CS/ECE 374: Algorithms \& Models of

Computation

Karatsuba's Algorithm and Linear Time Selection

Lecture 11

We will learn

(1) Last lecture
(1) How to think about recursion as a design paradigm
(2) How to analyze running time recurrences
(2) More complicated recursion in action
(1) Fast multiplication (Karatsuba's Algorithm)
(2) Linear Time Selection

Recursion

Another way to think about it

Reduce a problem to smaller instances of the same problem.

Reduction

Reduction $=$ Delegation

- Solve a problem using elementary operations + call a bunch of subroutines
- Subroutines $=$ Black boxes

Example of Reduction: Distinct Elements Problem

Problem Given an array \boldsymbol{A} of \boldsymbol{n} integers, are there any duplicates in \boldsymbol{A} ?

Example of Reduction: Distinct Elements Problem

Problem Given an array \boldsymbol{A} of \boldsymbol{n} integers, are there any duplicates in \boldsymbol{A} ?

Naive algorithm:
DistinctElements(A[1..n])
for $i=1$ to $n-1$ do for $j=i+1$ to n do
if $(A[i]=A[j])$
return YES
return NO

Example of Reduction: Distinct Elements Problem

Problem Given an array \boldsymbol{A} of \boldsymbol{n} integers, are there any duplicates in \boldsymbol{A} ?

Naive algorithm:
DistinctElements(A[1..n])
for $i=1$ to $n-1$ do for $j=i+1$ to n do if $(A[i]=A[j])$ return YES
return NO
Running time:

Example of Reduction: Distinct Elements Problem

Problem Given an array \boldsymbol{A} of \boldsymbol{n} integers, are there any duplicates in \boldsymbol{A} ?

Naive algorithm:
DistinctElements(A[1..n])
for $i=1$ to $n-1$ do for $j=i+1$ to n do if $(A[i]=A[j])$ return YES
return NO
Running time: $O\left(n^{2}\right)$

Reduction to Sorting

DistinctElements(A[1. .n])
Sort A
for $i=1$ to $n-1$ do
if $(A[i]=A[i+1])$ then
return YES
return NO

Reduction to Sorting

$$
\begin{aligned}
& \text { DistinctElements }(A[1 \ldots \mathrm{n}]) \\
& \text { Sort } \boldsymbol{A} \\
& \text { for } i=1 \text { to } n-1 \text { do } \\
& \text { if }(A[i]=A[i+1]) \text { then } \\
& \text { return YES } \\
& \text { return NO }
\end{aligned}
$$

Running time: $\boldsymbol{O}(\boldsymbol{n})$ plus time to sort an array of \boldsymbol{n} numbers

Important point: algorithm uses sorting as a black box

Recursion

It requires discipline to delegate

It is important to think of the recursive calls as black boxes, that is, subroutines taken care of by the recursion fairy.

Recursion

It requires discipline to delegate

It is important to think of the recursive calls as black boxes, that is, subroutines taken care of by the recursion fairy.

```
MERGESORT(A[1..n]):
    if n>1
        m\leftarrow\lfloorn/2\rfloor
    MergeSort(A[1..m])
    MergeSort(A[m+1..n])
    Merge(A[1..n],m)
```


Solving Recurrences

Two general methods:
(1) Guess and Verify
(2) Recursion tree method: At every level of recursion, how much non-recursive work you are doing.

Solving Recurrences

Two general methods:
(1) Guess and Verify
(2) Recursion tree method: At every level of recursion, how much non-recursive work you are doing.
(1) Merge Sort: same amount of work at every level

Solving Recurrences

Two general methods:
(1) Guess and Verify
(2) Recursion tree method: At every level of recursion, how much non-recursive work you are doing.
(1) Merge Sort: same amount of work at every level
(2) Increasing geometric series: count number of leaves. (Fast multiplication)
3 Decreasing geometric series: summable, first level dominates. (Selection)

Part I

Fast Multiplication

Multiplying Numbers

Problem Given two \boldsymbol{n}-digit numbers \boldsymbol{x} and \boldsymbol{y}, compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of y with x and adding the partial products.

$$
\begin{array}{r}
3141 \\
\times 2718 \\
\hline 25128 \\
3141 \\
21987 \\
6282 \\
\hline 8537238
\end{array}
$$

