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We will learn

1 Last lecture
1 How to think about recursion as a design paradigm
2 How to analyze running time recurrences

2 More complicated recursion in action
1 Fast multiplication (Karatsuba’s Algorithm)
2 Linear Time Selection
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Recursion

Another way to think about it

Reduce a problem to smaller instances of the same problem.
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Reduction

Reduction = Delegation

Solve a problem using elementary operations + call a bunch of
subroutines

Subroutines = Black boxes
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Example of Reduction: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

DistinctElements(A[1..n])
for i = 1 to n − 1 do

for j = i + 1 to n do
if (A[i ] = A[j ])

return YES

return NO

Running time: O(n2)
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Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i = 1 to n − 1 do

if (A[i ] = A[i + 1]) then
return YES

return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box
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Recursion

It requires discipline to delegate

It is important to think of the recursive calls as black boxes, that is,
subroutines taken care of by the recursion fairy.

Algorithms Lecture �: Recursion [Fa’��]

M����S���(A[1 .. n]):
if n> 1

m bn/2c
M����S���(A[1 .. m])
M����S���(A[m+ 1 .. n])
M����(A[1 .. n], m)

M����(A[1 .. n], m):
i 1; j m+ 1
for k 1 to n

if j > n
B[k] A[i]; i i + 1

else if i > m
B[k] A[ j]; j j + 1

else if A[i]< A[ j]
B[k] A[i]; i i + 1

else
B[k] A[ j]; j j + 1

for k 1 to n
A[k] B[k]

To prove that this algorithm is correct, we apply our old friend induction twice, first to the
M���� subroutine then to the top-level M�������� algorithm.

• We prove M���� is correct by induction on n� k + 1, which is the total size of the two
sorted subarrays A[i .. m] and A[ j .. n] that remain to be merged into B[k .. n] when the kth
iteration of the main loop begins. There are five cases to consider. Yes, five.

– If k > n, the algorithm correctly merges the two empty subarrays by doing absolutely
nothing. (This is the base case of the inductive proof.)

– If i  m and j > n, the subarray A[ j .. n] is empty. Because both subarrays are sorted,
the smallest element in the union of the two subarrays is A[i]. So the assignment
B[k] A[i] is correct. The inductive hypothesis implies that the remaining subarrays
A[i + 1 .. m] and A[ j .. n] are correctly merged into B[k+ 1 .. n].

– Similarly, if i > m and j  n, the assignment B[k]  A[ j] is correct, and The
Recursion Fairy correctly merges—sorry, I mean the inductive hypothesis implies
that the M���� algorithm correctly merges—the remaining subarrays A[i .. m] and
A[ j + 1 .. n] into B[k+ 1 .. n].

– If i  m and j  n and A[i]< A[ j], then the smallest remaining element is A[i]. So
B[k] is assigned correctly, and the Recursion Fairy correctly merges the rest of the
subarrays.

– Finally, if i  m and j  n and A[i] � A[ j], then the smallest remaining element is
A[ j]. So B[k] is assigned correctly, and the Recursion Fairy correctly does the rest.

• Now we prove M����S��� correct by induction; there are two cases to consider. Yes, two.

– If n 1, the algorithm correctly does nothing.
– Otherwise, the Recursion Fairy correctly sorts—sorry, I mean the induction hypothesis

implies that our algorithm correctly sorts—the two smaller subarrays A[1 .. m] and
A[m+1 .. n], after which they are correctly M����d into a single sorted array (by the
previous argument).

What’s the running time? Because the M����S��� algorithm is recursive, its running
time will be expressed by a recurrence. M���� clearly takes linear time, because it’s a simple
for-loop with constant work per iteration. We immediately obtain the following recurrence for
M����S���:

T (n) = T
�dn/2e�+ T
�bn/2c�+O(n).

�
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Solving Recurrences

Two general methods:

1 Guess and Verify
2 Recursion tree method: At every level of recursion, how much

non-recursive work you are doing.

1 Merge Sort: same amount of work at every level
2 Increasing geometric series: count number of leaves. (Fast

multiplication)
3 Decreasing geometric series: summable, first level dominates.

(Selection)
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Part I

Fast Multiplication
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Multiplying Numbers

Problem Given two n-digit numbers x and y , compute their
product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and
adding the partial products.

