CS/ECE 374: Algorithms & Models of Computation

Karatsuba's Algorithm and Linear Time Selection

Lecture 11

We will learn

Last lecture

- How to think about recursion as a design paradigm
- O How to analyze running time recurrences
- More complicated recursion in action
 - Fast multiplication (Karatsuba's Algorithm)
 - 2 Linear Time Selection

Another way to think about it

Reduce a problem to smaller instances of the same problem.

Reduction

$\mathsf{Reduction} = \mathsf{Delegation}$

- Solve a problem using elementary operations + call a bunch of subroutines
- Subroutines = Black boxes

Problem Given an array **A** of **n** integers, are there any *duplicates* in **A**?

Problem Given an array **A** of **n** integers, are there any *duplicates* in **A**?

Naive algorithm:

DistinctElements(A[1..n]) for i = 1 to n - 1 do for j = i + 1 to n do if (A[i] = A[j])return YES return NO

Problem Given an array **A** of **n** integers, are there any *duplicates* in **A**?

Naive algorithm:

DistinctElements(A[1..n]) for i = 1 to n - 1 do for j = i + 1 to n do if (A[i] = A[j])return YES return NO

Running time:

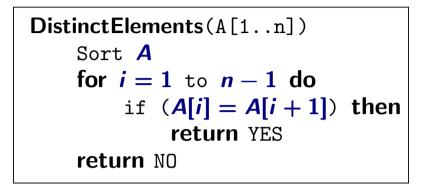
Problem Given an array **A** of **n** integers, are there any *duplicates* in **A**?

Naive algorithm:

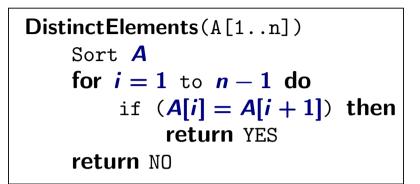
DistinctElements(A[1..n]) for i = 1 to n - 1 do for j = i + 1 to n do if (A[i] = A[j])return YES return NO

Running time: $O(n^2)$

Reduction to Sorting



Reduction to Sorting



Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a *black box*

It requires discipline to delegate

It is important to think of the recursive calls as black boxes, that is, subroutines taken care of by the recursion fairy.

It requires discipline to delegate

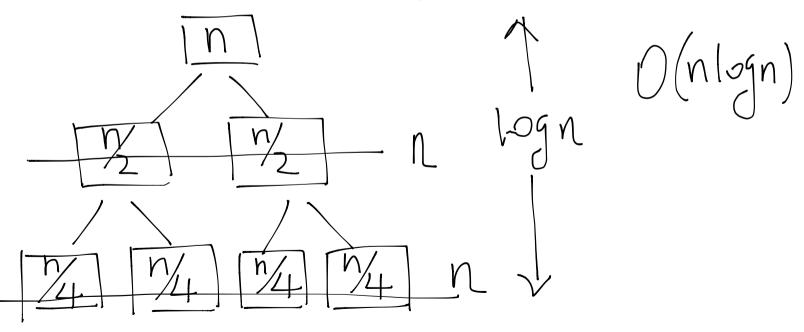
It is important to think of the recursive calls as black boxes, that is, subroutines taken care of by the recursion fairy.

 $\frac{\text{MergeSort}(A[1..n]):}{\text{if } n > 1}$ $m \leftarrow \lfloor n/2 \rfloor$ MergeSort(A[1..m]) MergeSort(A[m+1..n]) Merge(A[1..n], m)

Solving Recurrences

Two general methods:

- Guess and Verify
- Recursion tree method: At every level of recursion, how much non-recursive work you are doing.



Solving Recurrences

Two general methods:

- Guess and Verify
- Recursion tree method: At every level of recursion, how much non-recursive work you are doing.
 - Merge Sort: same amount of work at every level

Solving Recurrences

Two general methods:

- Guess and Verify
- Recursion tree method: At every level of recursion, how much non-recursive work you are doing.
 - Merge Sort: same amount of work at every level
 - Increasing geometric series: count number of leaves. (Fast multiplication)
 - Decreasing geometric series: summable, first level dominates.
 (Selection)

Part I

Fast Multiplication

Problem Given two *n*-digit numbers *x* and *y*, compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of y with x and adding the partial products.