Time Analysis of Grade School Multiplication

(1) Each partial product: $\boldsymbol{\Theta}(\boldsymbol{n})$
(2) Number of partial products: $\boldsymbol{\Theta}(n)$
(0) Addition of partial products: $\boldsymbol{\Theta}\left(n^{2}\right)$

- Total time: $\Theta\left(n^{2}\right)$

Divide and Conquer

Assume \boldsymbol{n} is a power of $\mathbf{2}$ for simplicity and numbers are in decimal.
Split each number into two numbers with equal number of digits
(1) $x=x_{n-1} x_{n-2} \ldots x_{0}$ and $y=y_{n-1} y_{n-2} \ldots y_{0}$
(2) $x=x_{n-1} \ldots x_{n / 2} 0 \ldots 0+x_{n / 2-1} \ldots x_{0}$
(0) $x=10^{n / 2} x_{L}+x_{R}$ where $x_{L}=x_{n-1} \ldots x_{n / 2}$ and $x_{R}=x_{n / 2-1} \ldots x_{0}$
(1) Similarly $y=10^{n / 2} y_{L}+y_{R}$ where $y_{L}=y_{n-1} \ldots y_{n / 2}$ and $y_{R}=y_{n / 2-1} \ldots y_{0}$

Example

$$
\begin{aligned}
1234 \times 5678= & (100 \times 12+34) \times(100 \times 56+78) \\
= & 10000 \times 12 \times 56 \\
& +100 \times(12 \times 78+34 \times 56) \\
& +34 \times 78
\end{aligned}
$$

Divide and Conquer

Assume \boldsymbol{n} is a power of $\mathbf{2}$ for simplicity and numbers are in decimal.
(1) $x=x_{n-1} x_{n-2} \ldots x_{0}$ and $y=y_{n-1} y_{n-2} \ldots y_{0}$
(2) $x=10^{n / 2} x_{L}+x_{R}$ where $x_{L}=x_{n-1} \ldots x_{n / 2}$ and $x_{R}=x_{n / 2-1} \ldots x_{0}$
(0) $y=10^{n / 2} y_{L}+y_{R}$ where $y_{L}=y_{n-1} \ldots y_{n / 2}$ and

$$
y_{R}=y_{n / 2-1} \ldots y_{0}
$$

Therefore

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Time Analysis

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

4 recursive multiplications of size $n / 2$ plus 3 additions and left shifts (adding enough 0 's to the right)

Time Analysis

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

4 recursive multiplications of size $n / 2$ plus 3 additions and left shifts (adding enough 0 's to the right)

$$
T(n)=4 T(n / 2)+O(n) \quad T(1)=O(1)
$$

Time Analysis

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

4 recursive multiplications of size $n / 2$ plus 3 additions and left shifts (adding enough 0 's to the right)

$$
T(n)=4 T(n / 2)+O(n) \quad T(1)=O(1)
$$

$T(n)=\Theta\left(n^{2}\right)$. No better than grade school multiplication!

Recursion Tree

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: $(a+b i)$ and $(c+d i)$

$$
(a+b i)(c+d i)=a c-b d+(a d+b c) i
$$

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: $(a+b i)$ and $(c+d i)$

$$
(a+b i)(c+d i)=a c-b d+(a d+b c) i
$$

How many multiplications do we need?

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: $(a+b i)$ and $(c+d i)$

$$
(a+b i)(c+d i)=a c-b d+(a d+b c) i
$$

How many multiplications do we need?
Only 3 ! If we do extra additions and subtractions.
Compute $a c, b d,(a+b)(c+d)$. Then $(a d+b c)=(a+b)(c+d)-a c-b d$

Improving the Running Time

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$

Improving the Running Time

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$
Recursively compute only $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$.

Improving the Running Time

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$
Recursively compute only $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$.

Time Analysis

Running time is given by

$$
T(n)=3 T(n / 2)+O(n) \quad T(1)=O(1)
$$

which means

Improving the Running Time

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$
Recursively compute only $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$.