3141
×2718
25128
3141

21987
6282
8537238
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Time Analysis of Grade School Multiplication

1 Each partial product: Θ(n)

2 Number of partial products: Θ(n)

3 Addition of partial products: Θ(n2)

4 Total time: Θ(n2)
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Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits

1 x = xn−1xn−2 . . . x0 and y = yn−1yn−2 . . . y0

2 x = xn−1 . . . xn/20 . . . 0 + xn/2−1 . . . x0

3 x = 10n/2xL + xR where xL = xn−1 . . . xn/2 and
xR = xn/2−1 . . . x0

4 Similarly y = 10n/2yL + yR where yL = yn−1 . . . yn/2 and
yR = yn/2−1 . . . y0
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Example

1234× 5678 = (100× 12 + 34)× (100× 56 + 78)

= 10000× 12× 56

+100× (12× 78 + 34× 56)

+34× 78
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Time Analysis

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

4 recursive multiplications of size n/2 plus 3 additions and left shifts
(adding enough 0’s to the right)

T (n) = 4T (n/2) + O(n) T (1) = O(1)

T (n) = Θ(n2). No better than grade school multiplication!
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Recursion Tree
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A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac − bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd , (a + b)(c + d). Then
(ad + bc) = (a + b)(c + d)− ac − bd
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Improving the Running Time

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means T (n) = O(nlog2 3) = O(n1.585)

(UIUC) CS/ECE 374 18 March 4, 2021 18 / 36



Improving the Running Time

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means T (n) = O(nlog2 3) = O(n1.585)

(UIUC) CS/ECE 374 18 March 4, 2021 18 / 36



Improving the Running Time

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means

T (n) = O(nlog2 3) = O(n1.585)

(UIUC) CS/ECE 374 18 March 4, 2021 18 / 36



Improving the Running Time

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means T (n) = O(nlog2 3) = O(n1.585)

(UIUC) CS/ECE 374 18 March 4, 2021 18 / 36



Analyzing the Recurrences

1 Basic divide and conquer: T (n) = 4T (n/2) + O(n),
T (1) = 1. Claim: T (n) = Θ(n2).

2 Saving a multiplication: T (n) = 3T (n/2) + O(n),
T (1) = 1. Claim: T (n) = Θ(nlog2 3)

Use recursion tree method:

1 In both cases, depth of recursion L = log n.

2 Work at depth i is 4in/2i and 3in/2i respectively: number of
children at depth i times the work at each child

3 Total work is therefore n
∑L

i=0 2i and n
∑L

i=0(3/2)i

respectively.
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Recursion tree analysis
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Part II

Selecting in Unsorted Lists
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Rank of element in an array

A: an unsorted array of n integers

Definition
For 1 ≤ j ≤ n, element of rank j is the j ’th smallest element in A.

16 1214 20 534 3 19 11

1612 14 205 343 1911

12 3456 789

Unsorted array

Ranks

Sort of array
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Problem - Selection

Input Unsorted array A of n integers and integer j
Goal Find the j th smallest number in A (rank j number)

Median: j = b(n + 1)/2c

Simplifying assumption for sake of notation: elements of A are
distinct
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Algorithm I

1 Sort the elements in A
2 Pick j th element in sorted order

Time taken = O(n log n)

Do we need to sort? Is there an O(n) time algorithm?
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Algorithm II. One-armed Quick Sort

�.�. Quicksort

�.� Quicksort
Quicksort is another recursive sorting algorithm, discovered by Tony Hoare in
���� and first published in ����. In this algorithm, the hard work is splitting
the array into smaller subarrays before recursion, so that merging the sorted
subarrays is trivial.

�. Choose a pivot element from the array.
�. Partition the array into three subarrays containing the elements smaller

than the pivot, the pivot element itself, and the elements larger than the
pivot.

�. Recursively quicksort the first and last subarrays.

Input: S O R T I N G E X A M P L

Choose a pivot: S O R T I N G E X A M P L

Partition: A G O E I N L M P T X S R

Recurse Left: A E G I L M N O P T X S R

Recurse Right: A E G I L M N O P R S T X

Figure �.�. A quicksort example.
More detailed pseudocode is given in Figure �.�. In the P�������� subroutine,

the input parameter p is the index of the pivot element in the unsorted array;
the subroutine partitions the array and returns the new index of the pivot
element. There are many di�erent e�cient partitioning algorithms; the one
I’m presenting here is attributed to Nico Lomuto.� The variable ` counts the
number of items in the array that are `ess than the pivot element.

Q����S���(A[1 .. n]):
if (n> 1)

Choose a pivot element A[p]
r  P��������(A, p)
Q����S���(A[1 .. r � 1]) hhRecurse!ii
Q����S���(A[r + 1 .. n]) hhRecurse!ii

P��������(A[1 .. n], p):
swap A[p]$ A[n]
` 0 hh#items< pivotii
for i 1 to n� 1

if A[i]< A[n]
` `+ 1
swap A[`]$ A[i]

swap A[n]$ A[`+ 1]
return `+ 1

Figure �.8. Quicksort

Correctness
Just like mergesort, proving that Q����S��� is correct requires two separate
induction proofs: one to prove that P�������� correctly partitions the array, and

�Hoare proposed a more complicated “two-way” partitioning algorithm that has some
practical advantages over Lomuto’s algorithm. On the other hand, Hoare’s partitioning algorithm
is one of the places o�-by-one errors go to die.