 $3141 \\ \times 2718 \\ 25128 \\ 3141 \\ 21987 \\ 6282 \\ 8537238$

Time Analysis of Grade School Multiplication

- Each partial product: $\Theta(n)$
- 2 Number of partial products: $\Theta(n)$
- 3 Addition of partial products: $\Theta(n^2)$
- Total time: Θ(n²)

Divide and Conquer

Assume *n* is a power of **2** for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits

- ① $x = x_{n-1}x_{n-2} \dots x_0$ and $y = y_{n-1}y_{n-2} \dots y_0$
- 2 $x = x_{n-1} \dots x_{n/2} \dots 0 + x_{n/2-1} \dots x_0$
- 3 $x = 10^{n/2} x_L + x_R$ where $x_L = x_{n-1} \dots x_{n/2}$ and $x_R = x_{n/2-1} \dots x_0$
- Similarly $y = 10^{n/2} y_L + y_R$ where $y_L = y_{n-1} \dots y_{n/2}$ and $y_R = y_{n/2-1} \dots y_0$

$\begin{array}{rcl} 1234 \times 5678 &=& (100 \times 12 + 34) \times (100 \times 56 + 78) \\ &=& 10000 \times 12 \times 56 \\ &+100 \times (12 \times 78 + 34 \times 56) \\ &+34 \times 78 \end{array}$

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Therefore

$$\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$$

 $xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$ = 10ⁿx_Ly_L + 10^{n/2}(x_Ly_R + x_Ry_L) + x_Ry_R

4 recursive multiplications of size n/2 plus 3 additions and left shifts (adding enough 0's to the right)

 $\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$

4 recursive multiplications of size n/2 plus 3 additions and left shifts (adding enough 0's to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

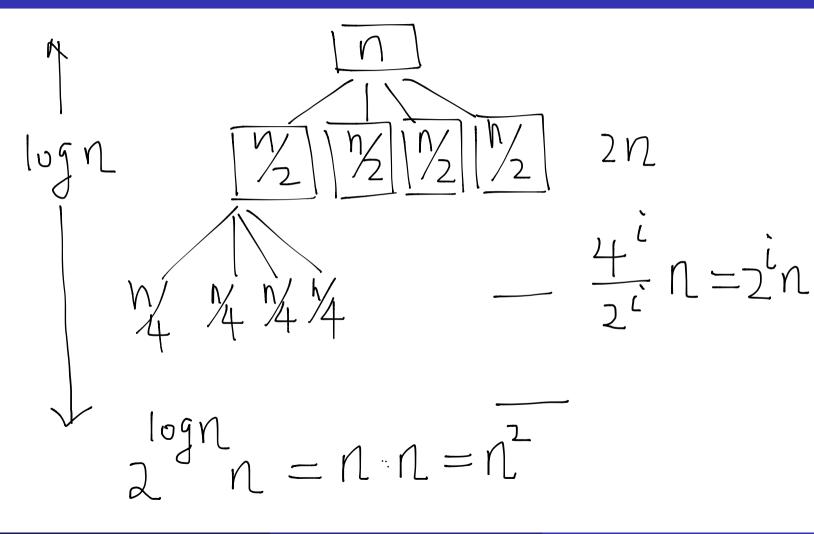
 $\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$

4 recursive multiplications of size n/2 plus 3 additions and left shifts (adding enough 0's to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

Recursion Tree



Carl Friedrich Gauss: 1777–1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a+bi)(c+di) = ac - bd + (ad + bc)i

Carl Friedrich Gauss: 1777–1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a+bi)(c+di) = ac - bd + (ad + bc)i

How many multiplications do we need?

Carl Friedrich Gauss: 1777–1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a+bi)(c+di) = ac - bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d) - ac - bd

$$\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$$

Gauss trick: $x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Gauss trick: $x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

$$\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$$

Gauss trick: $x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = {}^{3}T(n/2) + O(n)$$
 $T(1) = O(1)$

which means

$$\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$$

Gauss trick: $x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

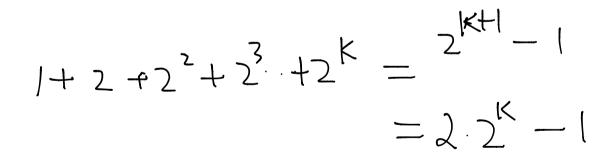
Running time is given by

T(n) = 3T(n/2) + O(n) T(1) = O(1)

which means $T(n) = O(n^{\log_2 3}) = O(n^{1.585})$

Analyzing the Recurrences

- Basic divide and conquer: $T(n) = \frac{4T(n/2) + O(n)}{T(1) = 1}$.
 Claim: $T(n) = \Theta(n^2)$.
- 2 Saving a multiplication: $T(n) = \frac{3T(n/2) + O(n)}{T(1) = 1}$. Claim: $T(n) = \Theta(n^{\log_2 3})$