Time Analysis

Running time is given by

$$
T(n)=3 T(n / 2)+O(n) \quad T(1)=O(1)
$$

which means $T(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)$

Analyzing the Recurrences

(1) Basic divide and conquer: $T(n)=4 T(n / 2)+O(n)$, $T(1)=1$. Claim: $T(n)=\Theta\left(n^{2}\right)$.
(2) Saving a multiplication: $T(n)=3 T(n / 2)+O(n)$, $T(1)=1$. Claim: $T(n)=\Theta\left(n^{\log _{2} 3}\right)$

Analyzing the Recurrences

(1) Basic divide and conquer: $T(n)=4 T(n / 2)+O(n)$, $T(1)=1$. Claim: $T(n)=\Theta\left(n^{2}\right)$.
(2) Saving a multiplication: $T(n)=3 T(n / 2)+O(n)$, $T(1)=1$. Claim: $T(n)=\Theta\left(n^{\log _{2} 3}\right)$
Use recursion tree method:
(1) In both cases, depth of recursion $L=\log n$.
(2) Work at depth i is $4^{i} n / 2^{i}$ and $3^{i} n / 2^{i}$ respectively: number of children at depth i times the work at each child

- Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L}(3 / 2)^{i}$ respectively.

Recursion tree analysis

Part II

Selecting in Unsorted Lists

Rank of element in an array

\boldsymbol{A} : an unsorted array of \boldsymbol{n} integers

Definition

For $\mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}$, element of rank \boldsymbol{j} is the \boldsymbol{j} 'th smallest element in \boldsymbol{A}.
Sort of array

3	5	11	12	14	16	19	20	34

Problem - Selection

Input Unsorted array \boldsymbol{A} of \boldsymbol{n} integers and integer \boldsymbol{j}
Goal Find the \boldsymbol{j} th smallest number in \boldsymbol{A} (rank \boldsymbol{j} number)

Median: $j=\lfloor(n+1) / 2\rfloor$

Problem - Selection

Input Unsorted array \boldsymbol{A} of \boldsymbol{n} integers and integer \boldsymbol{j}
Goal Find the \boldsymbol{j} th smallest number in \boldsymbol{A} (rank \boldsymbol{j} number)

Median: $j=\lfloor(n+1) / 2\rfloor$
Simplifying assumption for sake of notation: elements of \boldsymbol{A} are distinct

Algorithm I

(1) Sort the elements in A
(2) Pick j th element in sorted order

Time taken $=O(n \log n)$

Algorithm I

(1) Sort the elements in A
(2) Pick j th element in sorted order

Time taken $=O(n \log n)$

Do we need to sort? Is there an $\boldsymbol{O}(\mathbf{n})$ time algorithm?

Algorithm II. One-armed Quick Sort

```
QuickSort(A[1..n]):
    if ( }n>1
        Choose a pivot element A[p]
        r\leftarrowPartition(A,p)
    QuickSort(A[1..r-1]) <<Recurse!\rangle\rangle
    QuickSort(A[r+1..n]) <<Recurse!\rangle\rangle
```


Algorithm II. One-armed Quick Sort

```
QuIckSelect(A[1..n],k):
    if n=1
        return A[1]
    else
        Choose a pivot element A[p]
        r}\leftarrow\operatorname{Partition(A[1..n],p)
        if }k<
                return QuickSelect(A[1..r-1],k)
        else if k>r
                            return QuickSelect(A[r+1..n],k-r)
        else
            return A[r]
```


Running Time Analysis

(1) Partitioning step: $O(n)$ time to scan A
©

$$
T(n)=\max _{1 \leq k \leq n} \max (T(k-1), T(n-k))+O(n)
$$

In the worst case $T(n)=T(n-1)+O(n)$, which means $T(n)=O\left(n^{2}\right)$. Happens if array is already sorted and pivot is always first element.

A Better Pivot

Suppose pivot is the ℓ th smallest element where $n / 4 \leq \ell \leq 3 n / 4$. That is pivot is approximately in the middle of \boldsymbol{A}
Then $\boldsymbol{n} / \mathbf{4} \leq\left|\boldsymbol{A}_{\text {less }}\right| \leq \boldsymbol{n} / \mathbf{2}$ and $\boldsymbol{n} / \mathbf{2} \leq\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

A Better Pivot

Suppose pivot is the ℓ th smallest element where $n / 4 \leq \ell \leq 3 n / 4$. That is pivot is approximately in the middle of \boldsymbol{A}
Then $\boldsymbol{n} / \mathbf{4} \leq\left|\boldsymbol{A}_{\text {less }}\right| \leq \boldsymbol{n} / \mathbf{2}$ and $\boldsymbol{n} / \mathbf{2} \leq\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $T(n)=O(n)$!

