CS/ECE 374: Algorithms & Models of Computation

Recursion

Lecture 10

We will learn

How to ask the recursion fairy to solve the problem for us.

We will learn

- O How to ask the recursion fairy to solve the problem for us.
- Output to analyze the running time of a recursive algorithm.

We will learn

- How to ask the recursion fairy to solve the problem for us.
- Output: A state of a state of
- 8 Recursion in action
 - Tower of Hanoi puzzle
 - Ø Merge sort
 - Quick sort

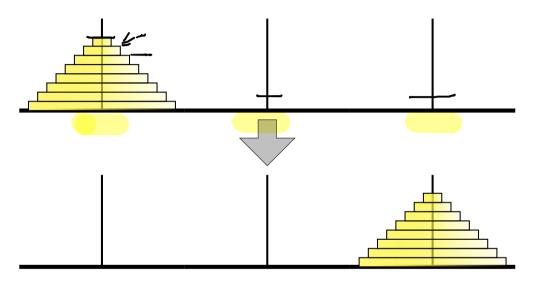
How to think about it

Recursion = Induction

Part I

Tower of Hanoi

Tower of Hanoi

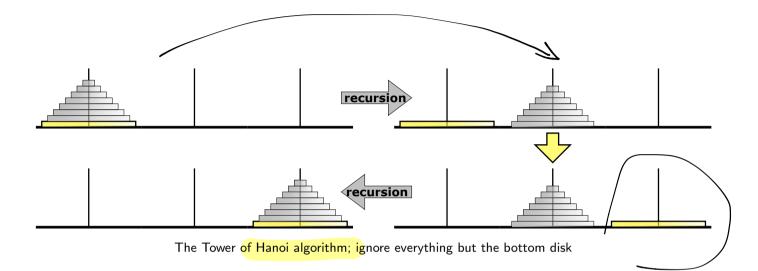


The Tower of Hanoi puzzle

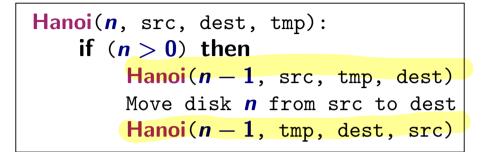
Move stack of *n* disks from peg **0** to peg **2**, one disk at a time. Rule: cannot put a larger disk on a smaller disk. Question: what is a strategy and how many moves does it take?

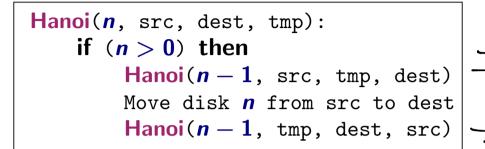
```
(UIUC)
```

Tower of Hanoi via Recursion



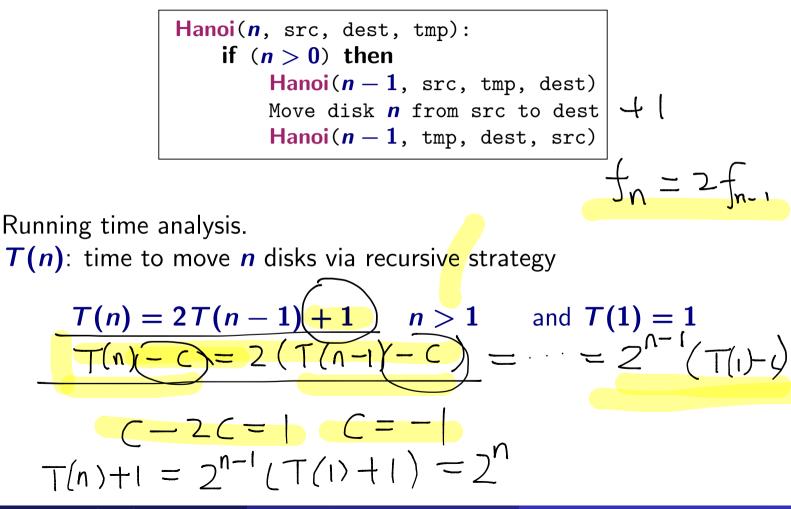
 $\begin{array}{l} \mathsf{Hanoi}(n, \ \mathrm{src, \ dest, \ tmp}): \\ \mathsf{Hanoi}(n-1, \ \mathrm{src, \ tmp, \ dest}) \\ \mathrm{Move \ disk} \ n \ \mathrm{from \ src \ to \ dest} \\ \mathsf{Hanoi}(n-1, \ \mathrm{tmp, \ dest, \ src}) \end{array}$





Proof of correctness.