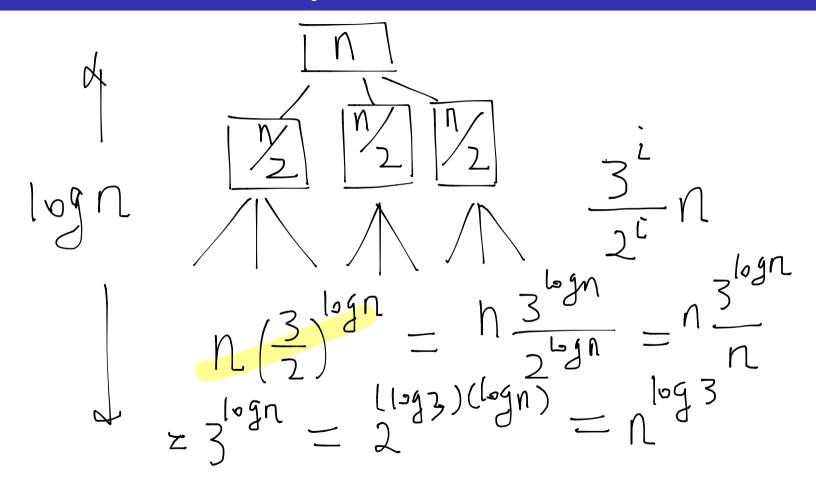
Analyzing the Recurrences

- Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^2)$.
- Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^{\log_2 3})$

Use recursion tree method:

- **1** In both cases, depth of recursion $L = \log n$.
- 2 Work at depth *i* is $4^i n/2^i$ and $3^i n/2^i$ respectively: number of children at depth *i* times the work at each child
- 3 Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L} (3/2)^{i}$ respectively.

Recursion tree analysis



Part II

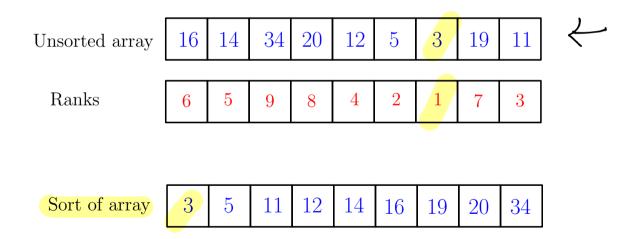
Selecting in Unsorted Lists

Rank of element in an array

A: an unsorted array of *n* integers

Definition

For $1 \leq j \leq n$, element of rank j is the j'th smallest element in A.



Input Unsorted array **A** of **n** integers **and** integer **j** Goal Find the **j**th smallest number in **A** (*rank* **j** number)

Median: $j = \lfloor (n+1)/2 \rfloor$

Input Unsorted array **A** of **n** integers **and** integer **j** Goal Find the **j**th smallest number in **A** (*rank* **j** number)

Median: $j = \lfloor (n+1)/2 \rfloor$

Simplifying assumption for sake of notation: elements of **A** are distinct

Algorithm I

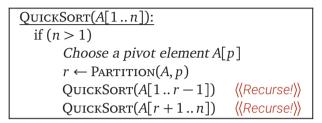
- Sort the elements in A
- **2** Pick *j*th element in sorted order
- Time taken = $O(n \log n)$

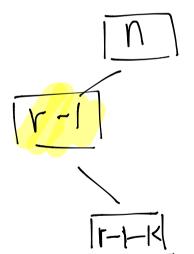
Algorithm I

- Sort the elements in A
- **2** Pick *j*th element in sorted order
- Time taken = $O(n \log n)$

Do we need to sort? Is there an O(n) time algorithm?

Algorithm II. One-armed Quick Sort





j < r

Algorithm II. One-armed Quick Sort

```
\begin{array}{l} \underbrace{\text{QUICKSELECT}(A[1..n],k):}_{\text{if }n=1} \\ \text{return A[1]} \\ \text{else} \\ Choose \ a \ pivot \ element \ A[p] \\ r \leftarrow \text{PARTITION}(A[1..n],p) \\ \text{if }k < r \\ \text{return QUICKSELECT}(A[1..r-1],k) \\ \text{else if }k > r \\ \text{return QUICKSELECT}(A[r+1..n],k-r) \\ \text{else} \\ \text{return }A[r] \end{array}
```