A Better Pivot

Suppose pivot is the ℓ th smallest element where $n / 4 \leq \ell \leq 3 n / 4$. That is pivot is approximately in the middle of \boldsymbol{A}
Then $\boldsymbol{n} / \mathbf{4} \leq\left|\boldsymbol{A}_{\text {less }}\right| \leq \boldsymbol{n} / \mathbf{2}$ and $\boldsymbol{n} / \mathbf{2} \leq\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $T(n)=O(n)$!

How do we find such a pivot?

A Better Pivot

Suppose pivot is the ℓ th smallest element where $n / 4 \leq \ell \leq 3 n / 4$. That is pivot is approximately in the middle of \boldsymbol{A}
Then $\boldsymbol{n} / \mathbf{4} \leq\left|\boldsymbol{A}_{\text {less }}\right| \leq \boldsymbol{n} / \mathbf{2}$ and $\boldsymbol{n} / \mathbf{2} \leq\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $T(n)=O(n)$!

How do we find such a pivot? Randomly?

A Better Pivot

Suppose pivot is the ℓ th smallest element where $n / 4 \leq \ell \leq 3 n / 4$.
That is pivot is approximately in the middle of \boldsymbol{A}
Then $\boldsymbol{n} / \mathbf{4} \leq\left|\boldsymbol{A}_{\text {less }}\right| \leq \boldsymbol{n} / \mathbf{2}$ and $\boldsymbol{n} / \mathbf{2} \leq\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $T(n)=O(n)$!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

A Better Pivot

Suppose pivot is the ℓ th smallest element where $n / 4 \leq \ell \leq 3 n / 4$.
That is pivot is approximately in the middle of \boldsymbol{A}
Then $\boldsymbol{n} / \mathbf{4} \leq\left|A_{\text {less }}\right| \leq n / 2$ and $n / 2 \leq\left|A_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $T(n)=O(n)$!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?

Divide and Conquer Approach

A game of medians

Idea

(1) Break input A into many subarrays: $L_{1}, \ldots L_{k}$.
(2) Find median $\boldsymbol{m}_{\boldsymbol{i}}$ in each subarray L_{i}.
(3) Find the median x of the medians m_{1}, \ldots, m_{k}.
(4) Intuition: The median x should be close to being a good median of all the numbers in \boldsymbol{A}.
(5) Use x as pivot in previous algorithm.

Example

11	7	3	42	174	310	1	92	87	12	19	15

Example

11	7	3	42	174	310	1	92	87	12	19	15

Median of median

Median of median

Lemma

Median of B is an approximate median of \boldsymbol{A}. That is, if \boldsymbol{b} is used as a pivot to partition A, then $\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{7 n} / \mathbf{1 0}$.

Algorithm for Selection

A storm of medians

select ($\boldsymbol{A}, \boldsymbol{j}$):
Form lists $L_{1}, L_{2}, \ldots, L_{\lceil n / 5\rceil}$ where $L_{i}=\{A[5 i-4], \ldots, A[5 i]\}$
Find median $\boldsymbol{b}_{\boldsymbol{i}}$ of each $\boldsymbol{L}_{\boldsymbol{i}}$ using brute-force
Find median \boldsymbol{b} of $\boldsymbol{B}=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{\lceil\boldsymbol{n} / 5\rceil}\right\}$
Partition \boldsymbol{A} into $\boldsymbol{A}_{\text {less }}$ and $\boldsymbol{A}_{\text {greater }}$ using \boldsymbol{b} as pivot
if $\left(\left|\boldsymbol{A}_{\text {less }}\right|\right)=\boldsymbol{j}$ return \boldsymbol{b}
else if $\left.\left(\left|\boldsymbol{A}_{\text {less }}\right|\right)>\boldsymbol{j}\right)$
return select $\left(\boldsymbol{A}_{\text {less }}, \boldsymbol{j}\right)$
else
return select $\left(\boldsymbol{A}_{\text {greater }}, \boldsymbol{j}-\left|\boldsymbol{A}_{\text {less }}\right|\right)$