Running time analysis. **T(n)**: time to move **n** disks via recursive strategy



T(n) = 2T(n-1) + 1 $= 2^{2}T(n-2) + 2 + 1$ = ... $= 2^{i}T(n-i) + 2^{i-1} + 2^{i-2} + \ldots + 1$ = ... $= 2^{n-1}T(1) + 2^{n-2} + \ldots + 1$ $= 2^{n-1} + 2^{n-2} + \ldots + 1$ $= (2^{n}-1)/(2-1) = 2^{n}-1$

Part II

Merge Sort

Input Given an array of *n* elements Goal Rearrange them in ascending order

Input: Array A[1...n]

ALGORITHMS

Input: Array A[1...n]

ALGORITHMS

2 Divide into subarrays $A[1 \dots m]$ and $A[m + 1 \dots n]$, where $m = \lfloor n/2 \rfloor$

ALGOR ITHMS

Input: Array A[1...n]

ALGORITHMS

2 Divide into subarrays $A[1 \dots m]$ and $A[m + 1 \dots n]$, where $m = \lfloor n/2 \rfloor$

ALGOR ITHMS

Recursively MergeSort $A[1 \dots m]$ and $A[m + 1 \dots n]$ A G L O R H I M S T

• Input: Array A[1...n]A L G O R I T H M S

2 Divide into subarrays $A[1 \dots m]$ and $A[m + 1 \dots n]$, where $m = \lfloor n/2 \rfloor$

ALGOR ITHMS

Secursively MergeSort $A[1 \dots m]$ and $A[m + 1 \dots n]$ A G L O R H I M S T

Merge the sorted arrays

AGHILMORST

(UIUC)

- Use a new array B to store the merged array
- Scan A[1...m] and A[m + 1...n] from left-to-right, storing elements in B in order

```
AGLOR HIMST
A
```


- Use a new array B to store the merged array
- Scan A[1...m] and A[m + 1...n] from left-to-right, storing elements in B in order

```
AGLOR HIMST
AG
```


- Use a new array B to store the merged array
- Scan A[1...m] and A[m + 1...n] from left-to-right, storing elements in B in order

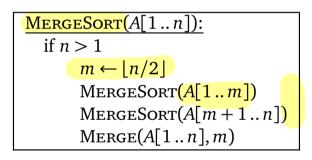
AGLOR HIMST AGH

- Use a new array B to store the merged array
- Scan A[1...m] and A[m + 1...n] from left-to-right, storing elements in B in order

AGLOR HIMST AGHI

- Use a new array B to store the merged array
- Scan A[1...m] and A[m + 1...n] from left-to-right, storing elements in B in order

AGLOR HIMST AGHILMORST



```
Merge(A[1..n], m):
  i \leftarrow 1; j \leftarrow m+1
   for k \leftarrow 1 to n
         if j > n
                B[k] \leftarrow A[i]; i \leftarrow i+1
          else if i > m
                B[k] \leftarrow A[j]; j \leftarrow j+1
          else if A[i] < A[j]
                B[k] \leftarrow A[i]; i \leftarrow i+1
          else
                B[k] \leftarrow A[j]; j \leftarrow j+1
   for k \leftarrow 1 to n
         A[k] \leftarrow B[k]
```

Proving Correctness

Obvious way to prove correctness of recursive algorithm:

Proving Correctness

Obvious way to prove correctness of recursive algorithm: induction!

- Easy to show by induction on *n* that MergeSort is correct if you assume Merge is correct.
- How do we prove that Merge is correct?

Obvious way to prove correctness of recursive algorithm: induction!

- Easy to show by induction on *n* that MergeSort is correct if you assume Merge is correct.
- How do we prove that Merge is correct? Also by induction!
- One way is to rewrite Merge into a recursive version.
- For algorithms with loops one comes up with a natural *loop invariant* that captures all the essential properties and then we prove the loop invariant by induction on the index of the loop.

Obvious way to prove correctness of recursive algorithm: induction!

- Easy to show by induction on *n* that MergeSort is correct if you assume Merge is correct.
- How do we prove that Merge is correct? Also by induction!
- One way is to rewrite Merge into a recursive version.
- For algorithms with loops one comes up with a natural *loop invariant* that captures all the essential properties and then we prove the loop invariant by induction on the index of the loop.

At the start of iteration \boldsymbol{k} the following hold:

• B[1..k] contains the smallest k elements of A correctly sorted.

B[1..k] contains the elements of A[1..(i - 1)] and A[(m + 1)..(j - 1)].

No element of A is modified.

(UIUC)

Running Time

T(n): time for merge sort to sort an n element array

Running Time

T(n): time for merge sort to sort an n element array

$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + cn$

Running Time

T(n): time for merge sort to sort an n element array

$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + cn$

What do we want as a solution to the recurrence?