Running Time Analysis

2

• Partitioning step: O(n) time to scan A

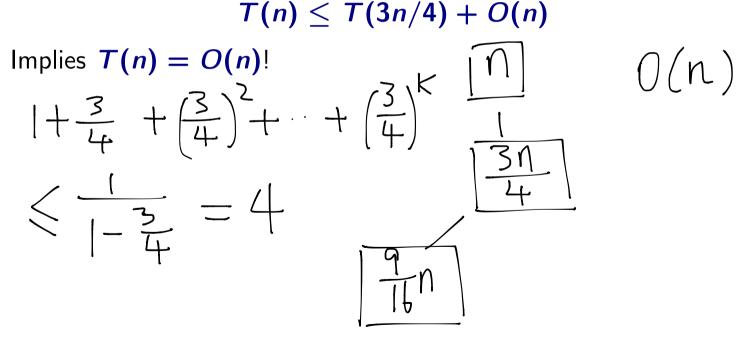
 $T(n) = \max_{1 \leq k \leq n} \max(T(k-1), T(n-k)) + O(n)$

In the worst case T(n) = T(n-1) + O(n), which means $T(n) = O(n^2)$. Happens if array is already sorted and pivot is always first element.

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq n/2$ and $n/2 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

(UIUC)

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is *approximately* in the middle of AThen $n/4 \leq |A_{\text{less}}| \leq n/2$ and $n/2 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,



28

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is *approximately* in the middle of AThen $n/4 \leq |A_{less}| \leq n/2$ and $n/2 \leq |A_{greater}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot?

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is *approximately* in the middle of AThen $n/4 \leq |A_{less}| \leq n/2$ and $n/2 \leq |A_{greater}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly?

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is *approximately* in the middle of AThen $n/4 \leq |A_{less}| \leq n/2$ and $n/2 \leq |A_{greater}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is *approximately* in the middle of AThen $n/4 \leq |A_{less}| \leq n/2$ and $n/2 \leq |A_{greater}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?

Divide and Conquer Approach A game of medians

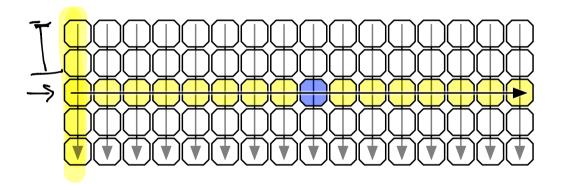
Idea

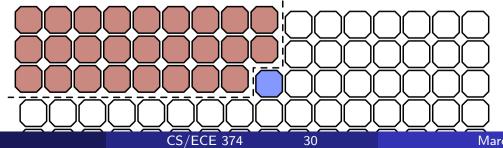
- **1** Break input **A** into many subarrays: $L_1, \ldots L_k$.
- 2 Find median m_i in each subarray L_i .
- 3 Find the median x of the medians m_1, \ldots, m_k .
- Intuition: The median x should be close to being a good median of all the numbers in A.
- Use x as pivot in previous algorithm.

11	7	3	42	174	310	1	92	87	12	19	15	
----	---	---	----	-----	-----	---	----	----	----	----	----	--

(UIUC)

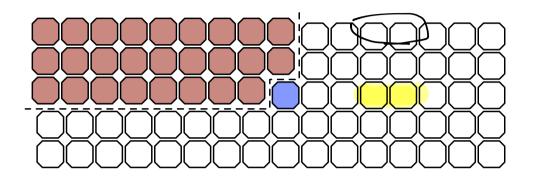
11	7	3	42	174	310	1	92	87	12	19	15	
----	---	---	----	-----	-----	---	----	----	----	----	----	--

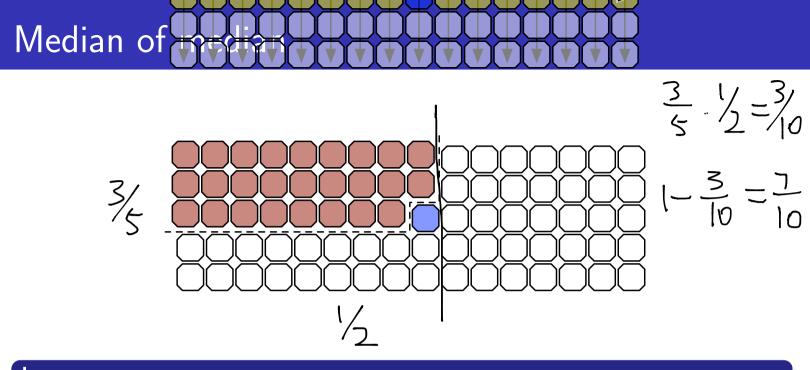




March 4, 2021 30 / 36

Median of the second of the se





Lemma

Median of **B** is an approximate median of **A**. That is, if **b** is used as a pivot to partition **A**, then $|A_{greater}| \leq 7n/10$.

