earlier row
- The recursive subproblem:
 - Input = $r - 1$ queens placed in earlier rows
 - Place the remaining $n - r + 1$ queens, one on each row
 - Recurse by increasing r
\textbf{PLACEQUEENS}(Q[1..n], r):
 if \(r = n + 1 \)
 print \(Q[1..n] \)
 else
 for \(j \leftarrow 1 \) to \(n \)
 \(legal \leftarrow \text{TRUE} \)
 for \(i \leftarrow 1 \) to \(r - 1 \)
 if \((Q[i] = j) \) or \((Q[i] = j + r - i) \) or \((Q[i] = j - r + i) \)
 \(legal \leftarrow \text{FALSE} \)
 if \(legal \)
 \(Q[r] \leftarrow j \)
 \textsc{PLACEQUEENS}(Q[1..n], r + 1) \textit{\langle Recursion! \rangle}
Recursion types

1. **Divide and Conquer**: Problem reduced to multiple independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median selection.

Each sub-problem is a fraction smaller.
Recursion types

1. **Divide and Conquer**: Problem reduced to multiple independent sub-problems.

 Examples: Merge sort, quick sort, multiplication, median selection.

 Each sub-problem is a fraction smaller.

2. **Backtracking**: A sequence of decision problems. Recursion tries all possibilities at each step.

 Each subproblem is only a constant smaller, e.g. from \(n \) to \(n - 1 \).
Recursion types

1. **Divide and Conquer**: Problem reduced to multiple independent sub-problems.
 Examples: Merge sort, quick sort, multiplication, median selection.
 Each sub-problem is a fraction smaller.

2. **Backtracking**: A sequence of decision problems. Recursion tries all possibilities at each step.
 Each subproblem is only a constant smaller, e.g. from n to $n - 1$.

 e.g. $T(n) = n \cdot T(n - 1)$, $T(1) = n$, hence $T(n) = O(n^n)$.
 e.g. $T(n) = 2 \cdot T(n - 1) + O(1)$, hence $T(n) = O(2^n)$.
Part II

Text Segmentation
Problem

Input A string $w \in \Sigma^*$ and access to a language $L \subseteq \Sigma^*$ via function $\text{IsStrInL}(\text{string } x)$ that decides whether x is in L

Goal Decide if $w \in L^*$ using $\text{IsStrInL}(\text{string } x)$ as a black box sub-routine
Problem

Input A string $w \in \Sigma^*$ and access to a language $L \subseteq \Sigma^*$ via function $\text{IsStrInL}(\text{string } x)$ that decides whether x is in L

Goal Decide if $w \in L^*$ using $\text{IsStrInL}(\text{string } x)$ as a black box sub-routine

Example

Suppose L is English and we have a procedure to check whether a string/word is in the English dictionary.

- Is the string “isthisanenglishsentence” in English^*?
- Is “stampstamp” in English^*?
- Is “zibzzzad” in English^*?
Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems

BLUE STEM UNIT ROBOT HEART HANDS SATURN SPIN
Text Segmentation

Backtracking
- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

![Diagram](image)
Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

```
BLUE  STEM  UNIT  ROBOT  HE  ARTHANDSATURNSPIN
```

```
BLUE  STEM  UNIT  ROBOT  HEAR  THANDSATURNSPIN
```

```
BLUE  STEM  UNIT  ROBOT  HEART  HANDSATURNSPIN
```
Text Segmentation

Backtracking

- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision

![Backtracking Diagram](image-url)
Text Segmentation

Backtracking
- Changes the problem into a sequence of decision problems
- Each tries all possibilities for the current decision
- Let the recursion fairy make all remaining decisions
Text segmentation

Only the suffix matters.

HEARTHANDSATURNSPIN
Text segmentation

Only the suffix matters.

Base case
- zero-length string
Recursive Solution

Assume \(w \) is stored in array \(A[1..n] \)

\[
\text{IsStringinLstar}(A[1..n]) : \\
\text{If}\ (n = 0) \text{ Output YES} \\
\text{If}\ (\text{IsStrInL}(A[1..n])) \\
\hspace{1cm} \text{Output YES} \\
\text{Else} \\
\hspace{1cm} \text{For}\ (i = 1 \text{ to } n - 1) \text{ do} \\
\hspace{2cm} \text{If}\ (\text{IsStrInL}(A[1..i]) \text{ and } \text{IsStrInLstar}(A[i + 1..n])) \\
\hspace{3cm} \text{Output YES} \\
\hspace{1cm} \text{Output NO}
\]
Part III

Longest Increasing Subsequence
Sequences

Definition

Sequence: an ordered list a_1, a_2, \ldots, a_n. **Length** of a sequence is number of elements in the list.
Sequences

Definition

Sequence: an ordered list \(a_1, a_2, \ldots, a_n \). **Length** of a sequence is the number of elements in the list.

Definition

\(a_{i_1}, \ldots, a_{i_k} \) is a **subsequence** of \(a_1, \ldots, a_n \) if

\[
1 \leq i_1 < i_2 < \ldots < i_k \leq n.
\]
Sequences

Definition

Sequence: an ordered list \(a_1, a_2, \ldots, a_n\). **Length** of a sequence is number of elements in the list.

Definition

\(a_{i_1}, \ldots, a_{i_k}\) is a **subsequence** of \(a_1, \ldots, a_n\) if
\[1 \leq i_1 < i_2 < \ldots < i_k \leq n.\]

Definition

A sequence is **increasing** if \(a_1 < a_2 < \ldots < a_n\). It is **non-decreasing** if \(a_1 \leq a_2 \leq \ldots \leq a_n\). Similarly **decreasing** and **non-increasing**.
Sequences

Example...