Algorithm for Selection

A storm of medians

select ($\boldsymbol{A}, \boldsymbol{j}$) :
Form lists $L_{1}, L_{2}, \ldots, L_{\lceil n / 5\rceil}$ where $L_{i}=\{A[5 i-4], \ldots, A[5 i]\}$
Find median $\boldsymbol{b}_{\boldsymbol{i}}$ of each $\boldsymbol{L}_{\boldsymbol{i}}$ using brute-force
Find median \boldsymbol{b} of $\boldsymbol{B}=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{\lceil\boldsymbol{n} / 5\rceil}\right\}$
Partition \boldsymbol{A} into $\boldsymbol{A}_{\text {less }}$ and $\boldsymbol{A}_{\text {greater }}$ using \boldsymbol{b} as pivot
if $\left(\left|\boldsymbol{A}_{\text {less }}\right|\right)=\boldsymbol{j}$ return \boldsymbol{b}
else if $\left.\left(\left|\boldsymbol{A}_{\text {less }}\right|\right)>\boldsymbol{j}\right)$
return select $\left(\boldsymbol{A}_{\text {less }}, \boldsymbol{j}\right)$
else
return select $\left(\boldsymbol{A}_{\text {greater }}, \boldsymbol{j}-\left|\boldsymbol{A}_{\text {less }}\right|\right)$
How do we find median of B ?

Algorithm for Selection

A storm of medians

select ($\boldsymbol{A}, \boldsymbol{j}$) :
Form lists $L_{1}, L_{2}, \ldots, L_{\lceil n / 5\rceil}$ where $L_{i}=\{A[5 i-4], \ldots, A[5 i]\}$
Find median $\boldsymbol{b}_{\boldsymbol{i}}$ of each $\boldsymbol{L}_{\boldsymbol{i}}$ using brute-force
Find median \boldsymbol{b} of $\boldsymbol{B}=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{\lceil\boldsymbol{n} / 5\rceil}\right\}$
Partition \boldsymbol{A} into $\boldsymbol{A}_{\text {less }}$ and $\boldsymbol{A}_{\text {greater }}$ using \boldsymbol{b} as pivot
if $\left(\left|\boldsymbol{A}_{\text {less }}\right|\right)=\boldsymbol{j}$ return \boldsymbol{b}
else if $\left.\left(\left|\boldsymbol{A}_{\text {less }}\right|\right)>\boldsymbol{j}\right)$
return select $\left(\boldsymbol{A}_{\text {less }}, \boldsymbol{j}\right)$
else
return select $\left(\boldsymbol{A}_{\text {greater }}, \boldsymbol{j}-\left|\boldsymbol{A}_{\text {less }}\right|\right)$
How do we find median of B ? Recursively!

Algorithm for Selection

A storm of medians

select ($\boldsymbol{A}, \boldsymbol{j})$:
Form lists $L_{1}, L_{2}, \ldots, L_{\lceil n / 5\rceil}$ where $L_{i}=\{A[5 i-4], \ldots, A[5 i]\}$
Find median $\boldsymbol{b}_{\boldsymbol{i}}$ of each $\boldsymbol{L}_{\boldsymbol{i}}$ using brute-force
$B=\left[b_{1}, b_{2}, \ldots, b_{[n / 5\rceil}\right]$
$b=\operatorname{select}(B,\lceil n / 10\rceil)$
Partition \boldsymbol{A} into $\boldsymbol{A}_{\text {less }}$ and $\boldsymbol{A}_{\text {greater }}$ using \boldsymbol{b} as pivot
if $\left(\left|\boldsymbol{A}_{\text {less }}\right|\right)=\boldsymbol{j}$ return \boldsymbol{b}
else if $\left.\left(\left|\boldsymbol{A}_{\text {less }}\right|\right)>\boldsymbol{j}\right)$
return select $\left(\boldsymbol{A}_{\text {less }}, \boldsymbol{j}\right)$
else
return select $\left(\boldsymbol{A}_{\text {greater }}, \boldsymbol{j}-\left|\boldsymbol{A}_{\text {less }}\right|\right)$

Running time of deterministic median selection

A dance with recurrences

$T(n) \leq T(\lceil n / 5\rceil)+\max \left\{T\left(\left|A_{\text {less }}\right|\right), T\left(\left|A_{\text {greater }}\right|\right)\right\}+O(n)$

Running time of deterministic median selection

 A dance with recurrences
$T(n) \leq T(\lceil n / 5\rceil)+\max \left\{T\left(\left|A_{\text {less }}\right|\right), T\left(\left|A_{\text {greater }}\right|\right)\right\}+O(n)$

From Lemma,

$$
T(n) \leq T(\lceil n / 5\rceil)+T(\lceil 7 n / 10\rceil)+O(n)
$$

and

$$
T(n)=O(1) \quad n<10
$$

Recursion Tree

Why 5? How about 3?