select(A, j):
Form lists
$$L_1, L_2, \ldots, L_{\lceil n/5 \rceil}$$
 where $L_i = \{A[5i - 4], \ldots, A[5i]\}$
Find median b_i of each L_i using brute-force
Find median b of $B = \{b_1, b_2, \ldots, b_{\lceil n/5 \rceil}\}$
Partition A into A_{less} and $A_{greater}$ using b as pivot
if $(|A_{less}|) = j$ return b
else if $(|A_{less}|) > j)$
return select(A_{less}, j)
else
return select($A_{greater}, j - |A_{less}|$)

select(A, j):
Form lists
$$L_1, L_2, \ldots, L_{\lceil n/5 \rceil}$$
 where $L_i = \{A[5i - 4], \ldots, A[5i]\}$
Find median b_i of each L_i using brute-force
Find median b of $B = \{b_1, b_2, \ldots, b_{\lceil n/5 \rceil}\}$
Partition A into A_{less} and $A_{greater}$ using b as pivot
if $(|A_{less}|) = j$ return b
else if $(|A_{less}|) > j$)
return select(A_{less}, j)
else
return select($A_{greater}, j - |A_{less}|$)

How do we find median of **B**?

select(A, j):
Form lists
$$L_1, L_2, \ldots, L_{\lceil n/5 \rceil}$$
 where $L_i = \{A[5i - 4], \ldots, A[5i]\}$
Find median b_i of each L_i using brute-force
Find median b of $B = \{b_1, b_2, \ldots, b_{\lceil n/5 \rceil}\}$
Partition A into A_{less} and $A_{greater}$ using b as pivot
if $(|A_{less}|) = j$ return b
else if $(|A_{less}|) > j)$
return select(A_{less}, j)
else
return select($A_{greater}, j - |A_{less}|$)

How do we find median of **B**? Recursively!

select(A, j):
Form lists
$$L_1, L_2, \ldots, L_{\lceil n/5 \rceil}$$
 where $L_i = \{A[5i - 4], \ldots, A[5i]\}$
Find median b_i of each L_i using brute-force
 $B = [b_1, b_2, \ldots, b_{\lceil n/5 \rceil}]$
 $b = select(B, \lceil n/10 \rceil)$
Partition A into A_{less} and $A_{greater}$ using b as pivot
if $(|A_{less}|) = j$ return b
else if $(|A_{less}|) > j)$
return select(A_{less}, j)
else
return select($A_{less}, j - |A_{less}|$)

Running time of deterministic median selection A dance with recurrences

$T(n) \leq T(\lceil n/5 \rceil) + \max\{T(|A_{less}|), T(|A_{greater}|)\} + O(n)$

Running time of deterministic median selection A dance with recurrences

$T(n) \leq T(\lceil n/5 \rceil) + \max\{T(|A_{less}|), T(|A_{greater}|)\} + O(n)$

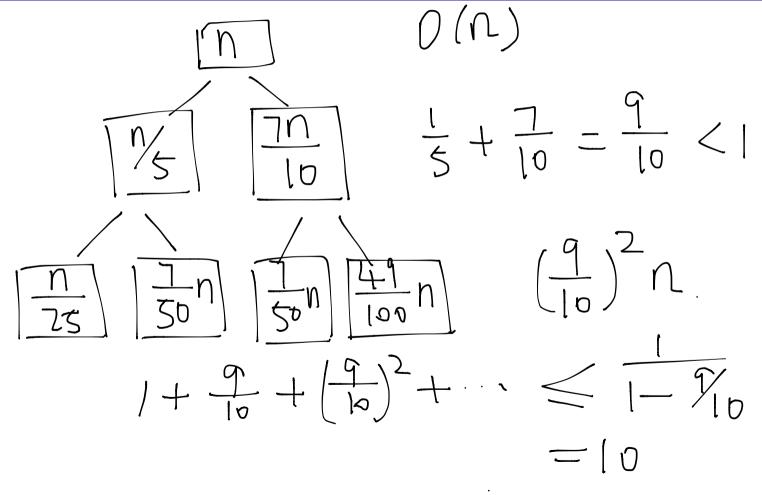
From Lemma,

and

$T(n) \leq T(\lceil n/5 \rceil) + T(\lceil 7n/10 \rceil) + O(n)$ $T(n) = O(1) \qquad n < 10$

Recursion Tree

(UIUC)



March 4, 2021

CS/ECE 374

Why 5? How about 3?