��
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Algorithm II. One-armed Quick Sort
�. R��������

Q����S�����(A[1 .. n], k):
if n= 1

return A[�]
else

Choose a pivot element A[p]
r  P��������(A[1 .. n], p)

if k < r
return Q����S�����(A[1 .. r � 1], k)

else if k > r
return Q����S�����(A[r + 1 .. n], k� r)

else
return A[r]

Figure �.��. Quickselect, or one-armed quicksort

This algorithm has two important features. First, just like quicksort, the
correctness of quickselect does not depend on how the pivot is chosen. Second,
even if we really only care about selecting medians (the special case k = n/2),
Hoare’s recursive strategy requires us to consider the more general selection
problem; the median of the input array A[1 .. n] is almost never the median of
either of the two smaller subarrays A[1 .. r � 1] or A[r + 1 .. n].

The worst-case running time of Q����S����� obeys a recurrence similar to
Q����S���. We don’t know the value of r, or which of the two subarrays we’ll
recursively search, so we have to assume the worst.

T (n)  max
1rn

max {T (r � 1), T (n� r)}+O(n)

We can simplify the recurrence slightly by letting ` denote the length of the
recursive subproblem:

T (n)  max
0`n�1

T (`) +O(n)

If the chosen pivot element is always either the smallest or largest element in
the array, the recurrence simplifies to T (n) = T (n� 1) +O(n), which implies
T (n) = O(n2). (The recursion tree for this recurrence is just a simple path.)

Good pivots
We could avoid this quadratic worst-case behavior if we could somehow magically
choose a good pivot, meaning ` ↵n for some constant ↵< 1. In this case, the
recurrence would simplify to

T (n) T (↵n) +O(n).

�6

(UIUC) CS/ECE 374 26 March 4, 2021 26 / 36



Running Time Analysis

1 Partitioning step: O(n) time to scan A
2

T (n) = max
1≤k≤n

max(T (k − 1),T (n − k)) + O(n)

In the worst case T (n) = T (n − 1) + O(n), which means
T (n) = O(n2). Happens if array is already sorted and pivot is
always first element.
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A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ n/2 and n/2 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T (n) ≤ T (3n/4) + O(n)

Implies T (n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?
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Divide and Conquer Approach
A game of medians

Idea
1 Break input A into many subarrays: L1, . . . Lk .

2 Find median mi in each subarray Li .

3 Find the median x of the medians m1, . . . ,mk .

4 Intuition: The median x should be close to being a good median
of all the numbers in A.

5 Use x as pivot in previous algorithm.
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Example

11 7 3 42 174 310 1 92 87 12 19 15

�. R��������

Figure �.8. Visualizing the median of medians

Figure �.�. Discarding approximately �/�� of the array

second key insight is that the total size of the two recursive subproblems is a constant
factor smaller than the size of the original input array. The worst-case running time of
the algorithm obeys the recurrence

T (n) O(n) + T (n/5) + T (7n/10).

The recursion tree method implies the solution T (n) = O(n); the total work at each level
of level of the recursion tree is at most 9/10 the total work at the previous level. If we
had used blocks of size � instead of �, the running time recurrence would have been

T (n) O(n) + T (n/3) + T (2n/3),

whose solution is O(n log n)—no better than sorting!

Finer analysis reveals that the constant hidden by the O() is quite large, even if
we count only comparisons. Selecting the median of 5 elements requires at most 6
comparisons, so we need at most 6n/5 comparisons to set up the recursive subproblem.
We need another n� 1 comparisons to partition the array after the recursive call returns.
So a more accurate recurrence for the worst-case number of comparisons is

T (n) 11n/5+ T (n/5) + T (7n/10).

The recursion tree method implies the upper bound

T (n) 11n
5

X
i�0

Å
9

10

ãi
=

11n
5
· 10= 22n.

This algorithm isn’t as awful in practice as this worst-case analysis predicts—getting a
worst-case partition at every level of recursion is incredibly unlikely—but it is still worse
than sorting for even moderately large arrays..

��
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Lemma
Median of B is an approximate median of A. That is, if b is used as
a pivot to partition A, then |Agreater| ≤ 7n/10.
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Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i − 4], . . . ,A[5i ]}
Find median bi of each Li using brute-force

Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j − |Aless|)

How do we find median of B?
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Running time of deterministic median selection
A dance with recurrences

T (n) ≤ T (dn/5e) + max{T (|Aless|),T (|Agreater|)}+ O(n)

From Lemma,

T (n) ≤ T (dn/5e) + T (d7n/10e) + O(n)

and
T (n) = O(1) n < 10
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Recursion Tree
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Why 5? How about 3?
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