Example

1. Sequence: 6, 3, 5, 2, 7, 8, 1, 9
2. Subsequence of above sequence: 5, 2, 1
Example

1. Sequence: 6, 3, 5, 2, 7, 8, 1, 9
2. Subsequence of above sequence: 5, 2, 1
3. Increasing sequence: 3, 5, 9, 17, 54
4. Decreasing sequence: 34, 21, 7, 5, 1
Sequences

Example...

Example

1. Sequence: $6, 3, 5, 2, 7, 8, 1, 9$
2. Subsequence of above sequence: $5, 2, 1$
3. Increasing sequence: $3, 5, 9, 17, 54$
4. Decreasing sequence: $34, 21, 7, 5, 1$
5. Increasing subsequence of the first sequence: $2, 7, 9$.
Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an **increasing subsequence** $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length
Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an increasing subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Example

1. Sequence: 6, 3, 5, 2, 7, 8, 1
2. Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
3. Longest increasing subsequence: 3, 5, 7, 8
Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for \textbf{LIS}?

\textbf{LIS}(A[1..n]):
Can we find a recursive algorithm for LIS?

LIS($A[1..n]$):

1. **Case 1:** max without $A[n]$ which is $\text{LIS}(A[1..(n-1)])$
Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS\((A[1..n])\):

1. Case 1: max without \(A[n]\) which is \(LIS(A[1..(n - 1)])\)
2. Case 2: max among sequences that contain \(A[n]\) in which case recursion is
Can we find a recursive algorithm for LIS?

LIS($A[1..n]$):

1. Case 1: max without $A[n]$ which is LIS($A[1..(n−1)]$)
2. Case 2: max among sequences that contain $A[n]$ in which case recursion is not so clear.
Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

\[\text{LIS}(A[1..n]): \]

1. **Case 1**: max without \(A[n] \) which is \(\text{LIS}(A[1..(n-1)]) \)
2. **Case 2**: max among sequences that contain \(A[n] \) in which case recursion is not so clear.

Observation

For second case we want to find a subsequence in \(A[1..(n-1)] \) that is restricted to numbers less than \(A[n] \).
Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for **LIS**?

LIS($A[1..n]$):

1. **Case 1**: max without $A[n]$ which is **LIS**(A[1..(n − 1)])
2. **Case 2**: max among sequences that contain $A[n]$ in which case recursion is not so clear.

Observation

*For second case we want to find a subsequence in $A[1..(n − 1)]$ that is restricted to numbers less than $A[n]$. This suggests that a more general problem is **LIS**_smaller(A[1..n], x) which gives the longest increasing subsequence in A where each number in the sequence is less than x.*
Recursive Approach

LIS_smaller(A[1..n], x): length of longest increasing subsequence in **A[1..n]** with all numbers in subsequence less than x

```
LIS\_smaller(A[1..n], x):
    if (n = 0) then return 0
    m = LIS\_smaller(A[1..(n - 1)], x)
    if (A[n] < x) then
        m = max(m, 1 + LIS\_smaller(A[1..(n - 1)], A[n]))
    Output m
```

LIS(A[1..n]):
 return LIS_smaller(A[1..n], \infty)
Part IV

From Backtracking to DP
Running time analysis of Text Segmentation

\textbf{IsStringinLstar}(A[1..n]):

\begin{itemize}
\item If \((n = 0)\) Output YES
\item If \((\text{IsStrInL}(A[1..n]))\)
 \hspace{1cm} Output YES
\item Else
 \hspace{1cm} For \((i = 1\) to \(n - 1\)) do
 \hspace{1cm} If \((\text{IsStrInL}(A[1..i]) \text{ and IsStrInLstar}(A[i + 1..n]))\)
 \hspace{1cm} Output YES
\end{itemize}

Output NO
Running time analysis of Text Segmentation

\[\text{IsStringInLstar}(A[1..n]) : \]
\[\text{If } (n = 0) \text{ Output YES} \]
\[\text{If } (\text{IsStrInL}(A[1..n])) \]
\[\text{Output YES} \]
\[\text{Else} \]
\[\text{For } (i = 1 \text{ to } n - 1) \text{ do} \]
\[\text{If } (\text{IsStrInL}(A[1..i]) \text{ and } \text{IsStrInLstar}(A[i + 1..n])) \]
\[\text{Output YES} \]
\[\text{Output NO} \]

\[T(n) \leq O(n) + \sum_{i=1}^{n-1} T(i) \]

Running time: \(O(2^n) \)
Running time analysis of Text Segmentation

\[T(n) \leq O(n) + \sum_{i=1}^{n-1} T(i) \]

Running time: \(O(2^n) \)

However, how many suffixes are there?
Running time analysis of Text Segmentation

\[T(n) \leq O(n) + \sum_{i=1}^{n-1} T(i) \]

Running time: \(O(2^n) \)

However, how many suffixes are there? \(O(n) \)
Running time analysis of Text Segmentation

\[T(n) \leq O(n) + \sum_{i=1}^{n-1} T(i) \]

Running time: \(O(2^n) \)

However, how many suffixes are there? \(O(n) \)

Different past decision can lead to the same suffix.

- **HEARTHANDSATURNSPIN**
- **BLUE STEM UNIT ROBOT**
- **BLUEST EMU NITRO BOT**