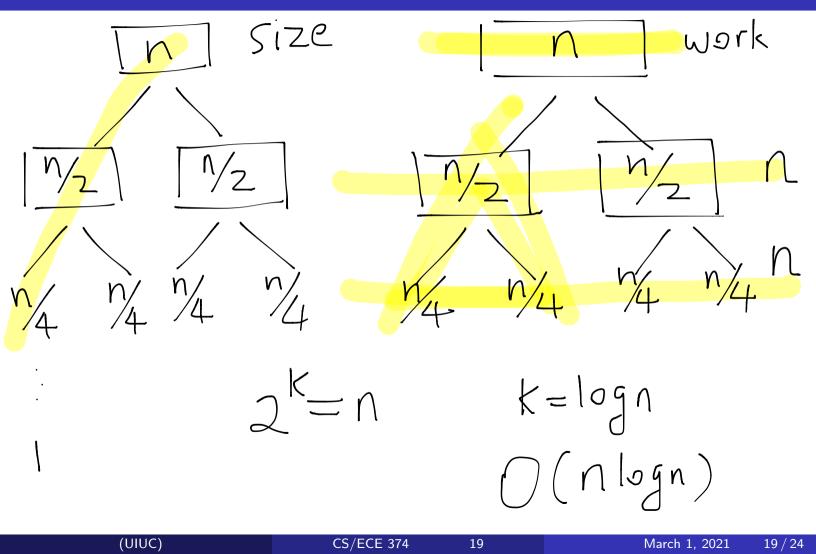
Almost always only an *asymptotically* tight bound. That is we want to know f(n) such that $T(n) = \Theta(f(n))$.

- T(n) = O(f(n)) upper bound
- 2 $T(n) = \Omega(f(n))$ lower bound

Solving Recurrences: Some Techniques

- Know some basic math: geometric series, logarithms, exponentials, elementary calculus
- Expand the recurrence and spot a pattern and use simple math
- Recursion tree method imagine the computation as a tree
- Guess and verify useful for proving upper and lower bounds even if not tight bounds

Recursion Trees



Part III

Quick Sort

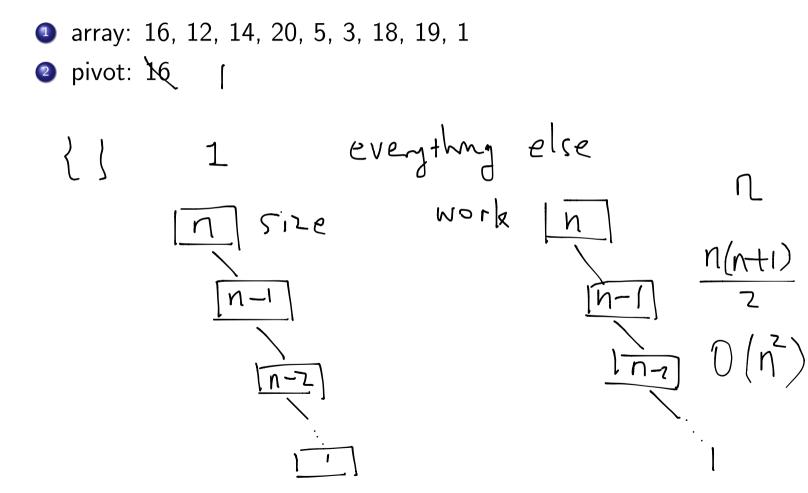
- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is O(n)
- ③ Recursively sort the subarrays, and concatenate them.

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is O(n)
- Recursively sort the subarrays, and concatenate them.

Quick Sort: Example

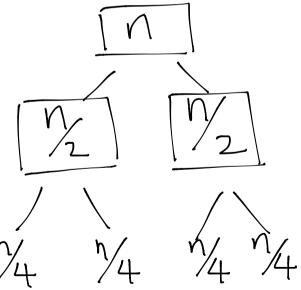


(UIUC)

CS/ECE 374

• Let k be the rank of the chosen pivot. Then, T(n) = T(k-1) + T(n-k) + O(n)

- Let k be the rank of the chosen pivot. Then, T(n) = T(k-1) + T(n-k) + O(n)
- 2 If $k = \lceil n/2 \rceil$ then $T(n) = T(\lceil n/2 \rceil 1) + T(\lfloor n/2 \rfloor) + O(n) \le 2T(n/2) + O(n)$. Then, $T(n) = O(n \log n)$.



- Let k be the rank of the chosen pivot. Then, T(n) = T(k-1) + T(n-k) + O(n)
- 2 If $k = \lceil n/2 \rceil$ then $T(n) = T(\lceil n/2 \rceil 1) + T(\lfloor n/2 \rfloor) + O(n) \le 2T(n/2) + O(n)$. Then, $T(n) = O(n \log n)$.
 - Theoretically, median can be found in linear time.

- Let k be the rank of the chosen pivot. Then, T(n) = T(k-1) + T(n-k) + O(n)
- 2 If $k = \lceil n/2 \rceil$ then $T(n) = T(\lceil n/2 \rceil 1) + T(\lfloor n/2 \rfloor) + O(n) \le 2T(n/2) + O(n)$. Then, $T(n) = O(n \log n)$.

• Theoretically, median can be found in linear time.

Solution Typically, pivot is the first or last element of array. Then,

 $T(n) = \max_{1 \le k \le n} \left(\frac{T(k-1)}{O} + \frac{T(n-k)}{O} + O(n) \right)$ In the worst case T(n) = T(n-1) + O(n), which means $T(n) = O(n^2)$. Happens if array is already sorted and pivot is always first element.

Recursion Trees

